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Factorization models

Friendship-Interest Propagation
Experiments

Summary



Social Network Data
Data: users, connections, features
Goal: suggest connections ? :\: i ?
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Social Network Data

Data: users, connections, features
Goal: model/suggest connections
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Direct application of the Aldous-Hoover theorem.



Applications




Applications

social network = friendship + interests

recommend users based recommend apps based
on friendship & interests on friendship & interests




Social Recommendation

recommend users based recommend apps based
on friendship & interests on friendship & interests

e boost traffic e boost traffic

* make the user * increased revenue
graph more dense * increased user

* increase user participation
population * make app graph

e stickiness more dense

... usually addressed by separate tools ...



Homophily

recommend users based recommend apps based
on friendship & interests on friendship & interests

e users with similar
Interests are more
likely to connect

* friends install similar
applications

Highly correlated. Estimate both jointly






Model

e Social interaction

r; ~ p(x|y;)
r; ~ p(T|y;)
€ij Np(e‘xzyyum])y]?q))

e App install

z; ~ p(z|y;)
vj ~ p(v|uj)

Qg5 ™ p(CL LgyYiy Ujy Uy, (I))




Model

e Social interaction

z; ~ p(x|y;)
r; ~ p(x|y;) r; = Ay; + €
€ij Np(e\xz',yi,fjayj»q)) U = B“j + €5

e App install . .
ei; ~ plelz; xj +y; Wy;)
zi ~ p(x|y;)

vj ~ p(viu;)

Qg5 ™ p(CL LgyYiy Ujy Uy, (I))

a;; ~ plalz; v; +y; Mu;)




Optimization Problem

minimize M. Z l(eij,%T%' T yz’TWyj)_l_
(4,9)



Loss Function

loss




Loss

* Much more evidence of application non-install
(i.e. many more negative examples)

* Few links between vertices in friendship
network (even within short graph distance)

e Generate ranking problems (link, non-link) with
non-links drawn from background set



Loss
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Optimization

* Nonconvex optimization problem

* Large set of variables r; = Ay; + €

Uj = BUj —|—€j

» Stochastic gradient descent

; Wy;)
on X, v, € for speed

Cij "~ p(€|l’;rﬂ?‘j +y; Wy,
Ajj ™~ P(a|$;rvj T ?JZTMUJ)

e Use hashing to reduce
memory load, i.e. rij = 0(i,7)X (i, j)]
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Y! Pulse Data
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App Recommendation

Models loss Q-] | MAP@5 | MAR@5 | nDCG@5
SIM 0.630 0.186 0.698
RLFM 0.729 0.211 0.737
NLFM 0.748 0.222 0.761
FIP o o 0.768 0.228 0.774
FIP lazy €5 £ | 0.781 0.232 0.790
FIP logistic  #2 0.781 0.232 0.793
FIP Huber /45 0.781 0.232 0.794
FIP \/ D 0.777 0.231 0.771
FIP s 4 0.778 0.231 0.787
FIP lazy £2 43 0.780 0.231 0.791
FIP logistic ¢4 0.779 0.231 0.792
FIP Huber £ 0.786 0.233 0.797
FIP '/ U1 0.765 0.215 0.772

RLFM: regression based latent factor model (Chen&Agarwal); NLFM: SIM&RLFM

SIM: similarity based model;




Social

recommendation

Models loss Q-] | MAP@Q5 | MAR@5 | nDCG@5
RLFM 0.164 0.202 0.174
FIP D U 0.359 0.284 0.244
FIP lazy lo 42 0.193 0.269 0.200
FIP logistic 45 0.174 0.220 0.189
FIP Huber /5 0.210 0.234 0.215
FIP \/ o 0.187 0.255 0.185
FIP o ¢ 0.186 0.230 0.214
FIP lazy 4o ¥4 0.180 0.223 0.194
FIP logistic ¢4 0.183 0.217 0.189
FIP Huber 4 0.188 0.222 0.200
FIP \/ U1 0.178 0.208 0.179




Extensions

* Multiple relations

(user, user)

(user, app)
(app, advertisement)




e Factorization model for users

* Integration of preferences helps both social and
app recommendation

* Simple stochastic gradient descent algorithm
* Hashing for memory compression

e Extensible framework



