Deep Networks

Jin Sun

* Some figures are from Andrew Ng’s cs294a course notes.
* Some figures are from Alex Krizhevsky’s ImageNet paper.
Zoo of Networks

• Neural Networks
 • One layer neural network: logistic regression, perceptron
 • Multi-layer Perceptron, single hidden layer network: autoencoder
 • Deep neural networks
 • Convolutional Neural Networks: LeNet, ImageNet, R-CNN, MCDNN
 • Memory based neural networks: Recurrent Neural Networks, LSTM

• Belief Networks
 • Boltzmann Machine, Restricted Boltzmann Machine
 • Deep Boltzmann Machine
 • Deep Belief Networks
Key Concepts

• Backpropagation, SGD
• Non-linearity / Universal Approximator
• Non convexity / Generalization
• Going deep \rightarrow exponentially powerful
• Vanishing (exploding) Gradient
• Content addressable memory
• Techniques
 • Generalization, constraints
Forward propagation

• From input layer to output layer
 • \(a^{(l+1)} = f(W^{(l\rightarrow l+1)} a^{(l)}) \)
 • \(f \) is the activation (squashing) function
 • Non-linear: logistic, tanh, ReLU, etc...
 • Usually bounds intermediate values
 • Pros and Cons

• Loss function
 • Compute the error with target values
 • L2 loss, cross entropy loss
Backward propagation

• Gradient descent

\[\frac{\partial \text{loss}}{\partial w_{(l \rightarrow l+1)}} = \left(\frac{\partial a^{(l+1)}}{\partial w_{(l \rightarrow l+1)}} \right)^T \left(\frac{\partial a^{(l+2)}}{\partial a^{(l+1)}} \right)^T \cdots \left(\frac{\partial y}{\partial a^{(\text{last hidden layer})}} \right)^T \left(\frac{\partial \text{loss}}{\partial y} \right) \]

• Momentum

\[\Delta w(t) = - lr \ast \nabla(w) + \eta \Delta w(t - 1) \]
ImageNet

Convolutional Layer

• Fixed size filter (kernel) scanning on the inputs.
 • \(a = f(\sum_{i,j \in \text{kernel}} w_{i,j} x_{r+i,c+j}) \)

• Detect local patterns
 • Low level features (lines, corners) in preceding layers
 • High level features (beard, hair, faces) in succeeding layers

• Network perspective:
 • sparse connection, identical weights

Line Detector
Pooling Layer

- Aggregating detections
 - The max (mean) value of the kernel
- Network perspective:
 - sparse connection, identical weights
Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.
ReLU activation

- $f(z) = \max(0, z)$
- Soft-plus: $f(z) = \ln(1 + e^z)$
Reduce Overfitting

• Data augmentation
 • Horizontal Reflection
 • PCA
 • Perform PCA on the set of RGB pixel values throughout the training set
 • For each RGB pixel, add \([p_1, p_2, p_3] [\alpha_1 \lambda_1, \alpha_2 \lambda_2, \alpha_3 \lambda_3]^T\)
 • \(\alpha \sim \mathcal{N}(0,0.1^2)\)
 • Object identity is invariant to changes in the intensity and color of the illumination

• Dropout

• Local Response Normalization
 • \(b^i_{x,y} = a^i_{x,y} / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a^j_{x,y})^2 \right)^\beta \)

• Overlapping Pooling
Dataset

• ILSVRC: subset of ImageNet, ~1000 images in each of 1000 categories
 • 1.2 million training images
 • 50,000 validation images
 • 150,000 testing images

• Down-sample images to fixed resolution: 256*256

• Extract 224*224 patches from 256*256
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Top-1</th>
<th>Top-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse coding [2]</td>
<td>47.1%</td>
<td>28.2%</td>
</tr>
<tr>
<td>SIFT + FVs [24]</td>
<td>45.7%</td>
<td>25.7%</td>
</tr>
<tr>
<td>CNN</td>
<td>37.5%</td>
<td>17.0%</td>
</tr>
</tbody>
</table>

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

<table>
<thead>
<tr>
<th>Model</th>
<th>Top-1 (val)</th>
<th>Top-5 (val)</th>
<th>Top-5 (test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIFT + FVs [7]</td>
<td>---</td>
<td>---</td>
<td>26.2%</td>
</tr>
<tr>
<td>1 CNN</td>
<td>40.7%</td>
<td>18.2%</td>
<td>---</td>
</tr>
<tr>
<td>5 CNNs</td>
<td>38.1%</td>
<td>16.4%</td>
<td>16.4%</td>
</tr>
<tr>
<td>1 CNN*</td>
<td>39.0%</td>
<td>16.6%</td>
<td>---</td>
</tr>
<tr>
<td>7 CNNs*</td>
<td>36.7%</td>
<td>15.4%</td>
<td>15.3%</td>
</tr>
</tbody>
</table>

Table 2: Comparison of error rates on ILSVRC-2012 validation and test sets. In *italics* are best results achieved by others. Models with an asterisk* were “pre-trained” to classify the entire ImageNet 2011 Fall release. See Section 6 for details.