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Outline
• Data  

Actions, Interactions, User generated content 
• Architectures  

MapReduce, Graphs, Streams, Parameterserver 
• Models and Algorithms 

• Logistic regression (advertising, search) 
Distributed proximal gradient 

• Scaling Topic models (personalization, profiling) 
• Modeling (user generated) data and behavior



Data



Data 
per minute 

2012

http://www.domo.com/learn/infographic-data-never-sleeps



Data 
per minute 

2014

http://www.domo.com/learn/data-never-sleeps-2

http://www.domo.com/learn/data-never-sleeps-2


Computational Advertising

• sponsored 
search picks 
position of 
ad using
p(click|ad) · bid(ad)

estimate it

4 million/minute



Spam filtering
200 million/minute

imbalanced 
dataset



Recommendation & Ranking

really?

maximize interaction probability for whole page



Time series & trends



More data
• News articles & events (NY Times, GNews) 
• Blogs / microblogs (Tumblr, Twitter, Weibo) 
• Reviews (IMDB, Yelp, Amazon) 
• Comments (YouTube, Reddit) 
• Messages (Facebook, Hangouts, SMS) 
• Graphs (Friends, Followers, Webpages) 
• Information diffusion (Meme tracking) 
• Spatiotemporal (GMaps, Foursquare, Twitter)



Lots more data
• Bioinformatics 

DNA Microarrays, High throughput sequencing 
• Astronomy 

Square Kilometer Array, Radio telescopes 
• Medicine  

MRI / MEG scans, Connectome, Health records 
• Finance (e.g. high frequency trading) 
• Geophysics (e.g. oil discovery) 
• Industrial process monitoring



Summary
• Expensive data ≠ big data  

(1000 brain scans are expensive) 
• Big data requires big models 

(1000 parameter model on TB of data) 
• Big data needs systems built for it 

(don’t ship data to computation) 
• Vast range of problem domains  
• Vast range of statistical models



Architecture



Real Hardware



Machines
•CPU 
–8-64 cores (Intel/AMD servers) 
–2-3 GHz (close to 1 IPC per core peak) - over 100 GFlops/socket 
–8-32 MB Cache (essentially accessible at clock speed) 
–Vectorized multimedia instructions (AVX 256bit wide, e.g. add, multiply, logical) 

•RAM 
–16-256 GB depending on use 
–3-8 memory banks (each 32bit wide - atomic writes!) 
–DDR3 (up to 100GB/s per board, random access 10x slower) 

•Harddisk 
–4 TB/disk 
–100 MB/s sequential read from SATA2 
–5ms latency for 10,000 RPM drive, i.e. random access is slow 

•Solid State Drives 
–500 MB/s sequential read 
–Random writes are really expensive (read-erase-write cycle for a block) 

Bulk transfer is at least 10x faster



The real joy of hardware

Jeff Dean’s Stanford slides



Why a single machine is not enough

• Data (lower bounds) 

• 10-100 Billion documents (webpages, e-mails, ads, tweets) 

• 100-1000 Million users on Google, Facebook, Twitter, Hotmail 

• 1 Million days of video on YouTube 

• 100 Billion images on Facebook 

• Processing capability for single machine 1TB/hour 
But we have much more data 

• Parameter space for models is too big for a single machine  
Personalize content for many millions of users 

• Process on many cores and many machines simultaneously



Cloud pricing
• Google Compute Engine and Amazon EC2 

!

!

!

• Storage

$10,000/year

Spot instances 
much cheaper



Real Hardware
• can and will fail 
• Spot instances much cheaper (but can lead 

to preemption). Design algorithms for it!



Work & storage



File systems



RAID
• Redundant array of inexpensive disks (optional fault tolerance) 

• Aggregate storage of many disks 
• Aggregate bandwidth of many disks 

• RAID 0 - stripe data over disks (good bandwidth, faulty) 
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance) 
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance) 
• Even better - use error correcting code for fault tolerance,  

e.g. (4,2) code, i.e. two disks out of 6 may fail



RAID
• Redundant array of inexpensive disks (optional fault tolerance) 

• Aggregate storage of many disks 
• Aggregate bandwidth of many disks 

• RAID 0 - stripe data over disks (good bandwidth, faulty) 
• RAID 1 - mirror disks (mediocre bandwidth, fault tolerance) 
• RAID 5 - stripe data with 1 disk for parity (good bandwidth, fault tolerance) 
• Even better - use error correcting code for fault tolerance,  

e.g. (4,2) code, i.e. two disks out of 6 may fail

what if a 
machine dies?



Distributed replicated file systems

• Internet workload 
• Bulk sequential writes 
• Bulk sequential reads 
• No random writes (possibly random reads) 
• High bandwidth requirements per file 
• High availability / replication 

• Non starters 
• Lustre (high bandwidth, but no replication outside racks) 
• Gluster (POSIX, more classical mirroring, see Lustre) 
• NFS/AFS/whatever - doesn’t actually parallelize



Google File System / HadoopFS

• Chunk servers hold blocks of the file (64MB per chunk) 
• Replicate chunks (chunk servers do this autonomously). More bandwidth and fault tolerance 
• Master distributes, checks faults, rebalances (Achilles heel) 
• Client can do bulk read / write / random reads

Ghemawat, Gobioff, Leung, 2003



Google File System / HDFS
• Client requests chunk from master 

• Master responds with replica location 

• Client writes to replica A 

• Client notifies primary replica 

• Primary replica requests data from replica A 

• Replica A sends data to Primary replica (same process for replica B) 

• Primary replica confirms write to client



Google File System / HDFS
• Client requests chunk from master 

• Master responds with replica location 

• Client writes to replica A 

• Client notifies primary replica 

• Primary replica requests data from replica A 

• Replica A sends data to Primary replica (same process for replica B) 

• Primary replica confirms write to client

• Master ensures nodes are live 

• Chunks are checksummed 

• Can control replication factor for 
hotspots / load balancing 

• Deserialize master state by loading data 
structure as flat file from disk (fast)



Google File System / HDFS
• Client requests chunk from master 

• Master responds with replica location 

• Client writes to replica A 

• Client notifies primary replica 

• Primary replica requests data from replica A 

• Replica A sends data to Primary replica (same process for replica B) 

• Primary replica confirms write to client

• Master ensures nodes are live 

• Chunks are checksummed 

• Can control replication factor for 
hotspots / load balancing 

• Deserialize master state by loading data 
structure as flat file from disk (fast)

Achilles heel



Google File System / HDFS
• Client requests chunk from master 

• Master responds with replica location 

• Client writes to replica A 

• Client notifies primary replica 

• Primary replica requests data from replica A 

• Replica A sends data to Primary replica (same process for replica B) 

• Primary replica confirms write to client
only one 

write needed

• Master ensures nodes are live 

• Chunks are checksummed 

• Can control replication factor for 
hotspots / load balancing 

• Deserialize master state by loading data 
structure as flat file from disk (fast)

Achilles heel



Map Reduce 
& Processing



Map Reduce
• 1000s of (faulty) machines 
• Lots of jobs are embarrassingly parallel (except for a sorting/transpose phase) 
• Functional programming origins 

• Map(key,value) processes (key,value) pairs and outputs new (key,value) pair 
• Reduce(key,value) reduces all instances with same key to aggregate 

• Example - (naive) wordcount 
• Map(docID, document) for each document emits many (wordID, count) pairs 
• Reduce(wordID, count) sums over all wordID, emits (wordID, aggregate)

from Ramakrishnan, Sakrejda, Canon, DoE 2011



Map Reduce
• 1000s of (faulty) machines 
• Lots of jobs are embarrassingly parallel (except for a sorting/transpose phase) 
• Functional programming origins 

• Map(key,value) processes (key,value) pairs and outputs new (key,value) pair 
• Reduce(key,value) reduces all instances with same key to aggregate 

• Example - (naive) wordcount 
• Map(docID, document) for each document emits many (wordID, count) pairs 
• Reduce(wordID, count) sums over all wordID, emits (wordID, aggregate)



Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance  
(simply restart workers) 

!
moves computation to data

disk based inter process 
communication



Map Combine Reduce
• Combine aggregates keys within machine before sending to reducer 
• Map must be stateless in blocks 
• Reduce must be commutative in data 
• Fault tolerance 

• Start jobs where the data is (move code not data) 
• Restart machines if maps fail (have replicas) 
• Restart reducers based on intermediate data 

• Good fit for many algorithms 
• Good if only a small number of MapReduce iterations needed 
• Need to request machines at each iteration (time consuming) 
• State lost in between maps 
• Communication only via file I/O



Example - Gradient Descent
• Objective  

• Algorithm 
• compute gradient 

• On each data point via Map(i,data) 
• Sum gradient via Reduce(coordinate) 

• perform update step 
(much better with line search) 

• repeat

minimize
w

mX

i=1

l(xi, yi, w) +
�

2
kwk2

g :=
mX

i=1

@wl(xi, yi, w)

w  w � ⌘(g + �w)



Dryad

• Directed acyclic graph 
• System optimizes parallelism 
• Different types of IPC 

(memory FIFO/network/file) 
• Tight integration with .NET  

(allows easy prototyping)

Map

Reduce

DAG

Isard et al., 2007



DRYAD

graph description language



DRYAD

automatic graph refinement



Spark



Resilient Distributed Datasets
• Data is transformed by processing 
• Store intermediate data using lineage 
• Driver controls work

Zaharia et al., 2012 



Beyond MapReduce

rich language & preprocessor



Improvement over MapReduce



blog.smola.org @smolix 



Background



The Challenge
• Scale 

• 100s Terabytes of data 
• 1000s of computers 
• 100 Billions of parameters 

• Reality 
• Faulty machines 
• Shared cluster 

• Performance 
• Front end serving machines 
• Real time response



Machine Learning Problems
• Many models have O(1) blocks of O(n) terms 

(LDA, logistic regression, recommender systems) 
• More terms than what fits into RAM  

(personalized CTR, large inventory, action space) 
• Local model typically fits into RAM 
• Data needs many disks for distribution 
• Decouple data processing from aggregation 

• Optimize for the 80% of all ML problems



General parallel algorithm template 

client

server

• Clients have local view of parameters 
• P2P is infeasible since O(n2) connections 
• Synchronize with parameter server 

• Reconciliation protocol  
average parameters, lock variables 

• Synchronization schedule  
asynchronous, synchronous, episodic 

• Load distribution algorithm 
uniform distribution, fault tolerance, recovery

Smola & Narayanamurthy, 2010, VLDB 
Gonzalez et al., 2012, WSDM 
Shervashidze et al., 2013, WWW



Communication pattern
client

server

client syncs to 
many masters

master serves 
many clients

put(keys,values,clock), get(keys,values,clock)



Architecture

High-performance and multi-threaded linear algebra
operations are provide between parameters and local
training data.

There are two challenges. One is flexible and efficient
communication between workers and servers. A nature
thought is viewing it as a distribute key-value system. The
standard API that setting and getting a key, however, is
potentially inefficient. Because both key and value are
often basic types such as integers and float, the overhead
associated sending a single key value pair would be large.

Our insight comes from that a large portion of machine
learning algorithms represents parameters as mathemat-
ical objects, such as vectors, matrices or tensors. On a
logic time (or an iteration), typically a part of the object
is updated. For example, a segment of vector, or a row
of the matrix. From the key-value system perspective,
it is equivalence to synchronization a range of keys each
time. This batched communication pattern could reduces
the overhead and make it easy to do optimization. Further-
more, it allows us to build an efficient vector clocks which
supports the flexible consistency requirement of machine
learning tasks.

The other challenge comes from the fault tolerances.
We implemented the system. and did awesome experi-

ments.
We briefly compare parameter server with other general

purpose machine learning systems, more details will be
provided in Section 6. Graphlab is .... Table ?? compare
the features.

Furthermore, parameter server is highly efficient. Fig-
ure 1 compared the largest experiments public carried by
both general purpose and specific systems. parameter
server is of several magnitude order larger than general
system, and even larger than the specific systems.

2 Architecture

2.1 Overview
An instance of parameter server can simultaneously run
more than one different algorithms. In parameter server,
Nodes are grouped into a server group and several worker
groups, which are shown in Figure 2. A server node in the
server group maintain a partition of the globally shared
parameters. They communicate with each other to repli-
cate and/or to migrate parameters for reliability and scal-
ing. There is a server manager node maintaining a con-
sistent view of the metadata of the servers, such as the
liveness and the assignment of parameters. It may backup
its metadata in Paxos for fault tolerance, and communi-
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Figure 1: Comparison of the public largest machine learn-
ing experiments each system performed.

server nodesserver 
manager

resource
manager /

paxos

task 
scheduler

worker 
nodes

training data

Figure 2: Architecture of parameter server.

cate with the cluster resource manager when adding or
removing server nodes.

Each worker group runs an application. A worker typ-
ically stores locally a portion of training data to com-
putes local statistics such as gradients. Workers commu-
nicate only with the server nodes, updating and retriev-
ing the shared parameters. There is a scheduler node for
each worker group. It assigns tasks to workers and mon-
itors their progress. If workers are added or removed,
it reschedules unfinished tasks. Similar to the server
manager, the scheduler may backup workers’ progress in
Paxos, and communicate with the cluster resource man-
ager.

The parameter server supports several independent pa-

2



Key layout & recovery



Consistent Hashing
• Caching 

• Store many (key,value) pairs 
• Linear scaling in clients & servers 
• Automatic key distribution 

• memcached 
• (key,value) servers 
• client access library distributes access patterns 
• randomized O(n) bandwidth 
• aggregate O(n) bandwidth 
• load balancing via hashing 
• no versioned writes / vector clocks 
• very expensive to iterate over all keys for a given server

m(key,M) = argmin
m02M

h(key,m0)



Keys arranged in a DHT
• Virtual servers 

• loadbalancing 
• multithreading 

• DHT 
• contiguous key range 

for clients 
• easy bulk sync 
• easy insertion of servers 

• Replication 
• Machines hold replicas 
• Easy fallback 
• Easy insertion / repair

Server 3

Server 2

Server 1

key



Keys arranged in a DHT
• Virtual servers 

• loadbalancing 
• multithreading 

• DHT 
• contiguous key range 

for clients 
• easy bulk sync 
• easy insertion of servers 

• Replication 
• Machines hold replicas 
• Easy fallback 
• Easy insertion / repair

Server 3

Server 2

Server 1

key

Yes, we screwed up before! 
And everyone copied us!



Key layout

servers
1
2
3
4
5

A B C D E

6
replica
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Key layout

copy

original
servers
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Key layout

servers
1
2

4
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6

segment merger



Key layout

partial copy

servers
1
2

4
5

A B C D E



Recovery / server insertion

• Precopy server content to new candidate (3) 
• After precopy ended,  send log 
• For k virtual servers this causes O(k-2) delay 
• Consistency using vector clocks

servers
1
2

4
5

A B C D E

3



Communication



Message Compression
• Convergence speed depends on 

communication efficiency 
• Sending (key,value) pairs is inefficient 

Send only values (cache key list) instead 
• Sending small gradients is inefficient 

Send only sufficiently large ones instead 
• Updating near-optimal values is inefficient 

Send only large violators of KKT conditions 
• Filter data before sending



Filters
• Scheduling  

have controller decide when to send 
(this requires very smart controller) 

• Filtering 
have algorithm decide when to shut up 
• Gradient (only send large gradients) 
• KKT (only send variables violating KKT) 
• Randomized (sparse random vectors) 
• Quantization (reduce accuracy)



Message Compression
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Figure 9: Percent of gradients sent due to KKT filter.
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Figure 10: time decomposition of a worker node.

We show the convergence results in Figure 8. As
can be seen, baseline-B outperforms baseline-A, because
block proxmial gradient method converges faster than L-
BFGS on this dataset. Parameter server further improves
baseline-B even by using the same algorithms, because of
the relaxed consistency model parameter server adopted.
The KKT filter significantly reduced the network traffic.
It skipped 93.4% of gradients should be sent, which are
shown in Figure 9. The bounded delay consistency allow
to start updating the next block without waiting the data
communication finished in previous blocks. With ⌧ = 4,
it affects the convergence speed little, but further hide the
communication cost.

The benefit of relaxed consistency model can be clearer
seen in Figure 10, which shows the time decomposition
of a worker nodes. As can be seen, System-A has around
32% idle time, while this number goes to 53% for system-
B due to the barrier placed in each block. However, the
parameter server reduces this cost under 2%. But also
note that parameter server uses more computational time

than system-B. The reason are two-fold. On one hand,
system-B optimizes its gradient calculating on this dataset
by careful data transformation. On the other hand, the
asynchronous updates of parameter server needs more it-
erations to achieve the same objective value as system-B.
However, due to the significant gain on reducing commu-
nication cost, parameter server reduces the total time into
half.

6 Related Works
There exist several general purpose distributed machine
learning systems. Mahout [6], based on Hadoop [1] and
MLI [28], based on Spark [30], adopt the iterative MapRe-
duce [15] framework. While Spark is substantially su-
perior to Hadoop MapReduce due to its preservation of
state and optimized execution strategy, both of these ap-
proaches use a synchronous iterative communication pat-
tern. This makes them vulnerable to nonuniform per-
formance distributions for iterative machine learning al-
gorithms, i.e. machines that might happen to be slow at
any given time. To overcome this limitation, distributed
GraphLab [22] asynchronously schedules communication
using a graph abstraction. It, however, lacks the elastic
scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover,
global variables synchronization is not a first-class prim-
itive. Of course, beyond these general frameworks, nu-
merous systems have been developed that target specific
applications, such as [3, 14, 25, 23, 29, 12, 16].

We found that many inference problems have a rather
restricted structure in terms of their parametrization where
considerable gains can be made by exploiting this design.
For instance, generalized linear models typically use a sin-
gle massive parameter vector, or topic models use an ar-
ray of sparse vectors. In general, many relevant large-
scale graphical models consist largely of a small num-
ber of plates, thus allowing for a repeated structure of a
small number of components which are shared between
observations and machines. This offers considerable effi-
ciencies by performing these operations in bulk and by
specializing synchronization primitives for the specific
datatypes.

7 Conclusion

References
[1] Apache hadoop, 2009. http://hadoop.apache.org/core/.

9

• Sparse Vectors aka (key,value) pairs 
• Cache key list on server 
• Only need to send values 

• Sparse updates (via user defined filter) 
• Only send large updates 
• Compress sparse value list



Message Aggregation on Server

Algorithm 1 Set range R of node i into t:
Require: S1, . . . ,Sn are the existing ranges

1: for S 2 {Si : Si \R 6= ;} do
2: if S ✓ R then
3: vci(S) t

4: else
5: a max(S0

,R0
) and b min(S1

,R1
)

6: split S into [S0
, a), [a, b), [b,S1

)

7: vci([a, b)) t

8: end if
9: end for

4.2 Message
Messages carry the data communicated between nodes. It
consists of a list of key-value pairs and the timestamp:

vc(R), (k1, v1), . . . , (kp, vp), 8i, ki 2 R

The keys may be a subset of all available keys within
range R. For the missing keys, we assign them the same
timestamp but with 0 or unchanged values.

There are several ways to reduce the size of a message.
First of all, the vector clock can only has the sender’s time.
For example, when a worker push data to a server, the
worker doesn’t necessary to send others time except for it-
self. Secondly, the keys a node sending to another may be
unchanged if the same range will be communicated again.
For example, when a node push keys to a server, it may
pull the same keys from the server. Many machine learn-
ing algorithms also iterates on the same training data with
keys fixed on each iteration. Then is desirable for the re-
ceiver to cache the keys. So that if the sender will send the
same keys again, it only need to send a signature of this
key lists.

Thirdly, even if a subset of keys will be send again,
which may due to the user-defined filter, we can still make
use of the cached keys of the receiver by padding 0 in the
according value. Then we compress the values. There are
several compression algorithms such as Snappy and Zlib
which are fast on both compression and decompression,
and also efficient to remove 0s.

4.3 Consistent Hashing
The basic idea comes from distributed hash tables [10,
26], where both key-value pairs and server nodes are in-
serted into the hash ring. Each node manages the key seg-
ment starting with its insertion point to the next point by

ever, we didn’t implement it yet, because in practice we find n and m
are reasonable small.

owned 
by S1

duplicated 
by S1

key ring

S2

S1

S3

S4

Figure 6: Server node layout

other nodes in the anticlockwise direction, which is called
the anticlockwise neighbor. In the example shown on Fig-
ure 6, the server nodes manages segments of the same
color. Different to performing key discovery and routing
as [18], we use a consistent hashing for assignment and
we store the mapping from key segments to nodes in a
server manager, which backups the data by Paxos [19], as
implemented in Zookeeper. Note that, to facilitate load-
balancing, a physical server node contains several virtual
server nodes, so they are inserted multiple times into the
ring.

4.4 Replica and Consistency

W1 S1 S2

1. push x 2. f(x) 3. send f(x)

4. ack5. ack

W1

S1 S2
1a. push x

2. f(x+y) 3. send f(x+y)

4. ack

5a. ack

W2
1b. push x

5b. ack

Figure 7:

7



Messaging
• Datatypes are eigen3 native 

• Dense vectors 
• Sparse vectors 

• Push(Header flag) 
• Pull(Header flag) 
Flag may specify 
• Value or delta update 
• key range 
• recipient (all server, all clients, particular node)
Shared pointer. No copy on queue (by default)!



Consistency models

0 1 2 3

0 1 2 3

0 1 2 3

(a) Sequential

(b) Eventual

(c) Bounded delay 

4

4

4

Figure 5: Example consistency model expressed by task
DAG dependency.

Sequential. In sequential consistency, all tasks are exe-
cuted one by one. The next task can be started only
if the previous one has finished.

Eventual. Eventual consistency is the opposite of se-
quential consistency. The parameter server will not
stall regardless of the availability of resources. For
instance, [27] describe such a system. However, this
is only recommendable whenever the underlying al-
gorithms are robust with regard to delays.

Bounded Delay. When a maximal delayed time ⌧ is set,
a new task will be blocked until all previous task ⌧

times ago have been finished. In other word, if we
use the iteration number as the (logic) time and set
⌧ = 2, then calling do_iteration(4) will be
blocked if any do_iteration(t) with t < 3 has
not been finished yet. Thus, if ⌧ = 0, we get the
sequential consistency model. While for an infinite
delay ⌧ = 1, we have the best-effect model [27].

The DAG can be traversed by either the callee or the
caller. For the former, the caller sends all tasks with their
dependencies to the callee, then the callee executes them
by its local DAG execution engine. In this way, the syn-
chronization is minimized between the caller and callee.
However, sometimes it is more convenient to use the lat-
ter. For instance, the scheduler may increase or decrease
the maximal delay according to the progress of the algo-
rithm. So the DAG is dynamic, then letting the caller tra-
verse the DAG simplify the programming.

3.5.2 User-defined Filters

The user-defined filters allow fine granularity control of
the data consistency within a task. It provides selective
synchronization on individual key-value pairs. One exam-
ple is the significantly modified filter, which only pushes
entries that have been changed more than by a significant
amount, e.g.

|wk � w

(synced)
k | > �.

That is, we send the key pair (k,wk) only if it is signif-
icantly changed since the last time it has been synchro-
nized. An intuitive choice is using a large � at the begin-
ning of the optimization, and then continuously decreas-
ing � when approaching a solution.

Another example, will be shown in Section 5.1, consid-
ers the optimal condition of the objective function. The
workers do not push local gradients which possibly would
not changed the according parameters to the servers.

4 Implementation
From the implementation aspect, it is more convenient to
view parameter server as a distributed key-value system.
A key-value pair may be an entry of the shared parame-
ters, where a key is often an integer or a string and a value
is often a number. It also may present a task with task
identity as the key and function augments or return results
as the value.

4.1 Vector Clock
To implement the task dependency, each key-value pair is
associated with a timestamp. Due to the potential complex
dependencies, timestamp is generated by vector clock.
Comparing to scalar clock, the vector clock tracks the
clock of individual nodes. Take the aggregation as an ex-
amples again, assume the server need to wait the value
pushed from all worker at an iteration. By vector clock,
the server is able to know the data from which workers
has been received. So if any worker join or leave, the
server only need to contact these workers, rather than ask
for restarting all pushes again.

A naive implementation of the vector clock is impracti-
cal. The number of nodes may go beyond thousand, main-
taining a thousand length vector for each key is expen-
sive. However, note that, by our design, each task asso-
ciates with a range of key-value pairs and they can share
the same timestamp. Therefore, we only need to have a
ranged vector clock.

Assume vci(k) is the time of key k of node i. Given
range R = [R0

,R1
), then the ranged vector clock

vci(R) = t means for any key k 2 R, vci(k) = t. Algo-
rithm 1 shows how to update a ranged vector clock. When
the range will be set is aligned with the existing ranges,
only the time is modified. Otherwise, we split the exist-
ing ranges. Each update increase at most two ranges. Let
n be the total number of unique ranges updated by tasks,
and m be the total number of server nodes, then the range
vector clock will generate at most nm ranges for a node.3

3Ranges can be also merged to reduce the number of fragment. How-

6

via task processing engine on client/controller



Vector Clocks for Ranges
• Keep track of when we received an update 

from a client / server. 
• For c clients this means O(c) metadata 

This is impossible to store per key (Dynamo) 
• Very cheap and feasible for ranges 
• When inconsistent ranges, split segments 

[A,D] splits into [A,B], [B,C] and [C,D] when 
receiving message for [B,C] 

• This is infrequent + defragmentation



Models



Logistic Regression



Recall - Computational Advertising

• sponsored 
search picks 
position of 
ad using
p(click|ad) · bid(ad)

estimate it

4 million/minute
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Estimating Probabilities
• Logistic model (exponential family) 
 
 
y will tend to agree with the sign of t (find t) 

• Normalizing terms 
 
 
 

p(y|t) / exp
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(Penalized) Maximum Likelihood

• Goal 
Find t that correlates with y 

• Strategy  
Use covariates x and function f(x) 
 

• Penalty against overfitting / Bayes rule

p(y|x) = 1

1 + exp(�yf(x))

p(f |X,Y ) / p(f)

mY

i=1

1

1 + exp(�yif(xi))



Penalized Maximum Likelihood

• Picking a function class 
!

• Picking a prior 
!

• Picking an inference strategy

f(x) = hw, xi

log p(f) = � kwk1 + const.

minimize

w
� log p(f |X,Y )

minimize

w

mX

i=1

log(1 + exp(�yi hw, xii)) + � kwk1

we want sparse 
models for advertising



� log p(wi) =
1

2

w2
i + const.

� log p(wi) =|wi|+ const.

� log p(wi) = log(0.1 + |wi|) + const.



Proximal Algorithm
• Problem - l1 norm is non-smooth 
• Proximal operator  
 
 
 
(more generally use penalty on w) 

• Updates for l1 are  
 
(update and project back to polytope)

argmin
w

kwk1 +
�

2
kw � (wt � ⌘gt)k

wi  sgn(wi)max(0, |wi|� ✏)



Generic Parallel Template
• Compute gradient 

on (subset of data) on 
each client 

• Send gradient from client 
to server asynchronously 
push(key_list,value_list) 

• Proximal gradient update  
on server 

• Server returns parameters 
pull(key_list,value_list)

Server

ClientClientClients



Guinea pig - logistic regression

• Implementation on Parameter Server

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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Figure 8: Convergence results of sparse logistic regres-
sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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Convergence speed

• System A and B are production systems at a 
very large internet company …

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.
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sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.
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Figure 10: time decomposition of a worker node.

We show the convergence results in Figure 8. As
can be seen, baseline-B outperforms baseline-A, because
block proxmial gradient method converges faster than L-
BFGS on this dataset. Parameter server further improves
baseline-B even by using the same algorithms, because of
the relaxed consistency model parameter server adopted.
The KKT filter significantly reduced the network traffic.
It skipped 93.4% of gradients should be sent, which are
shown in Figure 9. The bounded delay consistency allow
to start updating the next block without waiting the data
communication finished in previous blocks. With ⌧ = 4,
it affects the convergence speed little, but further hide the
communication cost.

The benefit of relaxed consistency model can be clearer
seen in Figure 10, which shows the time decomposition
of a worker nodes. As can be seen, System-A has around
32% idle time, while this number goes to 53% for system-
B due to the barrier placed in each block. However, the
parameter server reduces this cost under 2%. But also
note that parameter server uses more computational time

than system-B. The reason are two-fold. On one hand,
system-B optimizes its gradient calculating on this dataset
by careful data transformation. On the other hand, the
asynchronous updates of parameter server needs more it-
erations to achieve the same objective value as system-B.
However, due to the significant gain on reducing commu-
nication cost, parameter server reduces the total time into
half.

6 Related Works
There exist several general purpose distributed machine
learning systems. Mahout [6], based on Hadoop [1] and
MLI [28], based on Spark [30], adopt the iterative MapRe-
duce [15] framework. While Spark is substantially su-
perior to Hadoop MapReduce due to its preservation of
state and optimized execution strategy, both of these ap-
proaches use a synchronous iterative communication pat-
tern. This makes them vulnerable to nonuniform per-
formance distributions for iterative machine learning al-
gorithms, i.e. machines that might happen to be slow at
any given time. To overcome this limitation, distributed
GraphLab [22] asynchronously schedules communication
using a graph abstraction. It, however, lacks the elastic
scalability of the map/reduce-based frameworks, and re-
lies on coarse-grained snapshots for recovery. Moreover,
global variables synchronization is not a first-class prim-
itive. Of course, beyond these general frameworks, nu-
merous systems have been developed that target specific
applications, such as [3, 14, 25, 23, 29, 12, 16].

We found that many inference problems have a rather
restricted structure in terms of their parametrization where
considerable gains can be made by exploiting this design.
For instance, generalized linear models typically use a sin-
gle massive parameter vector, or topic models use an ar-
ray of sparse vectors. In general, many relevant large-
scale graphical models consist largely of a small num-
ber of plates, thus allowing for a repeated structure of a
small number of components which are shared between
observations and machines. This offers considerable effi-
ciencies by performing these operations in bulk and by
specializing synchronization primitives for the specific
datatypes.

7 Conclusion

References
[1] Apache hadoop, 2009. http://hadoop.apache.org/core/.
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• Locally Gibbs Sample cluster ID 
!

• Communicate changes in statistics of data to server 
(mean, variance, cluster size)

mean 
variance 

cluster weight
data cluster ID

Synchronization Strategy

p(zi|xi, rest) / p(zi|Z�i)p(xi|X�i
, Z

�i
, zi)



Mixture of Gaussians
• Multinomial with Dirichlet for cluster ID  
 

• Integrating out multinomial yields collapsed 
 

• Gaussian with Gauss-Wishart for data 
!

• Only need to sync 

p(Z|✓) =
mY

i=1

✓zi and p(✓|↵) = Dir(↵)

p(zi = z|Z�i) =
n�i
z + ↵z

n� 1 +
P

z0 ↵z0

xi|zi ⇠ N (µzi ,⌃zi) and (µzi ,⌃zi) ⇠ GaussWishart(m0, µ0, Q0)

(nz, lz, Qz) :=
X

zi=z

(1, xi, xix
>
i )



Local and Global Variables

•No locks between machines to access z 

• Synchronization mechanism for global μ needed 

• In LDA this is the local copy of the (topic,word) counts

1 copy per machinebackground sync



Local and Global Variables

global
replica



Message Passing
• Start with common state 
• Child stores old and new state 
• Parent keeps global state 
• Transmit differences asynchronously 

• Inverse element for difference 
• Abelian group for commutativity  

(sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old  x

global

�  x� x

old

x

old  x

x

global  x

global + �
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Topic Models
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Clustering & Topic Models
Clustering

?

group objects 
by prototypes



Clustering & Topic Models
Clustering

?

group objects 
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Clustering & Topic Models

x

y

θ

prior

cluster 
probability

cluster label

instance
x

y

θ

prior

topic 
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α



Clustering & Topic Models

DocumentsmembershipCluster/topic 
distributions x =

clustering: (0, 1) matrix 
topic model: stochastic matrix 

LSI: arbitrary matrices



Topics in text

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003



Gibbs Sampling

xij

zij

θi

language prior

topic 
probability

topic label

instance

α

ψkβ

• Goal - sample topics and language model 
• Problem - joint distribution intractable 
• Solution 

• Sample one variable at a time 
 
 
 

• Guarantee of convergence 

(x, y) ⇠ p(x, y) intractable

x ⇠ p(x|y)
y ⇠ p(y|x)



Joint Probability Distribution

xij

zij

θi

language prior

topic 
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)



Joint Probability Distribution
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Joint Probability Distribution

sample z 
independently

sample θ 
independently
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p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)
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i,j
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independently
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Collapsed Sampler
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Collapsed Sampler
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• For 1000 iterations do 
• For each document do 

• For each word in the document do 
• Resample topic for the word 
• Lock (word,topic) table 
• Update local (document, topic) table 
• Update (word,topic) table 
• Unlock (word,topic) table

Gibbs Sampler

this kills parallelism



• For 1000 iterations do 
• For each document do 

• For each word in the document do 
• Resample topic for the word 
• Lock local (word,topic) table 
• Update local (document, topic) table 
• Update local (word,topic) table 
• Unlock local (word,topic) table 

• Synchronize local and global tables 

Gibbs Sampler

this kills multithreading



• For 1000 iterations do 
• For each document do 

• For each word in the document do 
• Resample topic for the word 
• Update local (document, topic) table 
• Generate local update message 

• Update local table 
• Lock local (word,topic) table 
• Update local (word,topic) table 
• Unlock local (word,topic) table 

• Synchronize local and global tables 

Gibbs Sampler









Palo Verde, AZ 
3 Gigawatt 

Largest nuclear reactor in the USA



1 machine = 10 cores 
1 core = 50 watt 

consumption of 3 Megawatt

Palo Verde, AZ 
3 Gigawatt 

Largest nuclear reactor in the USA
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Statistical Model
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• Topic model 

• Users - Documents 

• Actions - Words 

• Interests - Topics 

• Παντα ρει (everything flows) 

• Users’ interest preferences  
change over time 

• Interests change over time 

• Changing flavor of the day



Some Users

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

 

 

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day
 

 

Baseball

Dating

Celebrity

Health

Snooki
Tom 

Cruise
Katie

Holmes 
Pinkett
Kudrow

Hollywood

League 
baseball 

basketball, 
doublehead

Bergesen
Griffey
bullpen 
Greinke

skin
body 

fingers 
cells 
toes 

wrinkle 
layers

women 
men

dating 
singles 

personals 
seeking 
match

Dating Baseball Celebrity Health

job 
career

business
assistant

hiring
part-time

receptionist

financial 
Thomson 

chart 
real 

Stock
Trading

currency

Jobs Finance



Some Users

0 10 20 30 400

0.1

0.2

0.3

Pr
op

ot
io

n
Day

 

 

Baseball

Finance

Jobs

Dating

0 10 20 30 400

0.1

0.2

0.3

0.4

0.5

Pr
op

ot
io

n

Day
 

 

Baseball

Dating

Celebrity

Health

Snooki
Tom 

Cruise
Katie

Holmes 
Pinkett
Kudrow

Hollywood

League 
baseball 

basketball, 
doublehead

Bergesen
Griffey
bullpen 
Greinke

skin
body 

fingers 
cells 
toes 

wrinkle 
layers

women 
men

dating 
singles 

personals 
seeking 
match

Dating Baseball Celebrity Health

job 
career

business
assistant

hiring
part-time

receptionist

financial 
Thomson 

chart 
real 

Stock
Trading

currency

Jobs Finance



Improvement ($$$)

50

52

54

56

58

60

62

Dataset−2

 

 

>1
00

0

[10
00

,60
0]

[60
0,4

00
]

[40
0,2

00
]

[20
0,1

00
]

[10
0,6

0]

[60
,40

]

[40
,20

]
<2

0

baseline
TLDA
TLDA+Baseline



Improvement ($$$)

50

52

54

56

58

60

62

Dataset−2

 

 

>1
00

0

[10
00

,60
0]

[60
0,4

00
]

[40
0,2

00
]

[20
0,1

00
]

[10
0,6

0]

[60
,40

]

[40
,20

]
<2

0

baseline
TLDA
TLDA+Baseline

500 million users per day 
on 1000 machines



Hierarchies



Modeling stuff - Clusters

Dirichlet 
process
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e.g. hierarchical 
stick breaking



Modeling stuff 
Hierarchy of Clusters

Adams, Ghrahramani, Jordan, 2008

e.g. hierarchical 
stick breaking



Modeling stuff 
Hierarchy of Clusters

Adams, Ghrahramani, Jordan, 2008

e.g. hierarchical 
stick breaking



Modeling stuff 
Hierarchy of Clusters

Adams, Ghrahramani, Jordan, 2008

e.g. hierarchical 
stick breaking



Modeling stuff 
Hierarchy of Clusters

Adams, Ghrahramani, Jordan, 2008

e.g. hierarchical 
stick breaking



Recall - Factorial representations

Blei, Ng, Jordan 2003
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Hierarchical factorial representations

• Hierarchical Dirichlet Process (Teh et al. 2006)  
• Given hierarchy of objects 
• DP on children inherits from parent 

!

• Nested Chinese Restaurant Process (Blei et al. 2010) 
 
 
 

• Pachinko allocation (McCallum et al., 2010) 
(use directed acyclic graph, often predefined)

Personalized Hierarchical Geographical Modeling for Twitter

rather than

G ⇠ DP (H, �) we now have Gi ⇠ DP (G0, �
0) and G0 ⇠ DP (H, �) (3)

Here � and �0 are appropriate concentration parameters. This means that we first draw
atoms from H to obtain G0. This is then, in turn, used as reference measure to obtain the
measures Gi. They are discrete and share, by construction, atoms via G0.

The Hierarchical Dirichlet Process is widely used in applications where di↵erent groups
of data points would share the same settings of partitions, such as (Teh et al., 2006; Beal
et al., 2002). In the context of document modeling the HDP is used to model each document
as a DP while sharing the set of atoms (mixtures or topics) across all documents. This is
precisely what we also want when assessing distributions over trees — we want to ensure
that the (partial) trees attached to each user share attributes among all users.

Integrating out all random measures, we arrive as what is known as the Chinese Restau-
rant Franchise (CRF). In this metaphor each restaurant maintains its set of tables but
shares the same set of mixtures. A customer at restaurant k can chose to sit at an existing
table with a probability proportional to the number of customers sitting on this table, or
start a new table with probability ↵ and chose its dish from a global distribution. In this
global distribution, a dish (mixture) is chosen proportional to its use across restaurants,
however, a new global dish can be chosen with probability proportional to �. Note that
there is no requirement for all tables in the restaurants to have distinct dishes. In fact,
the same dish may be served multiple times. This coagulation/fragmentation process was
studied, e.g. by Ho et al. (2006); James (2010).

3. The Nested Chinese Restaurant Franchise

We are now in a position to introduce the Nested Chinese Restaurant Franchise (nCRF). As
its name suggests, it borrows both from the Chinese Restaurant Franchise, thus allowing us
to share strength between groups, and the Nested Chinese Restaurant Process, thus allowing
us to obtain a hierarchical distribution over observations. Although the Nested Chinese
Restaurant Process, introduced in (Blei et al., 2010), provides a convenient way to impose
a distribution over tree-like structures, it is di�cult to apply it directly in our settings due
to the reason that the nCRP-induced distribution over the hierarchy is a global distribution
shared across all data partitions, such as documents. Instead, in our case, we wish to have
a personalized distributions over the same hierarchy for each user. Subsequently, we adorn
each vertex in the tree with a generative model to represent language and topic cascades. In
the context of spatial modeling of user generated content, for instance, each node in the tree
represents a geographical region. In the context of document modeling, we will associate
each document with an nCRP and tie together documents using the franchise. Details of
the nCRF, as applied to these problems are given in later sections. For now we focus on
the generative process itself.

3.1 Basic Idea

Our goal is to design a non-parametric model over trees, where each user has its own tree,
but the set of nodes in the trees, and their structure, such as parent-child relationships, are

7
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a distribution over tree-like structures, it is di�cult to apply it directly in our settings due
to the reason that the nCRP-induced distribution over the hierarchy is a global distribution
shared across all data partitions, such as documents. Instead, in our case, we wish to have
a personalized distributions over the same hierarchy for each user. Subsequently, we adorn
each vertex in the tree with a generative model to represent language and topic cascades. In
the context of spatial modeling of user generated content, for instance, each node in the tree
represents a geographical region. In the context of document modeling, we will associate
each document with an nCRP and tie together documents using the franchise. Details of
the nCRF, as applied to these problems are given in later sections. For now we focus on
the generative process itself.

3.1 Basic Idea

Our goal is to design a non-parametric model over trees, where each user has its own tree,
but the set of nodes in the trees, and their structure, such as parent-child relationships, are
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Personalized Hierarchical Geographical Modeling for Twitter

It defines an infinite hierarchy, both in terms of width and depth. In the nCRP, a set of
topics (mixtures) are arranged over a tree-like structure whose semantic is such that parent
topics are more general than the topics represented by their children. A document in this
process is defined as a path over the tree, and it is generated from the topics along that path
using an LDA-like model. In particular, each node in the tree defines a Chinese Restaurant
Process over its children. Thus a path is defined by the set of decisions taken at each node.

A desirable side-e↵ect in the nCRP is that topics near the root-level address more generic
issues whereas those at deeper levels of the (infinite) tree are more constrained to addressing
specific content. In e↵ect, the nCRP provides an intermediate representation between LDA
and clustering over objects, since only a single path from root to leaf is admissible for any
given object. The generative process is as follows (Blei et al., 2010):

(1) For each node t in the infinite tree draw a topic �t independently.
(2) For each document d draw

(a) Draw a path cd over the tree using the nCRP.
(b) Draw a distribution ✓d over levels in the tree using GEM(↵1,↵2).
(c) For all words in d draw a level t from ✓d and a corresponding word from �t.

The Chinese Restaurant Process metaphor of the above scheme is as follows: Suppose there
are infinite number of infinite-table Chinese restaurant in a city. On each of the tables
in those restaurants are cards that refer to other restaurants. Each restaurant is referred
to exactly once, thus, the restaurants in the city are organized into an infinitely brached,
infinitely-deep tree. A customer enters a root Chinese restaurant and selects a table using
the CRP procedure. After choosing a table in this restaurant, he goes to the restaurant
identified on the table and chooses a table using another CRP. The procedure continues
and the collection of paths describes a random subtree of the infinite tree. An alternative
derivation of the nCRP is via the nested Dirichlet process of Rodriguez et al. (2008).

In the context of user generated content, obtaining a tree-structured distribution over
objects is partially desirable. If we had unlimited data for each user we infer an nCRP per
user without any need to consider other users. This would lead to a user-specific model of
content and structural dependence. We will borrow this idea in contructing the nCRF. Alas,
in reality, content per user is scarce. Moreover, it is actually desirable to relate di↵erent
users to each other both in terms of their distribution over topics and also in terms of the
topics themselves. This is not easily possible in the nCRP. We will address this shortcoming
by defining a franchise over trees.

2.3 Pachinko Allocation

Directed Acyclic Graphs are a viable alternative to trees when it comes to introducing
correlated distributions over topics. Instead of a plain tree we may allow a higher-level
topic to occur in more than one sampling path. This strategy was proposed by (Li and
McCallum, 2006; Li et al., 2007; Mimno et al., 2007a) addressing both finite-dimensional
and nonparametric variants of this approach. It e↵ectively generalizes the nested Chinese
Restaurant Process. However, such expressiveness in structure comes at a high price in
terms of inference cost. Either the structure of the DAG is given a priori (Mimno et al.,
2007a) or it is learnt but the topics only occur at the leaf nodes (Li et al., 2007).

5



Variable resolution models
• Users have different levels of detail for preferences 

(photography, Shostakovich, Bauhaus, - ) 
(Panasonic m43, classical music, -, NFL) 

• Documents have different topics & levels of detail 
(49ers, sports, and the Bay Area) 
(Dirichlet process, machine learning, Twitter) 

• Want tree distribution per object. Sharing of strength 
between different trees 

• Nested Hierarchical Dirichlet Process (Paisley, Wang, Blei, Jordan, 2012) 

• Nested Chinese Restaurant Franchise (Ahmed, Hong, Smola, 2013)



Generative Process

• for each document 
• for each word 

• select path in doc 
• if new in document 

then select from global 
• if new in global 

then add new path

Global
doc 1

doc 2
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Document 
Modeling

(Ahmed, Hong, Smola, 2012)



Generative Process



NIPS Corpus



NIPS Corpus

• Issue is sampling from hierarchy 
Exact is very slow, Metropolis-Hastings somewhat faster, Approximation a la Wallach et al.



Location 
Modeling

(Ahmed, Hong, Tsioutsiouliklis, Smola 2013)



Data
• Tweets 
• 140 character string!
• User ID!
• Time!
• Location (on small subset of data)!

• Location estimation 
Geographical targeting, content filtering 

• User profiling  
Locations, interests



Modeling assumptions
User locations at variable resolution



Modeling assumptions

tagcloud on 
blog.smola.org

http://blog.smola.org


Modeling assumptions
• User location has variable resolution 

(places, neighborhoods, cities) 
• User content has variable detail 

(entities, stories, topics) 
• Geographical affinity of location and topic 

(I landed in SFO probably means airport) 
• Hierarchical model for text and location



Hierarchical modeling
• Arrange regions in a tree 
• Each node is a region 
• Each node models both text and location 

• Cascade these distributions over the tree 
• Tree Gaussian MRF for locations 
• HDP for text 

• Each user as a distribution over this region-tree



Topic hierarchy
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Hierarchical modeling
• Arrange regions in a tree 
• Each node is a region 
• Each node models both text and location 

• Cascade these distributions over the tree 
• Tree Gaussian MRF for locations 
 
 

• Topic preference 
!

• Language model
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Purchase 
Recommendation

(Zhang, Ahmed, Josifovski, Smola, 2014)



The Challenge
• Lots of (Co)purchase information per user 
• Item metadata (brand, price, text) 
• Recommend items 

!

• Human generated taxonomy (modest cover) 
• Expensive to add items 
• Not always accurate for purchase 

(hardware->(ps3, xbox, wii),  
software->(ps3 games, xbox games, wii games) 

• Want to recycle it if we have it



The model

item i

vi

category ⇡(i)

�⇡(i)v⇡(i)

qi

vu

user u

Ruij

user u
item i, j

t

term t 2 Di

Figure 1: Graphical model representation of the HF
model. White nodes represent random variables and
shaded nodes represent observations. R

uij

is the
event that user u prefers item i over item j. Large
plates indicate parts of the graph that are repeated.
Graphical model omits some dependencies to avoid
cluttering the display. For example the hidden vari-
able ⇡(i) is sampled from nCRP process. Moreover,
dependencies between categories and subategories
latent variables � and v are omitted for clarity. See
Section 3 for a full description.

should have similar parameters. We endow each internal
node z with two latent variables: a latent factor v

z

and a
multinomial distribution over terms �

z

. These parameters
are cascaded over the tree as follows:

v
z

⇠
⇢

N (0,�21) w is the root node
N (v

⇡(z),�
21) otherwise

(3)

and the multinomial is sampled by a Dirichlet distribution:

�
z

⇠
⇢

Dir(�) z is the root node
Dir(⌘�

⇡(z)) otherwise
(4)

3.3 Generating item data
After we generate the tree with its associated parameters,

we need to generate data associated with item i: an item
description, an item latent factor and item bias. Item latent
factors are sampled from the its parent’s latent factors via

v
i

⇠ N (v
⇡(i),�

21).

We generate the item description according to the multino-
mial distribution associated with its parent. In particular,
for each term t in the description of item i, it is sampled by
a multinomial distribution:

t ⇠ Mult(�
⇡(i)). (5)

Every item also maintains a popularity measure q
i

. A high
q
i

indicates that the item attracts customer regardless of the
customer’s latent factor. The popularity measure is gener-
ated by a normal distribution

q
i

⇠ N (0, ⌧2). (6)

The generative procedure for items and categories is com-
plete by combining (2)-(6) appropriately.

3.4 Generating User Purchase Preferences

Given items and their features obtained in Section 3.3,
we can then generate the purchase preference R

uij

for any
particular user u and item pairs i, j via the BPR model. For
an arbitrary item i, we define the a�nity score between u
and i to be

x
ui

= hv
u

, v
i

i+ [q
i

]+

Here, v
u

and v
i

are user and item latent factors, q
i

is the pop-
ularity measure that we define in Section 3.3. The notation
[q

i

]+ = max(q
i

, 0) indicates that we force the contribution
from the popularity measure to be non-negative. We im-
pose this constraint because [q

i

]+ behaves like a bias term in
the latent factor model. Consequently, its value is strongly
correlated to the frequency that item i is purchased in the
user log data. Without the [·]+ operator, infrequently pur-
chased items will always have negative biases, which makes
them unlikely to be recommended to any customer. Since
a large percentage of items are infrequent, this makes the
personalized recommendation ine↵ective. By adopting the
non-negative constraint on q

i

, it promotes frequent items but
does not penalize infrequent items. This allows the model to
recommend tail items to specific groups of target customers
as long as their latent factors match. This yields

R
uij

⇠ Bernoulli(�(x
ui

� x
uj

)).

An alternative means of deriving R
uij

is as follows: Given
the a�nity x

ui

, the probability that u selects i is given by

P (i|u) = exp(x
ui

)P
j

exp(x
uj

)
.

By this definition, for two items i and j available to u, the
probability that the user chooses i over j is

P (i > j|u) = exp(x
ui

)
exp(x

ui

) + exp(x
uj

)
= �(x

ui

� x
uj

) (7)

Note that the conditional probability (7) is consistent with
the BPR optimization criterion [14]. Figure 1 shows a sim-
plified summary of the HF model.

4. INFERENCE
We observe item descriptions and purchase data. The goal

of learning is to infer the tree structure, category parameters
and latent factors. We use a collapsed Gibbs sampler and
we integrate out multinomial variables � to improve mixing.
Our goal is thus to infer the posterior P (⇥, T |D,R), where T
denotes the tree structure, ⇥ denotes the remaining latent
variables (factors and biases for items and categories), D
denotes item description and R purchase preferences. We
alternate until convergence between two steps: sampling a
path for each item over the tree and then optimizing the
latent factors of items and categories while keeping the tree
structure fixed. The following sections describe each step.

4.1 Sampling Hierarchical Categories
Sampling a tree structure T amounts to sampling a path

for each item i over the tree. Collectively the set of item
paths defines the tree. We denote by p

i

= (p
i0, pi1, · · · ) the

path of item i, where p
i0 is the root, p

i1 is a child of the
root selected by item i, etc.; In general p

i,k

2 C(p
i,k�1). If

l(p
i

) denotes the length of the path, then p
i,l(p) is the parent

category of item i. The probability that the path is sampled

recommender bias

hierarchy

helps find 
hierarchy



Inference
• Collapsed Gibbs sampling for hierarchy 
• Stochastic gradient ascent to maximize 

recommendation likelihood 
• BPR style recommendation 
• Hierarchical parameter inheritance  

• Incorporate existing human-generated 
ontology as prior on hierarchy



Results
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(a) Item distribution (b) Purchase distribution on full data (c) Purchase distribution on sparse data

Figure 2: The figures show the distribution of items and purchases in the dataset. (a) Distribution of items
in each frequency group. (b) Distribution of purchases in each frequency group. (c) Distribution of purchases
in the sparse dataset. For the sparse dataset, we keep users that have bought at least one infrequent item.

Table 3: Comparing models on the full set with AUC metric. Bold numbers indicate the best performance
and the star indicates statistical significance (p-value < 0.01).

Item Frequency 1 - 10 11 - 30 31 - 100 101 - 300 301 - 1000 > 1000 Overall
MF 0.453 0.878 0.961 0.987 0.996 0.9996 0.899
CIS 0.444 0.860 0.948 0.982 0.995 0.9996 0.893
RLFM 0.529 0.863 0.957 0.987 0.996 0.9995 0.908
HF 0.617⇤ 0.891⇤ 0.965⇤ 0.989 0.997 0.9996 0.925⇤
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Figure 3: Comparing latent factor model perfor-
mances with factor dimensions d 2 {10, 20, 40, 60, 80}.
The HF model outperforms the MF, CIS and RLFM
models.

.

six frequency groups to evaluate performances on each in-
dividual group. The results are reported in Table 3 and
Table 4. From these tables, we find that the biggest perfor-
mance gaps are among the low-frequency groups. For items
that have frequency of 1�10, the RLFM model, which lever-
ages meta-information, is better than the MF model and the
CIS model that only use user purchase data. Furthermore,
the HF model which maintain structural categorization of
items is much better than the RLFM model. It confirms
that hierarchical categorization is especially helpful to low-
frequency items.

Finally, as plots and tables suggest, the HF model’s im-
provement is more significant on the sparse dataset. One
reason is that the sparse dataset is harder for training since
the user-item interaction is insu�cient. The HF model,
which allows sharing purchase data among infrequent items
under hierarchical categorization, is more robust to spar-
sity. This intuition is confirmed by Table 3 and Table 4’s
column for frequency 1�10, where the performance gap be-
tween HF and RLFM is greater on the sparse data (12% for
sparse data versus 9% for full data). On the other hand,

the sparse dataset is also more challenging for testing since
the low-frequency items occupy more weight as suggested
by Figure 2(c). This makes the HF model’s improvement
over low-frequency items to be more noticeably reflected in
the overall performance. As a comparison, the HF model
is at least 1.7% better than the baseline models on the full
dataset, and at least 5.1% better on the sparse dataset.

5.5 An Example of Algorithm-generated
Taxonomy

In Figure 4, we present a portion of the hierarchical cate-
gories discovered by the HF model. Besides the top-ranked
terms in each category, we also manually labeled the cate-
gory names to make them more readable. As Figure 4 shows,
the HF model is capable of constructing a high-quality hi-
erarchical structure of categories. Categories in higher level
represent broader concepts, and their sub-categories repre-
sents more refined range of products. For example, the tax-
onomy in Figure 4 clustered clothing items together, and
refines the category by jeans, dresses and polos. It also di-
vide the jeans category into two smaller sub-categories sep-
arating men’s jeans and women’s jeans, which is in anal-
ogy to the taxonomy that is created by human. Note that
the hierarchical tree used by the HF model is automatically
generated and dynamically updated. Thus, unlike the static
human-induced taxonomy, the algorithm-generated taxon-
omy is adaptive to incremental data as more items and more
users arrive.

6. USING HUMAN-INDUCED TAXONOMY
In this section, we assume that the human-induced taxon-

omy is available to the recommendation system. We study
approaches that incorporate the human-induced taxonomy
into the HF model. We also compare the HF model with
the taxonomy-aware latent factor model (TF), which is the
state-of-the-art latent factor model based on human-induced
taxonomies. Even without using the human-induced taxon-
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(a) Item distribution (b) Purchase distribution on full data (c) Purchase distribution on sparse data

Figure 2: The figures show the distribution of items and purchases in the dataset. (a) Distribution of items
in each frequency group. (b) Distribution of purchases in each frequency group. (c) Distribution of purchases
in the sparse dataset. For the sparse dataset, we keep users that have bought at least one infrequent item.

Table 3: Comparing models on the full set with AUC metric. Bold numbers indicate the best performance
and the star indicates statistical significance (p-value < 0.01).

Item Frequency 1 - 10 11 - 30 31 - 100 101 - 300 301 - 1000 > 1000 Overall
MF 0.453 0.878 0.961 0.987 0.996 0.9996 0.899
CIS 0.444 0.860 0.948 0.982 0.995 0.9996 0.893
RLFM 0.529 0.863 0.957 0.987 0.996 0.9995 0.908
HF 0.617⇤ 0.891⇤ 0.965⇤ 0.989 0.997 0.9996 0.925⇤
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Figure 3: Comparing latent factor model perfor-
mances with factor dimensions d 2 {10, 20, 40, 60, 80}.
The HF model outperforms the MF, CIS and RLFM
models.
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six frequency groups to evaluate performances on each in-
dividual group. The results are reported in Table 3 and
Table 4. From these tables, we find that the biggest perfor-
mance gaps are among the low-frequency groups. For items
that have frequency of 1�10, the RLFM model, which lever-
ages meta-information, is better than the MF model and the
CIS model that only use user purchase data. Furthermore,
the HF model which maintain structural categorization of
items is much better than the RLFM model. It confirms
that hierarchical categorization is especially helpful to low-
frequency items.

Finally, as plots and tables suggest, the HF model’s im-
provement is more significant on the sparse dataset. One
reason is that the sparse dataset is harder for training since
the user-item interaction is insu�cient. The HF model,
which allows sharing purchase data among infrequent items
under hierarchical categorization, is more robust to spar-
sity. This intuition is confirmed by Table 3 and Table 4’s
column for frequency 1�10, where the performance gap be-
tween HF and RLFM is greater on the sparse data (12% for
sparse data versus 9% for full data). On the other hand,

the sparse dataset is also more challenging for testing since
the low-frequency items occupy more weight as suggested
by Figure 2(c). This makes the HF model’s improvement
over low-frequency items to be more noticeably reflected in
the overall performance. As a comparison, the HF model
is at least 1.7% better than the baseline models on the full
dataset, and at least 5.1% better on the sparse dataset.

5.5 An Example of Algorithm-generated
Taxonomy

In Figure 4, we present a portion of the hierarchical cate-
gories discovered by the HF model. Besides the top-ranked
terms in each category, we also manually labeled the cate-
gory names to make them more readable. As Figure 4 shows,
the HF model is capable of constructing a high-quality hi-
erarchical structure of categories. Categories in higher level
represent broader concepts, and their sub-categories repre-
sents more refined range of products. For example, the tax-
onomy in Figure 4 clustered clothing items together, and
refines the category by jeans, dresses and polos. It also di-
vide the jeans category into two smaller sub-categories sep-
arating men’s jeans and women’s jeans, which is in anal-
ogy to the taxonomy that is created by human. Note that
the hierarchical tree used by the HF model is automatically
generated and dynamically updated. Thus, unlike the static
human-induced taxonomy, the algorithm-generated taxon-
omy is adaptive to incremental data as more items and more
users arrive.

6. USING HUMAN-INDUCED TAXONOMY
In this section, we assume that the human-induced taxon-

omy is available to the recommendation system. We study
approaches that incorporate the human-induced taxonomy
into the HF model. We also compare the HF model with
the taxonomy-aware latent factor model (TF), which is the
state-of-the-art latent factor model based on human-induced
taxonomies. Even without using the human-induced taxon-
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News Stream
•Over 1 high quality news article per second 

(many orders of magnitude more for UGC) 
•Multiple sources (Reuters, AP, CNN, ...) 
• Same story from multiple sources 
• Stories are related 
!

•Goals 
– Aggregate articles into a storyline 
– Analyze the storyline (topics, entities) 



Clustering / RCRP
• Assume active story distribution at time t 
•Draw story indicator 
•Draw words from story distribution  
•Down-weight story counts for next day 

Ahmed & Xing, 2008



Clustering / RCRP
• Assume active story distribution at time t 
•Draw story indicator 
•Draw words from story distribution  
•Down-weight story counts for next day 

Ahmed & Xing, 2008
• Pro 
– Nonparametric model of story generation 
– No fixed number of stories 
– Efficient inference via collapsed sampler 
• Con 
– We learn nothing! 
– No content analysis



Latent Dirichlet Allocation
•Generate topic distribution  

per article 
•Draw topics per word from  

topic distribution 
•Draw words from topic specific word distribution 

Blei, Ng, Jordan, 2003



Latent Dirichlet Allocation
•Generate topic distribution  

per article 
•Draw topics per word from  

topic distribution 
•Draw words from topic specific word distribution 

Blei, Ng, Jordan, 2003
• Pro 
– Topical analysis of stories 
– Topical analysis of words (meaning, saliency) 
– More documents improve estimates 
• Con 
– No clustering



More Issues
•Named entities are special, topics less 

(e.g. Tiger Woods and his mistresses) 
• Some stories are strange  

(topical mixture is not enough - dirty models) 
• Articles deviate from general story 

(Hierarchical DP)



More Issues
•Named entities are special, topics less 

(e.g. Tiger Woods and his mistresses) 
• Some stories are strange  

(topical mixture is not enough - dirty models) 
• Articles deviate from general story 

(Hierarchical DP)



Storylines

http://imgs.xkcd.com/comics/movie_narrative_charts_large.png
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    Storylines      
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Storylines Model
• Topic model 
• Topics per cluster 
• RCRP for cluster 
•Hierarchical DP for 

article 
• Separate model for 

named entities 
• Story specific 

correction
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Dynamic Cluster-Topic Hybrid
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Inference
•We receive articles as a stream  

Want topics & stories now 
• Variational inference infeasible 

(RCRP, sparse to dense, vocabulary size) 
•We have a ‘tracking problem’ 
– Sequential Monte Carlo 
– Use sampled variables of surviving particle 
– Use ideas from Cannini et al. 2009



Particle Filter
• Proposal distribution - draw stories s, topics z  
 
 
using Gibbs Sampling for each particle 
• Reweight particle via 
 
 

• Resample particles if l2 norm too large  
(resample some assignments for diversity, too) 
• Compare to multiplicative updates algorithm 

In our case predictive likelihood yields weights

p(xt+1|x1...t, s1...t, z1...t)

p(st+1, zt+1|x1...t+1, s1...t, z1...t)

new data past statepast state



Inheritance Tree
Filter'threads'update'par-cles'

Root$

1

games:$1$
officials:$3$
league:$4$

2

3

(empty)$ league:$5$

minister:$1$

games:$0$
season:$2$

Ini-al'tree'
(ready'for'threads)'

Root$

1

games:$1$
officials:$3$
league:$4$

2

3

(empty)$ league:$5$
games:$3$

minister:$7$

games:$0$
season:$2$

0 = get(1,’games’) set(2,’games’,3) 

set(3,’minister’,7) 

Resampling'copies'par-cles'

Root$

games:$1$
officials:$3$
league:$4$

2,1$

3

(empty)$ league:$5$
games:$3$

minister:$7$

games:$0$
season:$2$

copy(2,1) 

Prune.unused'branches'

Root$

games:$1$
officials:$3$
league:$4$

2,1$

3

(empty)$ league:$5$
games:$3$

minister:$7$

games:$0$
season:$2$

Collapse.long'branches'

Root$

games:$1$
officials:$3$
league:$4$

2,1$

3

league:$5$
games:$3$

minister:$7$

2,1$games:$3$
season:$2$
league:$5$

maintain_prune() maintain_collapse() 

Create'new.leaves'

Root$

games:$1$
officials:$3$
league:$4$

3

minister:$7$

games:$3$
season:$2$
league:$5$

branch(1) 
branch(2) 

1 2

(empty)$ (empty)$

New'ini-al'tree'
(ready'for'threads)'

Root$

games:$1$
officials:$3$
league:$4$

3

minister:$7$

games:$3$
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league:$5$
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Extended Inheritance Tree

Root

1

India: [(I-P tension,3),(Tax bills,1)]
Pakistan: [(I-P tension,2),(Tax bills,1)]
Congress: [(I-P tension,1),(Tax bills,1)]

2

3

(empty) Congress: [(I-P tension,0),(Tax bills,2)]

Bush: [(I-P tension,1),(Tax bills,2)]
India: [(Tax bills,0)]

India: [(I-P tension,2)]
US: [(I-P tension,1),[Tax bills,1)]

Extended Inheritance Tree

[(I-P tension,2),(Tax bills,1)] = get_list(1,’India’)

set_entry(3,’India’,’Tax  bills’,0)

Note:  “I-P  tension”  is  short  for  “India-Pakistan  tension”

write only in the leaves 
(per thread)
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