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Social Network Data

Data: users, connections, features
Goal: suggest connections
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Social Network Data

Data: users, connections, features
Goal: model/suggest connections

x x’

y y’

e

p(x, y, e) =
�

i∈Users

p(yi)p(xi|yi)
�

i,j∈Users

p(eij |xi, yi, xj , yj)

Direct application of the Aldous-Hoover theorem.



Applications



Applications
social network = friendship + interests

recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests



Social Recommendation
recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests

• boost traffic
• make the user 

graph more dense
• increase user 

population
• stickiness

• boost traffic
• increased revenue
• increased user 

participation
• make app graph 

more dense
... usually addressed by separate tools ...



Homophily
recommend users based 
on friendship & interests

recommend apps based 
on friendship & interests

• users with similar 
interests are more 
likely to connect

• friends install similar 
applications

Highly correlated. Estimate both jointly



Model

x x’

y y’

e

v

u

s

(latent) app
features (latent) user

features

app install



Model

x x’

y y’

e

v

u

a

• Social interaction

• App install

xi ∼ p(x|yi)
xj ∼ p(x|yj)
eij ∼ p(e|xi, yi, xj , yj ,Φ)

xi ∼ p(x|yi)
vj ∼ p(v|uj)

aij ∼ p(a|xi, yi, uj , vj ,Φ)



Model
• Social interaction

• App install

xi ∼ p(x|yi)
xj ∼ p(x|yj)
eij ∼ p(e|xi, yi, xj , yj ,Φ)

xi ∼ p(x|yi)
vj ∼ p(v|uj)

aij ∼ p(a|xi, yi, uj , vj ,Φ)

xi = Ayi + �i

vj = Buj + �̃j

eij ∼ p(e|x�
i xj + y�i Wyj)

aij ∼ p(a|x�
i vj + y�i Muj)

cold start latent features

bilinear features



Optimization Problem

minimize λe

�

(i,j)

l(eij , x
�
i xj + y�i Wyj)+

λa

�

(i,j)

l(aij , x
�
i vj + y�i Muj)+

λx

�

i

γ(xi|yi) + λv

�

i

γ(vi|ui)+

λW �W�2 + λM �M�2 + λA �A�2 + λB �B�2

minimize social

app

regularizer

reconstruction



Loss Function



Loss

• Much more evidence of application non-install
(i.e. many more negative examples)

• Few links between vertices in friendship 
network (even within short graph distance)

• Generate ranking problems (link, non-link) with 
non-links drawn from background set



Loss

application
recommendation

social
recommendation



Optimization
• Nonconvex optimization problem
• Large set of variables

• Stochastic gradient descent
on x, v, ε for speed

• Use hashing to reduce
memory load, i.e.

xi = Ayi + �i

vj = Buj + �̃j

eij ∼ p(e|x�
i xj + y�i Wyj)

aij ∼ p(a|x�
i vj + y�i Muj)

xij = σ(i, j)X[h(i, j)]

binary hash hash



Y! Pulse



Y! Pulse Data

1.2M users, 386 items
6.1M friend connections
29M interest indications



App Recommendation

SIM: similarity based model; 
RLFM: regression based latent factor model (Chen&Agarwal); NLFM: SIM&RLFM



Social recommendation
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• Multiple relations

(user, user)
(user, app)
(app, advertisement)

• Users visiting several properties
news, mail, frontpage, social network, etc.

• Different statistical models
• Latent Dirichlet Allocation for latent factors
• Indian Buffet Process
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Extensions
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Summary

• Factorization model for users
• Integration of preferences helps both social and 

app recommendation
• Simple stochastic gradient descent algorithm
• Hashing for memory compression
• Extensible framework


