Templates

for scalable data analysis

4 Applications: User Modeling and Graph Factorization

Amr Ahmed, Alexander J Smola, Markus Weimer Yahoo! Research & UC Berkeley & ANU

Wrapping up

- Distributed inference in latent variable models
 - Star Synchronization
 - Delta aggregation

- Global variables
 - Ф: Topic distribution over words
- Local variables
 - $-\theta$: topic mixing vector
 - Z: topic indicator

- Collapse global variables
 - Ф
- Collapse local variables
 - -e
- Couples all Zs
- Run collapsed sampler

$$P(z_{di} = k | w_{di} = w, z_{-di}) \propto$$

$$(n_{dk} + \alpha) \frac{n_{kw} + \beta}{n_k + W\beta}$$

General Architecture

- Star synchronization
 - Works when variables depend on each other via aggregates
 - Counts, sums, etc.
 - When state objects form an Abelian group

Template

- Fit most topic models in collapsed representation
 - Define the state (key, value) pairs
 - Mostly counts, sums, lists, hash tables
 - Define the +,- operations on a state object
 - Write your sampler
 - Input: document, state
 - Output:
 - Update document local variables
 - Update the global state
- Our API will take care of the rest
 - Synchronization, threading, distribution, etc

Distributed Inference: template

State Example: LDA

- Alternative 1
 - Key: (topic, word)
 - value: count
 - Operators:
 - +,- are trivially defines
- Alternative 2
 - Key: word
 - value: list of (topic, count)
 - Allows efficient samplers
 - Operators: sparse vector operations
 - Might need to delete and merge

$$P(z_{di} = k | w_{di} = w, z_{-di}) \propto$$

$$(n_{dk} + \alpha) \frac{n_{kw} + \beta}{n_k + W\beta}$$

State Example: LDA

- You get the idea?
- Define the state to work with your sampler
- Define +,- for synchronization
- All details are abstracted form the synchronization logic
 - It just uses the +,- operators your just defined
 - Requires an iterator over state objects

Example 2: Multilingual LDA

- Each topic has a distribution over words
- Fits parallel documents
 - Example: Wikipedia

State Example: Multilingual-LDA

- Alternative 1
 - Key: (topic, language, word)
 - value: count
 - Operators: +,- are trivially defines
- Alternative 2
 - Key: word
 - value: list of (topic, language, count)
 - Allows writing efficient samplers
 - Operators: Sparse vector operations
 - Might need to delete and merge

State Example: Clustering

- Alternative 1
 - Key: Cluster ID
 - value:
 - Document counts
 - Parameter representation
 - Hash table: (word, count)
 - Operations
 - Define +,- over each field
 - You write this code
 - Part of the application logic
 - You have to do it anyhow when:
 - Remove or add a document to a cluster

API Summary

- Template for distributed inference in latent variables models
- Two basic components
 - Document representation
 - You take care of that via Protocol Buffer
 - State representation
 - Key-value pairs
 - Value can be any object
 - Define +,- over that object
 - Provide an iterator over objects for the synchronizer

Code Snippet: object

```
class stats{
public:
    virtual ~stats() { };
    virtual void from_str(const string& serialized_stats) = 0;
    virtual void to_str(string& serialized_stats) = 0;
    virtual void operator+=(stats& inp) = 0;
    virtual void operator-=(stats& inp) = 0;
    virtual int get_id() { return 0; }
    virtual void set_id(int) { }
    virtual void print() { }
};
typedef auto_ptr<stats> stats_ptr;
```

Code Snippet: Container

```
class stats_container{
public:
   virtual ~stats_container() { };
   // copy operator
   virtual void from_stats_container(stats_container&) = 0;
   // lock up operator, get stat object with a given id
   virtual stats_ptr get_stats(int id) = 0;
   // update a state object with a give id
   virtual void update(int id, stats& delta) = 0;
   virtual int size() = 0;
   // iterator
   virtual bool has_next() = 0;
   virtual stats_ptr next() = 0;
   virtual void reset_iter() = 0;
   virtual void print() = 0;
};
```

Code Snippet: LDA Document

```
message LDA_document {
    optional string docID = 1;
    repeated uint32 body = 3 [packed=true]; // w|
    repeated uint32 topic_assignment = 4 [packed=true]; //Z
    repeated uint32 topic_counts = 5 [packed=true]; // n_dk
}

message clustering_document {
    optional string docID = 1;
    repeated uint32 words = 2; // w
    repeated uint32 label = 3; // cluster assignment
}
```

Code Snippet: Sampler

```
class Model_Trainer {
public:
   virtual ~Model_Trainer() { };
   // read a document from disk
    virtual void* read(google::protobuf::Message&) = 0;
   //That is where you write your logic
   virtual void* sample(void* document) = 0;
   // Call in inference mode
    virtual void* test(void* document) = 0;
   // fold an update into the state
    virtual void* update(void* document) = 0;
   // time for synchronous operations
    virtual void* optimize(void*) = 0;
   // diagnostic
   virtual void* eval(void*,double&) = 0;
   //save
   virtual void write(void*) = 0;
   //need more iterations?
    virtual void iteration_done() = 0;
};
```

API Summary

- Current Yahoo! LDA release
 - Tightly integrates state, sampler and synchronization
 - Stay tuned for a new release with the new APIs

What Is next?

- Can we fit any model only with those asynchronous primitives?
 - No
- We need synchronous operations
 - Parameter optimization
 - EM style algorithm
 - Non-collapsed global variables

The Need for Synchronous Processing

The Need for Synchronous Processing

- E-Step
 - Run asynchronous collapsed sampler as before
- M-step
 - Reach a barrier
 - Collect values needed to optimize α
 - One machine optimizes α
 - Broadcast value back

Distributed Sampling Cycle

Distributed Sampling Cycle

Up next

- Application
 - Temporal Modeling of user interests
 - Multi-domain user personalization

- Asynchronous Distributed Optimization
 - Can we get rid of the synchronous step?
 - Asynchronous consensus
 - Factorizing Y!M graph
 - 200 Million users and 10 Billion edges
 - The largest published work on graph factorization

Modeling User Interests

Multi-domain Personalization

Graph Factorization: Social Network

Application

Tracking Users Interest

Characterizing User Interests

Short term vs long-term

Characterizing User Interests

- Short term vs long-term
- Latent

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

Flight London Hotel weather classes registration housing rent School Supplies Loan semester

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

Back

When to show a financing ad?

When to show a financing ad? ack hool finance Travel Fligh classes housing weather semester rent

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

Back

Mixed-Membership Formulation

In Graphical Notation

- 1. Draw once $\Omega | \alpha \sim \text{Dir}(\alpha/K)$.
- 2. Draw each topic $\phi_k | \beta \sim \text{Dir}(\beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i | \lambda, \Omega \sim \text{Dir}(\lambda \Omega)$.
 - (b) For each word
 - (a) Draw a topic $z_{ij}|\theta_d \sim \text{Mult}(\theta_i)$.
 - (b) Draw a word $w_{ij}|z_{ij}, \phi \sim \text{Multi}(\phi_{z_{ij}})$.

In Polya-Urn Representation

- Collapse multinomial variables: θ, Ω
- Fixed-dimensional Hierarchal Polya-Urn representation
 - Chinese restaurant franchise

Global topics trends

Recipe Chocolate Pizza Food Chicken Milk Butter Powder Car Blue Book Kelley Prices Small Speed large

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Topic word-distributions

Car speed offer camry accord career

User-specific topics trends (mixing-vector)

User interactions: queries, keyword from pages viewed

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic word-distribution

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic word-distribution

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic word-distribution

Recipe Chocolate Pizza Food Chicken Milk Butter Powder

Car Blue Book Kelley Prices Small Speed large

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic worddistribution

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample from word the new topic word-distribution

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Problems

- Static Model
- Does not evolve user's interests
- Does not evolve the global trend of interests
- Does not evolve interest's distribution over terms

At time t

Recipe Chocolate Pizza Food Chicken Milk Butter Powder

Car Blue Book Kelley Prices Small Speed large job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Build a dynamic model

camry accord career

Connect each level using a RCRP

Observation 1

-Popular topics at time t are likely to be popular at time t+1 $-\phi_{k,t+1}$ is likely to smoothly evolve from $\phi_{k,t}$

At time t

At time t+1

Recipe Chocolate Pizza Food Chicken Milk Butter Powder

Blue Book Kelley Prices Small Speed large

Car

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Intuition

Captures current trend of the car industry (new release for e.g.)

Observation 1

 $\phi_{k,t}$

- -Popular topics at time t are likely to be popular at time t+1
- $\, \varphi_{k,t+1}$ is likely to smoothly evolve from $\, \, \varphi_{k,t} \,$

Powder

large

- Sample word from the topic's word-distribution
- •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic worddistribution

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

$$\tilde{\beta}_{kw}^t = \sum_{k=1}^{t-1} \exp^{\frac{h-t}{\kappa_0}} n_{kw}^h$$

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

Topics evolve over time?

User's intent evolve over time?

Capture long and term interests of users?

Online Distributed Inference

Work Flow

Work Flow

Online Scalable Inference

- Online algorithm
 - Greedy 1-particle filtering algorithm
 - Works well in practice
 - Collapse all multinomials except Ω_t
 - This makes distributed inference easier
 - At each time t:

$$P(\Omega^t, \mathbf{z}^t | \tilde{\mathbf{n}}^t, \tilde{\beta}^t, \tilde{\mathbf{m}}^t)$$

- Distributed scalable implementation
 - Used first part architecture as a subroutine
 - Added synchronous sampling capabilities

Distributed Inference (at time t)

Distributed Inference (at time t)

After collapsing

Use Star-Synchronization

Fully Collapsed

Semi-Collapsed

$$P(z_{ij}^t = k | w_{ij}^t = w, \Omega^t, \tilde{\mathbf{n}}_i^t)$$

$$\propto \left(n_{ik}^{t,-j} + \tilde{n}_{ik}^t + \lambda \Omega^t \right) \frac{n_{kw}^{t,-j} + \tilde{\beta}_{kw}^t + \beta}{\sum_l n_{kl}^{t,-j} + \tilde{\beta}_{kl}^t + \beta}$$

Distributed Sampling Cycle

Distributed Sampling Cycle

Experimental Results

- Tasks is predicting convergence in display advertising
- Use two datasets
 - 6 weeks of user history
 - Last week responses to Ads are used for testing
- Baseline:
 - User raw data as features
 - Static topic model

dataset	# days	# users	# campaigns	size
1	56	13.34M	241	242GB
2	44	33.5M	216	435GB

Interpretability

Performance in Display Advertising

Number of conversions

Performance in Display Advertising

Weighted ROC measure

	base	TLDA	TLDA+base	LDA+base
dataset 1	54.40	55.78	56.94	55.80
dataset 2	57.03	57.70	60.38	58.54

Effect of number of topics

	topics	TLDA	TLDA + base
dataset 1	50	55.32	56.01
	100	55.5	56.56
	200	55.8	$\boldsymbol{56.94}$
dataset 2	50	59.10	60.40
	100	59.14	60.60
	200	58.7	60.38

Static Batch models

How Does It Scale?

Application

Multi-Domain Personalization

Problem

Multi-domain Personalization

Intuition

- We observe user interaction with news and movies
- Can we predict his music taste?

Interaction definition

 A bag of words describing objects user interacts with in a given domain

Example

Example

The Model

A user's interaction with a domain is a bag of words.

User's **prior** interest in a domain is

$$\alpha = \log(1 + \exp(\lambda_d x_u))$$

Each user has a meta-profile:

Each domain has a latent matrix:

$$x_u \in \mathbb{R}^k$$
$$\lambda_d \in \mathbb{R}^{k \times t_d}$$

The Model

Slide credit Yucheng Low

Inference and Learning

Distributed Sampling Cycle

Distributed Sampling Cycle

Results

2 domain dataset.

Frontpage and News clicks of **5.6 million users.**

Frontpage/News: Article text for each click.

 Measure gain relative to independent models on each domain

Results

Distributed Inference Revisited

To collapse or not to collapse?

- Not collapsing
 - Keeps conditional independence
 - Good for parallelization
 - Requires synchronous sampling
 - Might mix slowly

- Collapsing
 - Mixes faster
 - Hinder parallelism
 - Use star-synchronization
 - Works well if sibling depends on each others via aggregates
 - Requires asynchronous communication

Inference Primitive

- Collapse a variable
 - Star synchronization for the sufficient statistics
- Sampling a variable
 - Local
 - Sample it locally (possibly using the synchronized statistics)
 - Shared
 - Synchronous sampling using a barrier
- Optimizing a variable
 - Same as in the shared variable case
 - Ex. Conditional topic models

Asynchronous Optimization

Asynchronous Processing

- Needed when
 - Ex: Optimizing a global variable
- Mostly requires a barrier
- Advantages
 - Easy to program
 - Well-understood reusable templates
- Disadvantages
 - The curse of the last reducer
 - You are as fast as the slowest machine!

Asynchronous Processing

- Needed when
 - Ex: Optimize a global varial
- Mostly requires a barri
- Advantages
 - Easy to progr
- an me do better. - Well-und
- Disady
 - the last reducer The cult
 - You are as fast as the slowest machine!

Asynchronous Optimization

Graph Factorization

Graph Factorization Problem

- Factor a graph into low rank components
- Assign a latent vector $Z_i \in \mathcal{R}^k$ with each node
- Optimize:

$$f(Y, Z, \lambda) = \frac{1}{2} \sum_{(i,j) \in E} (Y_{ij} - \langle Z_i, Z_j \rangle)^2 + \frac{\lambda}{2} \sum_i n_i ||Z_i||^2$$

Observed value over edges

Predicted value

Regularization

Single-Machine Algorithm

Just use stochastic gradient decent (SGD)

$$\frac{\partial f}{\partial Z_i} = -\sum_{j \in \mathcal{N}(i)} (Y_{ij} - \langle Z_i, Z_j \rangle) Z_j + \lambda n_i Z_i$$

- Cycle until convergence
 - Read a node, i
 - Update its latent factor

$$Z_i \leftarrow Z_i - \eta \left(\frac{\partial f}{\partial Z_i}\right)$$

Problem Scale

- Yahoo IM and Mail graphs
- Nodes are users
- Edges represent (log) number of messages
- 200 Million vertices
- 10 Billion edges

Challenges

- Parameter storage
 - Too much for a single machine
- Approach
 - Distribute the graph over machines
 - How to partition the nodes?
 - Synchronization
 - How to synchronize replicated nodes
 - Communication
 - How to accommodate network topology

Challenges

Can we solve the problem with similar ideas to what we have covered?

- Cycle until convergence
 - Read a node, i
 - Update its latent factor

$$Z_i \leftarrow Z_i - \eta \left(\frac{\partial f}{\partial Z_i}\right)$$

- Problem
 - Some neighbors are missing
- Solution
 - Replicate and synchronize
 - Borrowed vs. owned nodes

- Formulation
 - Introduce local copies
 - A factor per node X
 - Tie across machines
 - Introduce global factor Z
 - Penalizes deviations

Formulation

Original problem

$$f(Y, Z, \lambda) = \frac{1}{2} \sum_{(i,j) \in E} (Y_{ij} - \langle Z_i, Z_j \rangle)^2 + \frac{\lambda}{2} \sum_{i} n_i ||Z_i||^2$$

Relaxed problem

$$\sum_{k=1}^{K} f_k(Y, X^{(k)}, \lambda) + \frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} ||Z_i - X_i^{(k)}||^2 \right]$$

Local factors

Deviation

Global factor

Local problem

$$f_k(Y, X^{(k)}, \lambda) = \frac{1}{2} \left[\sum_{\substack{(i,j) \in E, \\ i \in V}} \left(Y_{ij} - \langle X_i^{(k)}, X_j^{(k)} \rangle \right)^2 + \lambda \sum_{i \in V_k} n_i ||X_i^{(k)}||^2 \right]$$

Synchronous Algorithms

- Optimize joint objective over X,Z
- Local parameter updates
 - Run SGD until convergence

Global parameter updates

minimize_Z
$$\frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} \|Z_i - X_i^{(k)}\|^2 \right]$$

Synchronous Algorithms

Step 1: Push global variables

Step 2: Local Optimization

minimize_{X(k)}
$$f_k(Y, X^{(k)}, \lambda) + \frac{1}{2} \mu \sum_{i \in V_k} ||Z_i - X_i^{(k)}||^2$$

Step 3: Push and average

$$\operatorname{minimize}_Z$$

$$\frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} \|Z_i - X_i^{(k)}\|^2 \right]$$

Step 3: Push and average

Summary of Asynchronous Algorithms

- An improvement over standard Map-Reduce
- Curse of the last reducer
- You are as fast as the slowest machine
 - Optimize local variables
 - Barrier
 - Optimize global variables
 - Barrier
- Can we do better?

An Asynchronous Algorithm

- Conceptual idea
 - Optimize X and Z jointly

$$\sum_{k=1}^{K} f_k(Y, X^{(k)}, \lambda) + \frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} ||Z_i - X_i^{(k)}||^2 \right]$$

- User SGD over (X,Z)
- Pick a local node
- Do a gradient step over corresponding X,Z!

Conceptual Idea

$$\sum_{k=1}^{K} f_k(Y, X^{(k)}, \lambda) + \frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} \|Z_i - X_i^{(k)}\|^2 \right]$$

$$\frac{\partial f}{\partial Z_i} \left[X_i^{(k)} \right] = \mu(Z_i - X_i^{(k)}).$$
Cache the global variables variables Locally (Asynchronous updates)
$$+ \lambda n_i X_i + \mu(X_i^{(k)} - Z_i).$$

Parallel Updates

Parallel Asynchronous Updates

$$\frac{\partial f}{\partial X_i^{(k)}} = -\sum_{j \in N(i)} (Y_{ij} - \langle X_i^{(k)}, X_j^{(k)} \rangle) X_j^{(k)} + \lambda n_i X_i^{(k)} + \mu (X_i^{(k)} - Z_i^{(k)}).$$

-Cycle through nodes-Update local copies

Computation thread

- -Receive local copy X_i from k
 - -Update Z i
 - -Send back new Z_i to k

$$\frac{\partial f}{\partial Z_i} \left[X_i^{(k)} \right] = \mu(Z_i - X_i^{(k)}).$$

Synchronization thread Send

- -Cycle through nodes
 - Send local copy to DSM
- -Received Z_i from DSM
 - update cached copy

Synchronization thread receive

Convergence

- Can be reduced to lock-free parallel SGD [Hogwild]
- Convergence is affected by
 - Synchronization rate
 - Time needed to refresh the local version of the global variable
 - Number of replicated nodes

Summary of Asynchronous

- Continuously update local variables X (via SGD)
- Continuously send local variables to global
- Continuously update global variable Z (via SGD)
- Continuously send & overwrite global variables to local

$$\sum_{k=1}^{K} f_k(Y, X^{(k)}, \lambda) + \frac{1}{2} \sum_{k=1}^{K} \left[\mu \sum_{i \in V_k} \|Z_i - X_i^{(k)}\|^2 \right]$$

Convergence

Convergence

Scalability

Solution Quality

Practical Considerations

- How to partition the graph?
 - We want to minimize the number of borrowed nodes
 - Affect convergence
 - Increases the number of deviation penalties
 - Take each machine capacity into consideration
 - Store owned nodes
 - Borrowed nodes
 - Cached copies of relevant global variables
- Network Optimization
 - Take network topology into account

Graph Partition

- Find a set of minimally overlapped partitions
 "Decompose the graph to minimize number of vertices + neighbors per partition"
 - NP hard problem by itself [WSDM 2012]
- Under capacity constraints
- We just scratched the surface here
 - Simple greedy algorithm
 - Hierarchal extension
 - LSH and random baselines

Single Pass Greedy Algorithm

- Intuitively
 - Add each node to where its neighbors are!
- Maintain a set of open partitions
 - Store the borrowed and owned nodes in each partition
- For each vertex v
 - For each partition p
 - We want to make sure that N(v) are in the same partition
 - Add N(v) / Owned(p) to borrowed of p
 - Select p with minimum number of borrowed nodes

- •For each vertex v
 - •For each partition *p*
 - •We want to make sure that N(v) are in the same partition
 - •Add N(v) / Owned(p) to borrowed of p
 - •Select p with minimum number of borrowed nodes

Hierarchical Extension

- Two step approach
 - First run greedy with small number of partitions
 - Second, run greedy over the first level partitions
- Time is proportional to number of open partitions
 - Divide and conquer

Baselines

- Radom
- LSH-based
 - LSH over adjacency matrix
 - Related to shingle-based graph compression approaches
- Metrics
 - Time to perform partitioning
 - Quality of partitions
 - Number of borrowed nodes
 - Time to perform a full synchronization cycle

The Effect of Partitioning Quality

Method	Total borrowed	Partitioning time	Sync time
	nodes (millions)	(minutes)	(seconds)
Flat	252.31	166	71.5
Hierarchical	392.33	48.67	85.9
Hier-LSH	640.67	17.8	136.1
Hier-Random	720.88	11.6	145.2

The Effect of Partitioning Quality

Network Optimization

V₁ — Machine 1.6

V₂ — Machine 1.3

V₃ — Machine 2.4

V₄ — Machine 2.1

 V_5 — Machine 1.5

Network Optimization

- We only know the layout at run time
 - Inverse network bandwidth D
- Inter-partitions communication
 - Communication requirement C
 - The more overlap, the higher is C
- Solve a quadratic assignment problem

$$T(\pi) = \sum_{kl} C_{kl} D_{\pi(k)\pi(l)} = \sum_{kl} C_{kl} \sum_{uv} \pi_{ku} \pi_{lv} D_{uv} = \operatorname{tr} C \pi D \pi^{\top}$$

Sync time without QAP

Sync time with QAP

Summary

- Model as consensus problem
- Synchronous algorithms
 - Curse of the last reducer
- Asynchronous algorithm
 - Asynchronous parallel updates
 - Network topology optimization
 - Overlapping partitions

Future Directions

Future Directions

- Theoretical bounds and guarantees
- Non-parametric models
 - Learning structure from data
- Working under communication constraints
- A new release of Yahoo! LDA
- More applications
 - Citation analysis
 - Graph factorization + LDA

Questions?

Sampling Ω

- Introduce auxiliary variable $m_{\rm kt}$
 - How many times the global distribution was visited
 - $P(m_k^t|n_{1k}^t,\cdots,n_{ik}^t,\cdots)$ ~ AnotniaK

$$P(\Omega^t | \mathbf{m}^t, \tilde{\mathbf{m}}^t) \sim \text{Dir}(\tilde{\mathbf{m}}^t + \mathbf{m}^t + \alpha/K)$$

Distributed Sampling Cycle

