10-701 Recitation: Loss, Regularization, and Dual*

Jay-Yoon Lee 02/26/2015

*Adopted figures from 10725 lecture slides and from the book 'Elements of Statistical Learning'

• Optimization problem can be expressed as to minimize "Loss".

$$\underset{\text{models } M}{\operatorname{arg\,min}} \sum_{i=1}^{n} \ell(x_i; M)$$

• If want to maximize your "objective function", negative of objective function is loss.

• Optimization problem can be expressed as to minimize "Loss".

$$\underset{\text{models } M}{\operatorname{arg\,min}} \sum_{i=1}^{n} \ell(x_i; M)$$

 Introduce "Regularization" term (or "penalty") to prevent overfitting or satisfy constraints

$$\implies \underset{\text{models } M}{\operatorname{arg\,min}} \sum_{i=1}^{M} \ell(x_i; M) + \text{penalty}(M)$$

• Example: "Loss" of linear regression problem

$$\underset{\beta}{\arg\min}||\mathbf{y}-\mathbf{X}\beta||_2^2$$

• Example: "Loss" of linear regression problem

$$\underset{\beta}{\arg\min}||\mathbf{y}-\mathbf{X}\beta||_2^2$$

• Example: "Penalty" of linear regression

$$\underset{\beta}{\arg\min} ||\mathbf{y} - \mathbf{X}\beta||_2^2 + ||\beta||_1$$

• More Examples

Model 🗢	Fit measure 🗧	Entropy measure ^{[4][5]} ÷
AIC/BIC	$\ Y-X\beta\ _2$	$\ \beta\ _0$
Ridge regression	$\ Y-X\beta\ _2$	$\ \beta\ _2$
Lasso ^[6]	$\ Y-X\beta\ _2$	$\ \beta\ _1$
Basis pursuit denoising	$\ Y-X\beta\ _2$	$\lambda \ eta\ _1$
Rudin-Osher-Fatemi model (TV)	$\ Y-X\beta\ _2$	$\lambda \ \nabla\beta\ _1$
Potts model	$\ Y-X\beta\ _2$	$\lambda \ \nabla \beta \ _0$
RLAD ^[7]	$\ Y-X\beta\ _1$	$\ \beta\ _1$
Dantzig Selector ^[8]	$\ X^{\top}(Y - X\beta)\ _{\infty}$	$\ \beta\ _1$
SLOPE ^[9]	$\ Y - X\beta\ _2$	$\sum_{i=1}^p \lambda_i \beta _{(i)}$

From wikipedia: http://en.wikipedia.org/wiki/Regularization_(mathematics)

Dual: Lagrangian Function

- Many constrained optimization can be expressed in term of "loss" and "penalty".
- Recall Lagrangian function
 - Primal minimize f(x) subject to $c_i(x) \le 0$

- Dual
$$\max_{\alpha} \operatorname{maximize}_{\alpha} L(x(\alpha), \alpha)$$
$$L(x, \alpha) = f(x) + \sum_{i} \alpha_{i} c_{i}(x)$$

Dual: Lagrangian Function

• More generally,

 $\min_{\substack{x \in \mathbb{R}^n}} f(x)$ subject to $h_i(x) \le 0, \quad i = 1, \dots m$ $\ell_j(x) = 0, \quad j = 1, \dots r$

• Lagrangian

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

From 10725 Lecture notes

Dual: Lagrangian Function

- Important Property
 - Lagrangian function is lower bound of loss function.

Important property: for any $u \ge 0$ and v,

 $f(x) \ge L(x, u, v)$ at each feasible x

Why? For feasible x,

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i \underbrace{h_i(x)}_{\leq 0} + \sum_{j=1}^{r} v_j \underbrace{\ell_j(x)}_{=0} \leq f(x)$$

From 10725 Lecture notes

Loss Functions (Classification)

3.0 Misclassification Model lacksquareExponential **Binomial Deviance** 2.5 Squared Error Support Vector Model: f 2.0 Label : $y = \pm 1$ Prediction: sign(f)Loss 1.5 1.0 Loss function 0.5 0.0 misclassification (0-1) $I(\operatorname{sign}(f \neq y))$ exponential $\exp(-yf)$ -2 0 -1 1 2 $\log(1 + \exp(-2yf))$ binomail deviance y · f max(1 - yf, 0)hinge

Loss Functions (Regression)

Loss Functions

• Classification

 $\begin{array}{ll} \mbox{misclassification (0-1)} & I(\mbox{sign}(f \neq y)) \\ \mbox{exponential} & \exp(-yf) \\ \mbox{binomail deviance} & \log(1 + \exp(-2yf)) \\ \mbox{hinge} & max(1 - yf, 0) \end{array}$

• Regression

Squared-Error
$$\ell(y, f(x)) = (y - f(x))^2$$

Absolute Loss $\ell(y, f(x)) = |y - f(x)|$
Huber Loss $\ell(y, f(x)) = \begin{cases} (y - f(x))^2 & \text{for } |y - f(x)| \le \delta \\ 2\delta |y - f(x)| - \delta^2 & \text{otherwise.} \end{cases}$

Classification Examples

Linear soft margin problem $\underset{w,b}{\text{minimize}} \quad \frac{1}{2} \|w\|^2 + C \sum_i \xi_i$ subject to $y_i [\langle w, x_i \rangle + b] \ge 1 - \xi_i$ and $\xi_i \ge 0$ Dual problem $\max_{\alpha} \min_{i \in I} - \frac{1}{2} \sum_{i \in I} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle + \sum_i \alpha_i$ subject to $\sum \alpha_i y_i = 0$ and $\alpha_i \in [0, C]$

From 701 lecture notes

Classification Examples

Logistic Regression

$$P(Y = 0|X, W) = \frac{1}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$P(Y = 1|X, W) = \frac{exp(w_0 + \sum_i w_i X_i)}{1 + exp(w_0 + \sum_i w_i X_i)}$$

$$l(W) \equiv \ln \prod_{l} P(Y^{l}|X^{l}, W)$$

= $\sum_{l} Y^{l}(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}) - \ln(1 + exp(w_{0} + \sum_{i}^{n} w_{i}X_{i}^{l}))$

Penalty Functions

FIGURE 3.12. Contours of constant value of $\sum_j |\beta_j|^q$ for given values of q.

Penalty Functions

Back up slides

Lagrange Multipliers

Lagrange function

$$L(x,\alpha) := f(x) + \sum_{i=1}^{n} \alpha_i c_i(x) \text{ where } \alpha_i \ge 0$$

Saddlepoint Condition
 If there are x* and nonnegative α* such that

 $L(x^*, \alpha) \le L(x^*, \alpha^*) \le L(x, \alpha^*)$

then x* is an optimal solution to the constrained optimization problem

Carnegie Mellon University

Necessary Kuhn-Tucker Conditions

From 10701 Lecture 5

- Assume optimization problem
 - satisfies the constraint qualifications
 - has convex differentiable objective + constraints
- Then the KKT conditions are necessary & sufficient

$$\partial_x L(x^*, \alpha^*) = \partial_x f(x^*) + \sum_i \alpha_i^* \partial_x c_i(x^*) = 0 \text{ (Saddlepoint in } x^*)$$
$$\partial_{\alpha_i} L(x^*, \alpha^*) = c_i(x^*) \leq 0 \text{ (Saddlepoint in } \alpha^*)$$
$$\sum_i \alpha_i^* c_i(x^*) = 0 \text{ (Vanishing KKT-gap)}$$

Yields algorithm for solving optimization problems Solve for saddlepoint and KKT conditions

Example 1 University

Lagrangian

Consider general minimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

subject to $h_i(x) \le 0, \quad i = 1, \dots m$
 $\ell_j(x) = 0, \quad j = 1, \dots r$

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$L(x, u, v) = f(x) + \sum_{i=1}^{m} u_i h_i(x) + \sum_{j=1}^{r} v_j \ell_j(x)$$

New variables $u \in \mathbb{R}^m, v \in \mathbb{R}^r$, with $u \ge 0$ (implicitly, we define $L(x, u, v) = -\infty$ for u < 0)

From 725lecture notes