Some Tricks
For efficient implementation
Logistic Regression

• Another popular classification model

• Usual setting
 • Observe data $x_1, \ldots, x_n \in \mathbb{R}^d$
 • with labels $y_i \in \{-1, +1\}$

• Assume the label probability follows:

$$p(y = 1|x) = g(\langle w, x \rangle)$$

$$= \frac{1}{1 + \exp(-\langle w, x \rangle)}$$
Analysing further

• Probability for other class

\[p(y = -1|x) = 1 - p(y = 1|x) \]

\[= 1 - \frac{1}{1 + \exp(-\langle w, x \rangle)} \]

\[= \frac{\exp(-\langle w, x \rangle)}{1 + \exp(-\langle w, x \rangle)} \]

\[= \frac{1}{1 + \exp(\langle w, x \rangle)} \]

• Thus, overall we have:

\[p(y|x) = \frac{1}{1 + \exp(-y\langle w, x \rangle)} \]
Training LR

• Maximum Likelihood Estimation
 \[\text{maximize } \sum_{i} \log p(y_i | x_i, w) \]

• Equivalently
 \[\text{minimize } \sum_{i} \log[1 + \exp(-y_i \langle w, x_i \rangle)] \]

• Add L_2 regularizer
 \[\text{minimize } \sum_{i} \log[1 + \exp(-y_i \langle w, x_i \rangle)] + \lambda \|w\|^2 \]

• Let’s solve this optimization problem in an efficient manner!
Logistic Regression vs SVM

• Recall SVM basically solves

\[
\begin{align*}
\text{minimize} & \quad \sum_i \max[0, 1 - y_i \langle w, x_i \rangle] + \lambda \|w\|^2 \\
\end{align*}
\]

• LR basically solves

\[
\begin{align*}
\text{minimize} & \quad \sum_i \log[1 + \exp(-y_i \langle w, x_i \rangle)] + \lambda \|w\|^2 \\
\end{align*}
\]

• That is just replace max with softmax!
Gradient Descent to solve LR

• The objective function is:

\[J(w) = \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i \sum_{j=1}^{d} w_j x_{ij} \right) \right] + \lambda \sum_{j=1}^{d} w_j^2 \]

• How to evaluate this?

```matlab
J=0;
for i=1:n
    inner_product = 0;
    for j=1:d
        inner_product = inner_product + w(j)*x(i,j);
    end
    J = J + log( 1 + exp( -y(i)*inner_product ) );
end
for j=1:d
    J = J + lambda*w(j)^2;
end
```
Computing Objective Function

- The objective function is:

\[
J(w) = \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i \sum_{j=1}^{d} w_j x_{ij} \right) \right] + \lambda \sum_{j=1}^{d} w_j^2
\]

- How to evaluate this?

```matlab
J = 0;
for i = 1:n
    inner_product = 0;
    for j = 1:d
        inner_product = inner_product + w(j)*X(i,j);
    end
    J = J + log( 1 + exp( -y(i)*inner_product ) );
end
for j = 1:d
    J = J + lambda*w(j)^2;
end
```
Computing Objective Function

• The objective function is:

\[
J(w) = \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i \sum_{j=1}^{d} w_j x_{ij} \right) \right] + \lambda \sum_{j=1}^{d} w_j^2
\]

• How to evaluate this?

Not even this!

J = 0;
for i=1:n
 J = J + log(1 + exp(-y(i)*X(i,:)*w));
end
J = J + sum(w.^2);
Computing Objective Function

• The objective function is:

\[J(w) = \sum_{i=1}^{n} \log \left[1 + \exp \left(-y_i \sum_{j=1}^{d} w_j x_{ij} \right) \right] + \lambda \sum_{j=1}^{d} w_j^2 \]

• How to evaluate this?

\[J = \text{sum}(\log(1 + \exp(- (X*w).*y))) + \text{lambda} \text{sum}(w.^2); \]

• Short code!

• Matrix-vector products and summing vectors are highly optimized
Matrix Multiplication

- Never write vector or matrix operations by yourself!
- Always use libraries
 - 100x faster!
- MKL or BLAS maybe intimidating to use directly
- Good News:
 - Matlab already does it for you
 - Eigen as wrapper
 - Almost matlab like API in C++
Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

\[
\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^{n} \frac{y_i x_{ik}}{1 + \exp \left(y_i \sum_{j=1}^{d} w_j x_{ij} \right)} + 2\lambda w_k
\]
Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

\[
\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^{n} \frac{y_i x_{ik}}{1 + \exp \left(y_i \sum_{j=1}^{d} w_j x_{ij} \right)} + 2\lambda w_k
\]

• Get the entire gradient vector at one go!

• One way using repmat

```matlab
b = (1 + exp( (X*w).*y ) ) .* y
b = repmat(b,1,5);
g = sum(X./b)' + 2*lambda*w;
```
Exercise: Computing Gradient

• For the gradient descent approach, next thing needed is the gradient!

\[\frac{\partial J(w)}{\partial w_k} = \sum_{i=1}^{n} \frac{y_i x_{ik}}{1 + \exp \left(y_i \sum_{j=1}^{d} w_j x_{ij} \right)} + 2\lambda w_k \]

• Get the entire gradient vector at one go!

• More memory efficient

\[b = (1 + \exp((X*w).*y)) .* y \]
\[g = \text{sum}(\text{bsxfun}(\text{@rdivide}, X,b)); \]
\[g = g' + 2*\text{lambda}*w; \]
Computing Gram Matrices

\[K_{ij} = \exp\left(-\|x_i - x_j\|^2 \right) \]

```
nsq = sum(X.^2,2);
K = bsxfun(@minus,nsq,(2*X)*X.');
K = bsxfun(@plus,nsq.',K);
K = exp(-K);
```
Algebraic Tricks

• Hopefully if you will solve HW5 bonus and get a multi-variate student t-distribution for the posterior predictive of Normal Inverse Wishart:

PDF of a general $t_\nu(x; \mu, \Sigma) = \frac{\Gamma \left((\nu + p)/2 \right)}{\Gamma(\nu/2)\nu^{p/2}\pi^{p/2}|\Sigma|^{1/2}} \left[1 + \frac{1}{\nu}(x - \mu)^T\Sigma^{-1}(x - \mu) \right]^{(\nu+p)/2}$

• So you need the determinant and inverse of Σ – expensive $O(d^3)$
• Moreover, posterior predictive has to be computed many times for different \tilde{x}
Cholesky Decomposition

• The update in posterior predictive for Σ would be

$$\tilde{\Sigma} = \Sigma_n + \frac{\kappa_n + 1}{\kappa_n} (\tilde{x} - \mu_n)(\tilde{x} - \mu_n)^T$$

• So instead of computing this update:
 • Suppose we have cholesky decomposition of Σ_n
 • Then we calculate only the rank-one update to obtain $\tilde{\Sigma}$
Cholesky Updates

- Suppose A is a positive definite matrix with L as its cholesky decomposition.
- Now if we obtain A' from A by an update of the form
 \[A' = A + xx^T \]
- then the cholesky decomposition L' of A' can be obtained by an update operation on L. (Rank 1 update)
- Similarly if we have $A = A' - xx^T$, then we can perform a Rank1 downdate to get L from L'
Cholesky Update

```
function [L] = cholupdate(L,x)
p = length(x);
x = x';
for k=1:p
    r = sqrt(L(k,k)^2 + x(k)^2);
c = r / L(k, k);
s = x(k) / L(k, k);
L(k, k) = r;
L(k,k+1:p) = (L(k,k+1:p) + s*x(k+1:p)) / c;
x(k+1:p) = c*x(k+1:p) - s*L(k, k+1:p);
end
end
```

- This algorithm is $O(D^2)$!
Nice Properties

- $|A|$ can be computed from L by

$$\log(|A|) = 2 \sum_{i=1}^{D} \log(L(i, i))$$

- Now let's try to compute $b^T A^{-1} b$

$$b^T A^{-1} b = b^T (LL^T)^{-1} b$$
$$= b^T (L^{-1})^T L^{-1} b$$
$$= (L^{-1} b)^T (L^{-1} b)$$

- Therefore compute $(L^{-1} b)$ and multiply its transpose with itself
Triangular Solver

- \((L^{-1}b)\) is the solution of

\[Lx = b \]

- Remember \(L\) is a lower triangular matrix, therefore the above equation can be solved very efficiently using forward substitution!

\[
\begin{align*}
l_{1,1}x_1 + l_{2,1}x_1 & = b_1 \\
l_{2,1}x_1 + l_{2,2}x_2 & = b_2 \\
& \vdots \\
l_{m,1}x_1 + l_{m,2}x_2 & + \cdots + l_{m,m}x_m = b_m
\end{align*}
\]
Miscellaneous Tricks

• Finding the min/max of a matrix of N-d array

```matlab
[MinValue, MinIndex] = min( A(:) );    %find minimum element in A
MinSub = ind2sub(size(A), MinIndex);  %convert MinIndex to subscripts
```

• Try to avoid inverse of a matrix!
 • Typically you only need \(x = A\backslash b \)
 • This invokes appropriate linear solver
 • Much more efficient and numerically stable