10-701 Recitation:

Loss, Regularization, and Dual*

Jay-Yoon Lee
 02/26/2015

*Adopted figures from 10725 lecture slides and

from the book 'Elements of Statistical Learning'

Loss and Regularization

- Optimization problem can be expressed as to minimize "Loss".

$$
\underset{\operatorname{models} M}{\arg \min } \sum_{i=1}^{n} \ell\left(x_{i} ; M\right)
$$

- If want to maximize your "objective function", negative of objective function is loss.

Loss and Regularization

- Optimization problem can be expressed as to minimize "Loss".

$$
\underset{\operatorname{models} M}{\arg \min } \sum_{i=1}^{n} \ell\left(x_{i} ; M\right)
$$

- Introduce "Regularization" term (or "penalty") to prevent overfitting or satisfy constraints

$$
\Longrightarrow \underset{\operatorname{models} M}{\arg \min } \sum_{i=1}^{n} \ell\left(x_{i} ; M\right)+\operatorname{penalty}(M)
$$

Loss and Regularization

- Example: "Loss" of linear regression problem

$$
\underset{\beta}{\arg \min }\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}
$$

Loss and Regularization

- Example: "Loss" of linear regression problem

$$
\underset{\beta}{\arg \min }\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}
$$

- Example: "Penalty" of linear regression

$$
\underset{\beta}{\arg \min }\|\mathbf{y}-\mathbf{X} \beta\|_{2}^{2}+\|\beta\|_{1}
$$

Loss and Regularization

- More Examples

Model	Fit measure	Entropy measure ${ }^{[4][5]}$ -				
AIC/BIC	$\\|Y-X \beta\\|_{2}$	$\\|\beta\\|_{0}$				
Ridge regression	$\\|Y-X \beta\\|_{2}$	$\\|\beta\\|_{2}$				
Lasso $^{[6]}$	$\\|Y-X \beta\\|_{2}$	$\\|\beta\\|_{1}$				
Basis pursuit denoising	$\\|Y-X \beta\\|_{2}$	$\lambda\\|\beta\\|_{1}$				
Rudin-Osher-Fatemi model (TV)	$\\|Y-X \beta\\|_{2}$	$\lambda\\|\nabla \beta\\|_{1}$				
Potts model	$\\|Y-X \beta\\|_{2}$	$\lambda\\|\nabla \beta\\|_{0}$				
RLAD $^{[7]}$	$\\|Y-X \beta\\|_{1}$	$\\|\beta\\|_{1}$				
Dantzig Selector $^{[8]}$	$\left\\|X^{\top}(Y-X \beta)\right\\|_{\infty}$	$\\|\beta\\|_{1}$				
SLOPE $^{[9]}$	$\\|Y-X \beta\\|_{2}$	$\sum_{i=1}^{p} \lambda_{i}\|\beta\|_{(i)}$				

From wikipedia: http://en.wikipedia.org/wiki/Regularization_(mathematics)

Dual: Lagrangian Function

- Many constrained optimization can be expressed in term of "loss" and "penalty".
- Recall Lagrangian function
- Primal $\quad \underset{x}{\operatorname{minimize}} f(x)$ subject to $c_{i}(x) \leq 0$
- Dual $\quad \underset{\alpha}{\operatorname{maximize}} L(x(\alpha), \alpha)$

$$
L(x, \alpha)=f(x)+\sum_{i} \alpha_{i} c_{i}(x)
$$

Dual: Lagrangian Function

- More generally,

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & h_{i}(x) \leq 0, \quad i=1, \ldots m \\
& \ell_{j}(x)=0, \quad j=1, \ldots r
\end{array}
$$

- Lagrangian

$$
L(x, u, v)=f(x)+\sum_{i=1}^{m} u_{i} h_{i}(x)+\sum_{j=1}^{r} v_{j} \ell_{j}(x)
$$

From 10725 Lecture notes

Dual: Lagrangian Function

- Important Property
- Lagrangian function is lower bound of loss function.

Important property: for any $u \geq 0$ and v,

$$
f(x) \geq L(x, u, v) \text { at each feasible } x
$$

Why? For feasible x,

$$
L(x, u, v)=f(x)+\sum_{i=1}^{m} u_{i} \underbrace{h_{i}(x)}_{\leq 0}+\sum_{j=1}^{r} v_{j} \underbrace{\ell_{j}(x)}_{=0} \leq f(x)
$$

From 10725 Lecture notes

Loss Functions (Classification)

- Model

```
        Model: f
        Label: }\quady=\pm
        Prediction: sign(f)
```

- Loss function

misclassification $(0-1)$	$I(\operatorname{sign}(f \neq y))$
exponential	$\exp (-y f)$
binomail deviance	$\log (1+\exp (-2 y f))$
hinge	$\max (1-y f, 0)$

$\max (1-y f, 0)$

From Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springers

Loss Functions (Regression)

From Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springers

Loss Functions

- Classification

$$
\begin{array}{cl}
\text { misclassification }(0-1) & I(\operatorname{sign}(f \neq y)) \\
\text { exponential } & \exp (-y f) \\
\text { binomail deviance } & \log (1+\exp (-2 y f)) \\
\text { hinge } & \max (1-y f, 0)
\end{array}
$$

- Regression

$$
\begin{array}{cl}
\text { Squared-Error } & \ell(y, f(x))=(y-f(x))^{2} \\
\text { Absolute Loss } & \ell(y, f(x))=|y-f(x)| \\
\text { Huber Loss } & \ell(y, f(x))= \begin{cases}(y-f(x))^{2} & \text { for }|y-f(x)| \leq \delta \\
2 \delta|y-f(x)|-\delta^{2} & \text { otherwise. }\end{cases}
\end{array}
$$

From Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springers

Classification Examples

Linear soft margin problem

$$
\underset{w, b}{\operatorname{minimize}} \frac{1}{2}\|w\|^{2}+C \sum_{i} \xi_{i}
$$

$$
\text { subject to } y_{i}\left[\left\langle w, x_{i}\right\rangle+b\right] \geq 1-\xi_{i} \text { and } \xi_{i} \geq 0
$$

Dual problem
$\underset{\alpha}{\operatorname{maximize}}-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle+\sum_{i} \alpha_{i}$
subject to $\sum_{i} \alpha_{i} y_{i}=0$ and $\alpha_{i} \in[0, C]$
From 701 lecture notes

Classification Examples

- Logistic Regression

$$
\begin{gathered}
P(Y=0 \mid X, W)=\frac{1}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)} \\
P(Y=1 \mid X, W)=\frac{\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)}{1+\exp \left(w_{0}+\sum_{i} w_{i} X_{i}\right)} \\
l(W) \equiv \ln \prod_{l} P\left(Y^{l} \mid X^{l}, W\right) \\
=\sum_{l} Y^{l}\left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)-\ln \left(1+\exp \left(w_{0}+\sum_{i}^{n} w_{i} X_{i}^{l}\right)\right)
\end{gathered}
$$

Penalty Functions

$$
q=4
$$

$q=2$
$q=1$

FIGURE 3.12. Contours of constant value of $\sum_{j}\left|\beta_{j}\right|^{q}$ for given values of q.

From Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springers

Penalty Functions

From Elements of Statistical Learning, $2^{\text {nd }}$ edition, Springers

Back up slides

Lagrange Multipliers
 From 10701 Lecture 5

- Lagrange function

$$
L(x, \alpha):=f(x)+\sum_{i=1}^{n} \alpha_{i} c_{i}(x) \text { where } \alpha_{i} \geq 0
$$

- Saddlepoint Condition If there are x^{*} and nonnegative a^{*} such that

$$
L\left(x^{*}, \alpha\right) \leq L\left(x^{*}, \alpha^{*}\right) \leq L\left(x, \alpha^{*}\right)
$$

then x^{*} is an optimal solution to the constrained optimization problem

Necessary Kuhn-Tucker Conditions

 From 10701 Lecture 5- Assume optimization problem
- satisfies the constraint qualifications
- has convex differentiable objective + constraints
- Then the KKT conditions are necessary \& sufficient

$$
\begin{aligned}
\partial_{x} L\left(x^{*}, \alpha^{*}\right)=\partial_{x} f\left(x^{*}\right)+\sum_{i} \alpha_{i}^{*} \partial_{x} c_{i}\left(x^{*}\right) & =0\left(\text { Saddlepoint in } x^{*}\right) \\
\partial_{\alpha_{i}} L\left(x^{*}, \alpha^{*}\right)=c_{i}\left(x^{*}\right) & \leq 0\left(\text { Saddlepoint in } \alpha^{*}\right) \\
\sum_{i} \alpha_{i}^{*} c_{i}\left(x^{*}\right) &
\end{aligned}
$$

Yields algorithm for solving optimization problems Solve for saddlepoint and KKT condifions

Lagrangian

Consider general minimization problem

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject to } & h_{i}(x) \leq 0, \quad i=1, \ldots m \\
& \ell_{j}(x)=0, \quad j=1, \ldots r
\end{array}
$$

Need not be convex, but of course we will pay special attention to convex case

We define the Lagrangian as

$$
L(x, u, v)=f(x)+\sum_{i=1}^{m} u_{i} h_{i}(x)+\sum_{j=1}^{r} v_{j} \ell_{j}(x)
$$

New variables $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{r}$, with $u \geq 0$ (implicitly, we define $L(x, u, v)=-\infty$ for $u<0)$

