10-701 Recitation 1

Linear Algebra Review

Jin Sun

Administrative stuff

- Course website: http://alex.smola.org/teaching/10-701-15/
- Autolab: https://autolab.cs.cmu.edu/
- Piazza: https://piazza.com/class/i4ivtbjbrt219e
- Theoretical Assignments: submit pdf files (*.pdf)
- Use provided latex source file
- MS word or other text editors, clearly mark your problems
- Scan handwriting sheets, make sure we can recognize your handwriting
- Programming Assignments: submit code.tar, compressed from "code" folder in the handout folder
- Not handout.tar, do not submit extra files
- Unlimited submission
- More information on Piazza

More administrative stuff

- Recitation: Thursday 4-5pm HH B131
- Slides and videos will be posted
- TA office hours (for all TAs): Thursday 5-6pm after recitation or by appointment
- We do not debug for students

Our team

- Instructor: Alex Smola
- TAs and tasks in charge (in general):
- Jay-Yoon Lee: Homework
- Jin Sun: Autolab (programming assignments)
- Shen Wu: Piazza
- Di Xu: Project
- Zhou Yu: Recitations

Nice materials

- Linear Algebra Review from Zico Kolter
- http://www.cs.cmu.edu/~zkolter/course/linalg/index.html
- Linear Algebra Review from Jing Xiang
- http://www.cs.cmu.edu/~jingx/docs/linearalgebra.pdf
- The Matrix Cookbook
- http://www.mit.edu/~wingated/stuff i use/matrix cookbook.pdf
- Probability Review from Aaditya Ramdas
- http://www.cs.cmu.edu/~aramdas/videos.html

Linear algebra review

- Basics
- Property of Matrices
- Vector Norms
- Matrix Calculus
- An example: Linear Regression
- Eigen Decomposition
- Quadratic Form
- Singular Value Decomposition
* Many slides are from Jing Xiang's linear algebra review sheet

Basics

- Vectors and matrices
- Vector $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathcal{R}^{n}$
- Implicitly means column vector
- Matrix $\boldsymbol{X}=\left[\begin{array}{ccc}x_{1,1} & \ldots & x_{1, n} \\ \ldots & \ldots & \ldots \\ x_{m, 1} & \ldots & x_{m, n}\end{array}\right] \in \mathcal{R}^{m \times n}$

Vector product

- Vector Product

- Inner product (dot product): Result is a scalar
- $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \in \mathcal{R}^{n}, \boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathcal{R}^{n}$, column vectors
- $\langle\boldsymbol{u}, \boldsymbol{v}\rangle=\sum_{i=1}^{n} u_{i} \boldsymbol{v}_{i}$
- Other forms: $\boldsymbol{u}^{T} \boldsymbol{v}$
- A measurement for similarity
- Outer product (cross product): Result is a matrix $\mathcal{R}^{m \times n}$
- $\boldsymbol{u}=\left(u_{1}, u_{2}, \ldots, u_{m}\right) \in \mathcal{R}^{m}, \boldsymbol{v}=\left(v_{1}, v_{2}, \ldots, v_{n}\right) \in \mathcal{R}^{n}$, column vector
- $\boldsymbol{u} \otimes \boldsymbol{v}=\left[\begin{array}{ccc}u_{1} v_{1} & \ldots & u_{1} v_{n} \\ \ldots & \ldots & \ldots \\ u_{m} v_{1} & \ldots & u_{m} v_{n}\end{array}\right]$
- Other forms: $\boldsymbol{u} \boldsymbol{v}^{\boldsymbol{T}}$

Matrix multiplication

- Matrix multiplication
- If $A \in \mathcal{R}^{m \times n}, B \in \mathcal{R}^{p \times q}, A B$ is defined only when $n=p$, the result is $\mathcal{R}^{m \times q}$
- Associative: $(A B) C=A(B C)$
- Distributive: $A(B+C)=A B+A C$
- NOT commutative: $A B \neq B A$, may not even be defined

Matrix multiplication as vector product

Inner product

- $A \in \mathcal{R}^{m \times n}, B \in \mathcal{R}^{n \times p}$
- $\boldsymbol{a}_{i} \in \mathcal{R}^{1 \times n}$ is a row of A, and $\boldsymbol{b}_{j} \in \mathcal{R}^{n}$ is a column of B
$\cdot A B=\left[\begin{array}{ccc}\boldsymbol{a}_{1} \boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{1} \boldsymbol{b}_{p} \\ \ldots & \ldots & \ldots \\ \boldsymbol{a}_{m} \boldsymbol{b}_{1} & \ldots & \boldsymbol{a}_{m} \boldsymbol{b}_{p}\end{array}\right]$

Outer product

- $A \in \mathcal{R}^{m \times n}, B \in \mathcal{R}^{n \times p}$
- $\boldsymbol{a}_{i} \in \mathcal{R}^{m}$ is a column of A, and $\boldsymbol{b}_{j} \in \mathcal{R}^{1 \times p}$ is a row of B
- $A B=\sum_{i, j} \boldsymbol{a}_{i} \boldsymbol{b}_{j}$

Transpose

- $A \in \mathcal{R}^{m \times n}, A^{T} \in \mathcal{R}^{m \times n}$
- $A_{i, j}=A_{j, i}^{T}$
- $\left(A^{T}\right)^{T}=A$
- $(A B)^{T}=B^{T} A^{T}$
- $(A+B)^{T}=(B+A)^{T}$

Rank

- A set of vectors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}$ is linear independent if not one of them can be represented as a linear combination of the rest
- $\operatorname{Rank}(A)$ is the size of the largest collection of linearly independent columns (or rows) of A. In fact, column rank is equal to row rank.
- $A \in \mathcal{R}^{m \times n}$ is full rank if $\operatorname{Rank}(A)=\min (m, n)$, otherwise it is low rank
- $\operatorname{Rank}\left(A^{T}\right)=\operatorname{Rank}(A)$

Inverse

- A matrix is invertible only if
- it is square
- it is full rank (or many other equivalent conditions, we'll see later)
- If $A \in \mathcal{R}^{n \times n}, A^{-1} \in \mathcal{R}^{n \times n}$
- $A^{-1} A=A A^{-1}$
- $\left(A^{-1}\right)^{-1}=A$
- $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
- $(A B)^{-1}=B^{-1} A^{-1}$

Trace

- The trace of a square matrix is the sum of its diagonal elements
- $\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i i}, A \in \mathcal{R}^{n \times n}$

For $A, B \in \mathcal{R}^{n \times n}$

- $\operatorname{Tr}\left(A^{T} B\right)=\operatorname{Tr}\left(B^{T} A\right)=\operatorname{Tr}\left(A B^{T}\right)=\operatorname{Tr}\left(B A^{T}\right)=\sum_{i, j}^{n} A_{i, j} B_{i, j}$
- $\operatorname{Tr}(A)=\operatorname{Tr}\left(A^{T}\right)$
- $\operatorname{Tr}(A+B)=\operatorname{Tr}(B+A)$
- $\operatorname{Tr}(c A)=c \operatorname{Tr}(A)$

Vector norms

Norm - a measurement of magnitude

- Family of norms: $\|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$
- l_{1} norm: $\|x\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right|$
- l_{2} norm: $\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}$--- Euclidean distance
- l_{∞} norm: $\|\boldsymbol{x}\|_{\infty}=\max \left(\left|x_{i}\right|\right)$
- l_{0} norm: $\|x\|_{0}=\#\left(x_{i} \neq 0\right)$

Matrix calculus

- Denominator layout
- Gradient:
- If $f: \mathcal{R}^{n} \rightarrow \mathcal{R}, \nabla f \in \mathcal{R}^{n}, \nabla f_{i}=\frac{\partial f}{\partial x_{i}}$
- If $f: \mathcal{R}^{m \times n} \rightarrow \mathcal{R}, \nabla f \in \mathcal{R}^{m \times n}, \nabla f_{i, j}=\frac{\partial f}{\partial x_{i, j}}$
- If $f: \mathcal{R}^{n} \rightarrow \mathcal{R}^{m}, \nabla f \in \mathcal{R}^{m \times n}, \nabla f_{i, j}=\frac{\partial f_{i}}{\partial x_{j}}$
- Hessian:
- If $f: \mathcal{R}^{n} \rightarrow \mathcal{R}, \nabla^{2} f \in \mathcal{R}^{n}, \nabla^{2} f_{i, j}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$

Matrix calculus

- Chain Rule: (credit to Bhiksha Raj's MLSP class)
- If $y=f_{1}\left(f_{2}\left(f_{3}\left(\ldots f_{k}(\boldsymbol{X})\right)\right)\right)$ is a composition of functions.
- $\frac{d y}{d \boldsymbol{X}}=\left(\frac{d f_{k}}{d \boldsymbol{X}}\right)^{T}\left(\frac{d f_{k-1}}{d f_{k}}\right)^{T}\left(\frac{d f_{k-2}}{d f_{k-1}}\right)^{T} \ldots\left(\frac{d f_{2}}{d f_{3}}\right)^{T} \frac{d f_{1}}{d f_{2}}$
- Useful derivatives: (look at Jing's review and matrix cookbook)
- $\frac{\partial\left(\boldsymbol{a}^{T} \boldsymbol{x}\right)}{\partial x}=\frac{\partial\left(\boldsymbol{x}^{T} \boldsymbol{a}\right)}{\partial x}=\boldsymbol{a}, \frac{\partial\left(x^{T} \boldsymbol{A}\right)}{\partial x}=\boldsymbol{A}$
- $\frac{\partial\left(x^{T} A x\right)}{\partial x}=\left(A+A^{T}\right) \boldsymbol{x}$
- $\frac{\partial x^{T}}{\partial x}=I$
- ...

Linear regression

- Work out the normal equation:
- Objective: $\underset{w}{\operatorname{minimize}} \frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}$
- where $\boldsymbol{y} \in \mathcal{R}^{n}, \boldsymbol{X} \in \mathcal{R}^{n \times f}, \boldsymbol{w} \in \mathcal{R}^{f}$

Solution

- Expand the expression
- $f=\frac{1}{2}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w}\|_{2}^{2}=\frac{1}{2}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{y}-\boldsymbol{X} \boldsymbol{w})=\frac{1}{2}\left(\boldsymbol{y}^{T} \boldsymbol{y}-\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y}-\boldsymbol{y}^{T} \boldsymbol{X} \boldsymbol{w}+\right.$ $\left.\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)=\frac{1}{2}\left(\boldsymbol{y}^{T} \boldsymbol{y}-2 \boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{w}^{T} \boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}\right)$
- Take derivative
- $\frac{\partial f}{\partial \boldsymbol{w}}=-\boldsymbol{X}^{T} \boldsymbol{y}+\boldsymbol{X}^{T} \boldsymbol{X} \boldsymbol{w}$
- Solve it using chain rule?
- Set it to zero
- w$=\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{T} \boldsymbol{y}$
- Why is this ill conditioned?

Eigen decomposition

- $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{-1}, \boldsymbol{A} \in \mathcal{R}^{n \times n}$
- Each column of Q is an Eigen vector. Λ is a diagonal matrix with each element as a Eigen value.
- $\boldsymbol{A} \boldsymbol{u}=\lambda \boldsymbol{u}$, for an Eigen vector \boldsymbol{u} and its Eigen vector λ.
- Eigen vectors have unit length and are orthogonal to each other.
- Zero Eigen values indicate low rank.
- Relation to Principle Component Analysis.
- $\boldsymbol{A}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{T}$, when \boldsymbol{A} is symmetric

Quadratic form

- Definiteness
- $x^{T} A x=\sum_{i, j} A_{i, j} x_{i} x_{j}, A \in \mathcal{R}^{n \times n}$
- Positive definite, $\boldsymbol{A}>0: \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x}>0$, for all non-zero \boldsymbol{x}
- Semi-positive definite, $\boldsymbol{A} \geq 0: \boldsymbol{x}^{T} \boldsymbol{A} \boldsymbol{x} \geq 0$, for all non-zero \boldsymbol{x}
- $\boldsymbol{A} \succ 0$: All Eigen values are positive \rightarrow full rank \rightarrow invertible
- $\boldsymbol{A} \geq 0$: All Eigen values are non-negative.
- Covariance matrix is always positive-semi definite
- $\boldsymbol{x}^{T} \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{x}=\|\boldsymbol{B} \boldsymbol{x}\|_{2}^{2} \geq 0 \rightarrow \boldsymbol{B}^{T} \boldsymbol{B} \geq \mathbf{0}$

Singular value decomposition

- $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}, \boldsymbol{A} \in \mathcal{R}^{m \times n}, \boldsymbol{U} \in \mathcal{R}^{m \times m}, \boldsymbol{\Sigma} \in \mathcal{R}^{m \times n}, \boldsymbol{V} \in \mathcal{R}^{n \times n}$
- $\boldsymbol{\Sigma}$ is a (rectangle) diagonal matrix with singular values.
- \boldsymbol{U} and \boldsymbol{V} are matrices containing left and right singular vectors (orthogonal basis).
- Think it as Eigen decomposition:
- $\boldsymbol{A}^{T} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Sigma}^{\boldsymbol{T}} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T}=\boldsymbol{V} \boldsymbol{\Sigma}^{\boldsymbol{T}} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}=\boldsymbol{V} \boldsymbol{P} \boldsymbol{V}^{T}$
- $\boldsymbol{A} \boldsymbol{A}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{V} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{T} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{Q} \boldsymbol{U}^{T}$
- $\boldsymbol{A}^{T} \boldsymbol{A}$ and $\boldsymbol{A \boldsymbol { A } ^ { T }}$ are symmetric matrices.

