Quadratic Programming 10701 Recitations 3

Zhou Yu

Computer Science Department
Cargenie Mellon University
February 4, 2015

What is Quadratic Programming

The quadratic programming is formulated as

$$
\min _{w}\left\{\frac{1}{2} w^{T} Q w+c^{T} w\right\} \text { subject to }\left\{\begin{array}{l}
A w \leq b \\
E w=d
\end{array}\right.
$$

where $Q \in \mathbb{R}^{n \times n}$ and is symmetric, $w, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, $E \in \mathbb{R}^{p \times n}$, and $d \in \mathbb{R}^{p}$,

- constraint optimization: minimize objective + constraints
- w is feasible if satisfying the constraints
- local minimizer: for any feasible u around $w, f(w) \leq f(u)$
- global minimizer: for any feasible $u, f(w) \leq f(u)$

What is Quadratic Programming

The quadratic programming is formulated as

$$
\min _{w}\left\{\frac{1}{2} w^{\top} Q w+c^{T} w\right\} \text { subject to }\left\{\begin{array}{l}
A w \leq b \\
E w=d
\end{array}\right.
$$

where $Q \in \mathbb{R}^{n \times n}$ and is symmetric, $w, c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$, $E \in \mathbb{R}^{p \times n}$, and $d \in \mathbb{R}^{p}$,

Convex QP

- If Q is positive semidefinite (definite), that is $x^{\top} Q x \geq 0$
(>0) for any x, the objective function is (strongly) convex. If feasible w exists, any local minimizer is global, and there is at least one (a unique) global minimizer

Indefinite

Positive definite

- If $Q=0, Q P$ reduces to linear programming
- Solving general QP is NP-hard, but several algorithms solve convex QP in polynomial time

An Example

Consider the following example:

$$
\min _{x, y}\left\{x^{2}+4(y-4)^{2}\right\} \text { subject to }\left\{\begin{array}{l}
x+y \leq 7,-x+2 y \leq 4 \\
x \geq 0, y \geq 0, y \leq 4
\end{array}\right.
$$

$$
\begin{aligned}
& \text { We have } \\
& \qquad Q=\left[\begin{array}{ll}
2 & 0 \\
0 & 8
\end{array}\right] c=\left[\begin{array}{c}
0 \\
-32
\end{array}\right] A=\left[\begin{array}{cc}
1 & 1 \\
-1 & 2 \\
-1 & 0 \\
0 & -1 \\
0 & 1
\end{array}\right] b=\left[\begin{array}{l}
7 \\
4 \\
0 \\
0 \\
4
\end{array}\right] E=d=0
\end{aligned}
$$

run Matlab command
$\mathrm{x}=$ quadprog $(\mathrm{Q}, \mathrm{c}, \mathrm{A}, \mathrm{b})$
and get the results

$$
\begin{aligned}
& x= \\
& 2.0000 \\
& 3.0000
\end{aligned}
$$

QP and SVM

- Recall the Support Vector Machine:

$$
\min _{w} \frac{1}{2}\|w\|^{2} \text { subject to } y_{i}\left[\left\langle x_{i}, w\right\rangle+b_{0}\right] \geq 1 \text { for any } i
$$

where $w \in \mathbb{R}^{p}, x_{i} \in \mathbb{R}^{p}$, and $y_{i} \in\{-1,1\}$

- It is straightforward to formulate it as QP

$$
Q=I, A=\left[\begin{array}{c}
-y_{1} x_{1} \\
\vdots \\
-y_{n} x_{n}
\end{array}\right], b=\left[\begin{array}{c}
y_{1} b_{0}-1 \\
\vdots \\
y_{n} b_{0}-1
\end{array}\right], c=E=d=0
$$

- Solving SVM: $x=$ quadprog (Q, $c, A, b)$, suitable for medium size n

Questions?

