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e Part 1 - Motivation

e Avutomatic information extraction

* Application areas

e Part 2 - Basic Tools
* Density estimation / conjugate distributions
* Directed Graphical models and inference

* Part 3 - Topic Models (our workhorse)
» Statistical model
* Large scale inference (parallelization, particle filters)

e Part 4 - Advanced Modeling

 Temporal dependence

* Mixing clustering and topic models
* Social Networks

* Language models



Part 1 - Motivation



the Internet

Webpages (content, graph)

Clicks (ad, page, social) Finite resources

Users (OpenlID, FB Connect)

e-mails (Hotmail, YIMail, Gmail)

Photos, Movies (Flickr, YouTube, Vimeo ...) S
Cookies / tracking info (see Ghostery)

Installed apps (Android market etc.) ‘

Location (Latitude, Loopt, Foursquared) o
User generated content (Wikipedia & co)

Ads (display, text, DoubleClick, Yahoo)

Comments (Disqus, Facebook) o
Reviews (Yelp, Y!Local)

Third party features (e.g. Experian)
Social connections (LinkedIn, Facebook)
Purchase decisions (Netflix, Amazon)
Instant Messages (YIM, Skype, Gtalk)
Search terms (Google, Bing)

Timestamp (everything)

Editors are expensive
Editors don’t know users
Barrier to i18n

Abuse (intrusions are novel)
Implicit feedback

Data analysis (find interesting stuff
rather than find x)

Integrating many systems
Modular design for data integration

Integrate with given prediction tasks

News articles (BBC, NYTimes, Y!News) InveSt In mOdellng Clnd namlng

Blog posts (Tumblr, Wordpress)
Microblogs (Twitter, Jaiku, Meme)

rather than data generation



Data on the Internet

Webpages (content, graph) L.
Clicks (ad, page, social) Flnlte resources
Users (OpenlID, FB Connect)

e-mails (Hotmail, YIMail, Gmail)
Photos, Movies (Flickr, YouTube, Vimeo
Cookies / tracking info (see Ghostery)

e Editors are expensive

OW users

Installed apps (Android market etc.)

unlimited amounts
Location (Latitude, Loopt, Foursquared
User generated content (Wikipedia & ¢ Of d CI"CI

Ads (display, text, DoubleClick, Ya

s are novel)

k

Comments (Disqus, Facebook) * Data analysis (find interesting stuff
Re.wews (Yelp, YlLocal) | rather than find X)

Third party features (e.g. Experian)

Social connections (LinkedIn, Facebook) * Integrahng many systems

Purchase decisions (Netflix, Amazon)

* Modular design for data integration
Instant Messages (YIM, Skype, Gtalk) g 9

Search terms (Google, Bing) * Integrate with given prediction tasks
Timestamp (everything) . . .
News arficles (BBC, NYTimes, YINews) Invest in modeling and naming

Blog posts (Tumblr, Wordpress) .
Microblogs (Twitter, Jaiku, Meme) rather than data generahon



Clustering documents

YAaHoOO!
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documents
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Today’s mission

Find hidden structure in the data

Human understandable
Improved knowledge for estimation

YAaHoOO!



Some applications
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Topics In text

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annuval $100.000
donation, too.

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003




Word segmentation

first,shedreamedoflittiealiceherself,andonceagainthetinyhandswereclaspedupo
nherknee,andthebrighteagereyeswerelookingupintohersshecouldheartheveryto
nesofhervoice,andseethatqueerlittletossofherheadtokeepbackthewanderinghai
rthatwouldalwaysgetintohereyesandstillasshelistened,orseemedtolisten,thewho
leplacearoundherbecamealivethestrangecreaturesofherlittiesister'sdream.thelo
Nggrassrustledatherfeetasthewhiterabbithurriedbythefrightenedmousesplashed
Hiswaythroughtheneighbouringpoolshecouldheartherattleoftheteacupsasthemar
chhareandhisfriendssharedtheirneverendingmeal,andtheshrillvoiceofthequeen...

-

first, she dream ed of little alice herself ,and once again the tiny hand s were
clasped upon her knee ,and the bright eager eyes were looking up into hers --
shecould hearthe very tone s of her voice , and see that queer little toss of
herhead to keep back the wandering hair that would always get into hereyes --
and still as she listened , or seemed to listen , thewhole place a round her
became alive the strange creatures of her little sister 'sdream. thelong grass
rustled ather feet as thewhitera bbit hurried by -- the frightened mouse splashed
his way through the neighbour ing pool -- shecould hearthe rattle ofthe tea cups
as the marchhare and his friends shared their never -endingme a | ,and the ...

Mochihashi, Yamada, Ueda, ACL 2009




Language model

nevertheless ,
he was admired
by many of his immediate subordinates

for his long work hours d U'l'o m CI'HCCI I Iy Synth eSized

and dedication to building northwest

in.}o what he called a * mega carrier fro m Pe nn Tree b an k

although
preliminary findings
were reported

more than a year ago , MOChihaShi, YCImCIdCI, UedCI

the latest results

ACL 2009
in today s

new england journal of medicine ,

a forum

likely to bring new attention to the problem

south korea

registered a trade deficit of S 101 million

in october

, reflecting the country 's economic sluggishness

, according to government figures released wednesday



User model over time
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Ahmed et al., KDD 2011



User model over time
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Face recognition from captions

i
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ey

(b) The corresponding clusters obtained by People-LDA.

ain, Learned-Miller, McCallum, ICCV 2007

—



Storylines from news

Sports Politics Unrest
U) games government police h d I
U won minister attack A m e ei' q /
E team authorities run
final opposition man
O season officials group AI STATS 2 O] ]
|_ league leaders arrested
held group move
UEFA-soccer Tax bills India-Pakistan tension
2, champions  Juventus tax Bush nuclear Pakistan
LLl | goal AC Milan billion Senate border India
2 | leg Real Madrid | | CUt Us dialogue Kashmir
&= | coach Milan plan Congress diplomatic New Delhi
J | striker Lazio budget Fleischer militant Islamabad
>_ midfield Ronaldo economy White House insurgency Mu;:harraf
m penalty Lyon lawmakers  Republican missile Vajpayee

/\N\MJ‘/\ | A//\ﬁ/\/ \ /\/J\/\/\,/x




ldeology detection
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political
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Ahmed et al, 2010; Bitterlemons collection



Hypertext topic extraction

| Topic 1 | I Topic 2 I
neural 0.067 | Artificial neural network| | recognition 0.058 | Speech recognition
network  0.047 | )= 0.004] | speech 0.033 | 7= 0.004
networks  0.039 — language 0.015
learning  0.027 - pattern 0.012
artificial  0.017 | Neural network  0.003 handwriting 0.011 Pattern recognition
data 0.015 ) |- = evaluation 0.010 } 0,004
models 0.014 = robots 0.010 : o
function  0.014 E systems  0.009 |
Topic 3 | I Topic 4
vancouver 0.051 | Denver, Colorado brain 0.047 |cognitive science 0.003
denver 0.043 | ¢ = 0.0008| [ cogniive  0.026 | 5 ..
city 0.041 | =% aeoi™ e science 0.016 ‘ -
retrieved  0.024 | by press 0.011 <
colorado  0.011 | vancouver ~ 0.0002| | neurons  0.010 [Neuroscience  0.002
area 0.009 | J == _ mind 0.010 | (23 e
population 0.009 — = | systems  0.010 | ¥sme —orooe
canada  0.008 S human 0.010 |

Gruber, Rosen-Zvi, Weiss; UAI 2008



Alternatives



Ontologies
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Ontologies

hip with
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Face Classification

100-1000
people
10k faces

curated
(not realistic)

expensive to
generate




Topic Detection & Tracking

Information Technology Laboratory NIST

National Institute of

Information Access Division {IAD) Stendards and Technology

Topic Detection and Tracking Evaluation * edITOI'ICI"y

e Multimodal Information

Group Home - — : C U I'Cli'e d

e Benchmark Tests .,,,, —— e o o

— =__m = training data

- >

e Test Beds °

¢ Publications - = ° expenSIVe i.o
| 5 I o | >

* ks - generate

¢ Contacts

Topic Detection and Tracking research was pursued under the DARPA . . .
Translingual Information Detection, Extraction, and Summarization (TIDES) SU bleCtlve N

program: .
selection of

Topic Detection and Tracking is an integral part of the DARPA Translingual
Information Detection, Extraction, and Summarization (TIDES) program. The goal
of the TIDES program is to enable English-speaking users to access, correlate, 'l'h red d S
and interpret multilingual sources of real-time information and to share the
essence of this information with collaborators.

- * language
As a TIDES evaluation community, TDT provides a forum to discuss applications

and techniques for detecting and tracking events that occur in real-time and the 'F
infrastructure to support common evaluations of component technologies. The 3P9C| IC
TIDES project currently has one other evaluation community, The Text REtrieval

Conference (TREC), and planning has begun for three new evaluations in the

areas of Text Summarization, Question Answering and Quick Machine

Translation.



Advertising Targeting

Media Spotlight

Affluents
Boomer Men
Boomer Women
Men 18-34

Men 18-49
Millennials
Online Dads
Online Moms
Women 18-34
Women 18-49

J Your categories Below you can edit the interests and inferred demographics that Google has associated with your cookie:

Category

Arts & Entertainment - TV & Video - Online Video Remove
Computers & Electronics Remove
Computers & Electronics - Hardware - ... - Chips & Processors Remove
Computers & Electronics - Software - Operating Systems - Mac OS Remove
Games - Computer & Video Games - Shooter Games Remove
Games - Online Games - Massive Multiplayer Remove
News - Politics Remove
News - Sports News Remove
Shopping - Coupons & Discount Offers Remove
Sports - Team Sports - American Football Remove

(Add categories ) Google does not associate sensitive interest categories with your ads preferences.

* Needs training data in every language

* |s it really relevant for better ads?

e Does it cover relevant areas?



Advertising Targeting

J Your categories Below you can edit the interests and inferred demographics that Google has associated with your cookie:
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woman 1645 - O U ' [e
Women 18-49 ( Add categories ) Google does not associate |

* Needs training data in every language

* |s it really relevant for better ads?
* Does it cover relevant areas?



Challenges

e Scale

e Millions to billions of instances
(documents, clicks, users, messages, ads)

e Rich structure of data (ontology, categories, tags)

* Model description typically larger than memory of single workstation
* Modeling

e Usudlly clustering or topic models do not solve the problem

e Temporal structure of data

* Side information for variables

e Solve problem. Don’t simply apply a model!
* Inference

e 10k-100k clusters for hierarchical model
e T1M-100M words

 Communication is an issue for large state space



Summary - Part 1

Essentially infinite amount of data
Labeling is prohibitively expensive
Not scalable for i18n

Even for supervised problems unlabeled data
abounds. Use it.

User-understandable structure for
representation purposes

Solutions are often customized to problem
We can only cover building blocks in tutorial.



Part 2 - Basic Tools




Statistics 101

Patteyn ;
Classification

All of
Statistics

A Concise Course
in Statistical
Inference

Larry Wasserman

Statistical Inference

secand tdvtiga

beorge Casella
Rooer L. Berger




Probability

* Space of events X

* server status (working, slow, broken)
* income of the user (e.g. $95,000)
* search queries (e.g. “graphical models”)

* Probability axioms (Kolmogorov)

Pr(X) € |0,1], Pr(X) =1
Pr(U,X;) =>_. Pr(X;) if X;NX; =0

* Example queries

* P(server working) = 0.999
* P(90,000 < income < 100,000) = 0.1



(In)dependence

* Independence Pr(x,y) = Pr(x) - Pr(y)

* Login behavior of two users (approximately)

* Disk crash in different colos (approximately)



(In)dependence

* Independence Pr(x,y) = Pr(x) - Pr(y)

Login behavior of two users (approximately)

Disk crash in different colos (approximately)

* Dependent events

Emails Pr(z,y) # Pr(z) - Pr(y)

Queries
News stream / Buzz / Tweets
IM communication

Russian Roulette



(In)dependence

* Independence Pr(x,y) = Pr(x) - Pr(y)

* Login behavior of two users (approximately)

* Disk crash in different colos (approximately)
* Dependent events

cEmals  Pi(r.y) £ Pr(s)

e Queries

 News stream / Buzz / Tweets
* [M communication

e Russian Roulette
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Dependence




A Graphical Model

p(spam, mail) = p(spam) p(mail | spam)



Bayes Rule

* Joint Probability
Pr(X,Y) = Pr(X|Y) Pr(Y) = Pr(Y|X) Pr(X)
* Bayes Rule

Y|X) - Pr(X)
Pr(Y)

Pr(X[y) = L1

* Hypothesis testing

* Reverse conditioning



AIDS test (Bayes rule)

* Data
* Approximately 0.1% are infected

* Test detects all infections
* Test reports positive for 1% healthy people
* Probability of having AIDS if test is positive



AIDS test (Bayes rule)

* Data

* Approximately 0.1% are infected

* Test detects all infections

* Test reports positive for 1% healthy people
* Probability of having AIDS if test is positive

Pr(tla=1) -Pr(a=1)
Pr(t)

B Pr(tla=1) -Pr(a=1)

~ Pr(tla=1)-Pr(a=1) +Pr(tla = 0) - Pr(a = 0)

B 1-0.001

- 1-0.001 4 0.01 - 0.999

Pr(a =1t) =

= (0.091
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Improving the diagnosis

e Use a follow-up test
* Test 2 reports positive for 0% infections

 Test 2 reports positive for 5% healthy people

0.01-0.05-0.999

= 0.357
1-0.9-0.001+ 0.01-0.05-0.999
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= 0.357
1-0.9-0.001+ 0.01-0.05-0.999

* Why can’t we use Test 1 twice?



Improving the diagnosis

e Use a follow-up test
* Test 2 reports positive for 0% infections

 Test 2 reports positive for 5% healthy people

0.01-0.05-0.999

= 0.357
1-0.9-0.001+ 0.01-0.05-0.999

* Why can’t we use Test 1 twice?
Outcomes are not independent but tests 1 and
2 are conditionally independent

p(t1,t2]la) = p(ti|a) - p(t2]a)



Application: Naive Bayes




Naive Bayes Spam Filter



Naive Bayes Spam Filter

* Key assumption
Words occur independently of each other
given the label of the document

p(wy, ..., wy|spam) = | [ p(w;|spam)
1=1



Naive Bayes Spam Filter

* Key assumption
Words occur independently of each other
given the label of the document

p(wy, ..., wy|spam) = | [ p(w;|spam)
[ ] [ [ ,i/:l
e Spam classification via Bayes Rule
n

p(spam|wy, ..., wy) « p(spam) | | p(w;|spam)
1=1



Naive Bayes Spam Filter

* Key assumption
Words occur independently of each other
given the label of the document

p(wy, ..., wy|spam) = | [ p(w;|spam)
T
e Spam classification via Bayes Rule
n
p(spam|wy, ..., wy) « p(spam) | | p(w;|spam)
. . 1—=1
* Parameter estimation

Compute spam probability and word
distributions for spam and ham



Naive Bayes Spam Filter

Equally likely phrases

e Get rich quick. Buy WWW stock.
* Buy Viagra. Make your WWW experience last longer.

* You deserve a PhD from WWW University.
We recognize your expertise.



Naive Bayes Spam Filter

Equally likely phrases

Get rich quick. Buy WWW stock.
Buy Viagra. Make your WWW experience last longer.

You deserve a PhD from WWW University.
We recognize your expertise.

Make your rich WWW PhD experience last longer.
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A Graphical Model

/l\ -

p(wi, ..., Wy, [spam) = w;|spam)



A Graphical Model

how to estimate




Naive NaiveBayes Classifier

* Two classes (spam/ham)
* Binary features (e.g. presence of SS9, viagra)
e Simplistic Algorithm

e Count occurrences of feature for spam/ham

e Count number of spam/ham mails

_ _ny) _ n(y)
p(z; = TRUEy) = " d p(y) -
) o ") (%, ) n(y) — n(i,y)
LRI | SRR | ST



Naive NaiveBayes Classifier




Naive NaiveBayes Classifier




Estimating Probabilities




Two outcomes (binomial)

* Example: probability of ‘viagra’ in spam/ham
e Data likelihood

p(X;m) = 7" (1 — 7)™
* Maximum Likelihood Estimation

 Constraint 7 € [0,1]
* Taking derivatives yields

TV 1

no + N1

M ==



n outcomes (multinomial)

e Example: USA, Canadaq, India, UK, NZ
e Data likelihood

e Maximum Likelihood Esti:nation

* Constrained optimization problem Zﬁi =1

(

* Using log-transform yields

Ty

Zj iy



lossing a Dice




lossing a Dice




Conjugate Priors

e Unless we have lots of data estimates are weak

* Usually we have an idea of what to expect
p(0|X) o< p(X16) - p(6)
we might even have ‘seen’ such data before

e Solution: add ‘fake’ observations
p(e) X p(Xfakew) hence p(H‘X) X p(Xye)p(Xfakew) — p(X U Xfake‘e)

* Inference (generalized Laplace smoothing)

%2%» >n+1m.§;¢<xi>= 4D

Ho

n -+ m



Conjugate Prior in action

m; =m: [MOL;

pl =1i)=— plz =i) = ———
Outcome 1 2 3 4 5 §
Counts 3 6 2 1 4 4
MLE 0.15 | 0.30 | 0.10 | 0.05 | 0.20 | 0.20
MAP (mgy = 6) 0.15 | 0.27 | 0.12 | 0.08 | 0.19 | 0.19
MAP (mg =100) 0.16 | 0.19 | 0.16 | 0.15 | 0.17 | 0.17




Conjugate Prior in action

e Discrete Distribution

m; =m - [jo);

plx =1) = plx =1) =
. . n n-+m
e Tossing a dice
Outcome 1 2 3 4 5) 0
Counts 3 6 2 1 4 4
MLE 0.15 | 0.30 | 0.10 | 0.05 | 0.20 | 0.20
MAP (mg — 6) 0.15 | 0.27 | 0.12 | 0.08 | 0.19 | 0.19
MAP (mo — 1()()) 0.16 | 0.19 | 0.16 | 0.15 | 0.17 | 0.17




Conjugate Prior in action

e Discrete Distribution

m; =m: [MOL;

plx =1) = plx =1) =
. . n n-+m
e Tossing a dice
Outcome 1 2 3 4 5) 0
Counts 3 6 2 1 4 4
MLE 0.15 | 0.30 | 0.10 | 0.05 | 0.20 | 0.20
MAP (m() — 6) 0.15 | 0.27 | 0.12 | 0.08 | 0.19 | 0.19
MAP (mo — 1()()) 0.16 | 0.19 | 0.16 | 0.15 | 0.17 | 0.17

 Rule of thumb

need 10 data points (or prior) per parameter
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Exponential Families



Exponential Families

* Density function

p(x;0) = exp ((¢(x),0) — g(0))
where g(f) =log » exp ((¢(a'),0))



Exponential Families

* Density function

p(; 9) = exp ((¢(z), > (9))
where g(0) = log Z exp ( ),0))

* Log partition function generqtes cumulants
Opg(0) = E [¢(x)]
Jy9(0) = Var [¢(x)]



Exponential Families

* Density function

p(; 9) = exp ((¢(z), > (9))
where g(0) = log Z exp ( ),0))

* Log partition function generqtes cumulants
Opg(0) = E [¢(x)]
Jy9(0) = Var [¢(x)]

e gis convex (second derivative is p.s.d.)



 Binomial Distribution o(x) =
e Discrete Distribution o(x) = ey

(ex is lfnii' vector for x) 5(a) — (% EMT>
e Gaussian

* Poisson (counting measure 1/x!) ¢(z) ==
* Dirichlet, Beta, Gamma, Wishart, ...



Normal Distribution

1.0
B [=0, 0%=0.2, == _
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Poisson Distribution
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Beta Distribution

2.4} a=Bp=05 ——
a=5pB=1 —

22 1 a=1,p=3 ——

5 | 0=2p=2 ——
a=2,p=5 ——

1.8 }

1.6 |

B r*1(1 — x)P~1
‘ § O"m‘ B(a, 5)
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Dirichlet Distribution

... this is a distribution over distributions ...



Maximum Likelihood



Maximum Likelihood

* Negative log- ||ke||hood

—log p(X;0) = Zg 0)



Maximum Likelihood

* Negative log- Iikelihood

—log p(X;0) = Zg 0)

* Taking derivatives

—0plogp(X;0) =m ——Zgb T;)

We pick the parameter such that the
distribution matches the empirical average.



Example: Gaussian Estimation

o Sufficient statistics: =z, z?

 Mean and variance given by
1= E.[z] and 0 = E,[2*] — E;[z]

e Maximum Likelihood Estimate
1 — 1 —
] — — i d 2 — — 2 — N2
p=— ;:1 x; and o - ;:1 xr; — [

e Maximum a Posteriori Estimate

| 1 ng
L = r;, and 0% = T2 - 1— 42
a n+n0i§::1 n+n0i§::1 ' n+ng a




Collapsing

* Conjugate priors
p(0) x p(Xtake|0)
Hence we know how to compute normalization

e Prediction »(z|X) Z/p(ﬂf\e)p(mX)d@

(Beta, binomial) X /p(az\@)p(X\H)p(Xfakew’)dé’
(Dirichlet, multinomial)
(Gamma, Poisson) - /p({m} U X U Xake|0)dO
(Wishart, Gauss) look up closed

form expansions

http://en.wikipedia.org/wiki/Exponential family



http://en.wikipedia.org/wiki/Exponential_family
http://en.wikipedia.org/wiki/Exponential_family

Directed Graphical Models




... some Web 2.0 service




... some Web 2.0 service

N/

* Joint distribution (assume a and m are independent)
p(m, a, w) = p(w|m, a)p(m)p(a)



... some Web 2.0 service

N/

* Joint distribution (assume a and m are independent)
p(m, a,w) = p(w|m,a)p(m)p(a)

* Explaining away

p(w|m, a)p(m)p(a)

Zm’,a’ p(w|m’, a’)p(m’)p(a’)
a and m are dependent conditioned on w

p(m,a\w) —



... some Web 2.0 service




... some Web 2.0 service

N/

|23
v

MySQL is working
Apache is working




... some Web 2.0 service

N/

s broker gy i vorking
v v

At |eas.t on? of the MySQL is working
two services is broken A . .
pache is working

(not independent)




Directed graphical model

N N/ N/
4

user

e Easier estimation action

e 15 parameters for full joint distribution
e 1+1+3+1 for factorizing distribution

e Causal relations

* Inference for unobserved variables



No loops allowed




No loops allowed




No loops allowed




No loops allowed




No loops allowed

p(cle)p(elc)




No loops allowed

p(cle)p(elc)

.

p(cle)p(e) or p(e|c)p(c)




No loops allowed




Directed Graphical Model
* Joint probability distribution Kf\g

p(il’}) — Hp(xi|$parents( )
* Parameter estimation
o If x is fully observed the likelihood breaks up
lng ZE‘H Zlogp $z‘xparents() 9)

e If x is partially observed things get interesting
maximization, EM, variational, sampling ...



Clustering

Density Estimation

le

p(z,6) = p(6) | | p(x:l6)
Clustering . :
= p(m) | [ p6x) | | p(yilm)p(2:i16, i)
k=1 1=1

-~




Markov Chain

M q



Markov Chain Plate

2000 e




Markov Chain Plate

2000 e

Hidden Markov Chain Lear's

mindset
OO0

observed
user action




Chains

Markov Chain Plate

2000 e

Hidden Markov Chain Lear's

mindset
OO0

observed

user action
user model for traversal through search results




Chains

Markov Chain Plate

2000 e

Hidden Markov Chain Lear's

O-0-0-00™ {0}
l l

observed

user action
user model for traversal through search results




Chains

Markov Chain Plate

($ (9 ZC(), Hp $Z+1‘$27 -1 -1

Hidden Markov Chain

user'’s

mindset

p(w,y;0) = p(xo; 0 Hp Tit1|2s; 0 H (yilwi) ]

P

observed

user action
user model for traversal through search results




Factor Graphs
% Latent Factors

Observed
Effects




Factor Graphs
‘;% Latent Factors

Observed
Effects

 Observed effects
Click behavior, queries, watched news, emails



Factor Graphs

‘;% Latent Factors

Observed
Effects

 Observed effects
Click behavior, queries, watched news, emails
e Latent factors

User profile, news content, hot keywords, social
connectivity graph, events



Recommender Systems




Recommender Systems

* Usersu
* Movies m
* Ratings r (but only for a subset of users)



Recommender Systems

... intersecting plates ...
(like nested for loops)

* Usersu
* Movies m
* Ratings r (but only for a subset of users)



Recommender Systems

news,
SearchMonkey
answers
social
ranking

OMG ... intersecting plates ...
personals (like nested for loops)

* Usersu
* Movies m
* Ratings r (but only for a subset of users)



Challenges
expert




Challenges
* How to design models

 Common (engineering) sense

* Computational tractability m




Challenges

. domain
* How to design models expert

 Common (engineering) sense

* Computational tractability
* Inference m

* Easy for fully observed situations

* Many algorithms if not fully observed

* Dynamic programming / message passing



Summary - Part 2

* Probability theory to estimate events

* Conjugate priors and Laplace smoothing
* Conjugate = phantasy data

e Collapsing

* Laplace smoothing

* Directed graphical models



Part 3 - Clustering & Topic Models



Inference Algorithms



Clustering

Density Estimation

le

p(z,6) = p(6) | | p(x:l6)
Clustering . :
= p(m) | [ p6x) | | p(yilm)p(2:i16, i)
k=1 1=1

-~
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e
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Density Estimation




Clustering

Density Estimation  |og-concave

p(z,0) = p(0) Hp(%;l@

1=1
Clustermg
K n
P(ﬂi’ y,é’ =p() | [ p(6k) H (yi|m)p(240, yi)
k=1 =1

general nonlinear

le

-~




Clustering

e Optimization problem

. 9
maximize zy:p(a:,y, )

1 1 1 7 1|Vy Y
max19m1ze ogp —|— Z ng Hk —I—Z 0g % y ‘7T (x “9 Y )]
Yy

e Options
* Direct nonconvex optimization (e.g. BFGS)
e Sampling (draw from the joint distribution)

 Variational approximation
(concave lower bounds aka EM algorithm)



Clustering

(®)

@




Clustering

* Integrate outy @

(o)
> [©

* Nonconvex
optimization
problem

* EM algorithm




Clustering

* Integrate out y @ * Integrate out O

(®) O,
> [0 8

* Nonconvex * Y is coupled
optimization ¢ Sampling
problem * Collapsed p

e EM CllgOI'“'hm p(ylr) ccp({z} [ {zi : ¥i = ¥} U Xeake)P(Y|Y U Yiake)



Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)
e Gibbs sampling:
* In most cases direct sampling not possible

e Draw one set of variables at a time




Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)
e Gibbs sampling:
* In most cases direct sampling not possible

e Draw one set of variables at a time

(b,g) - draw p(.,g)




Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)
e Gibbs sampling:
* In most cases direct sampling not possible

e Draw one set of variables at a time

(b,g) - draw p(.,g)
(9.9) - draw p(g,.)




Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)

e Gibbs sampling:
* In most cases direct sampling not possible
* Draw one set of variables at a time

I‘Y' (b,g) - draw P(,g)

)
5 (9,9) - draw pl(g,.)

(9.9) - draw p(.,g)




Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)
e Gibbs sampling:
* In most cases direct sampling not possible

e Draw one set of variables at a time

l""

an

-0.5 O

(b,g) - draw p(.,g)
(9.9) - draw p(g,.)

(9,9) - draw p(.,g)
(b,g) - draw p(b,.)




Gibbs sampling

e Sampling:
Draw an instance x from distribution p(x)
e Gibbs sampling:
* In most cases direct sampling not possible

e Draw one set of variables at a time

(b,g) - draw p(.,g)
(9.9) - draw p(g,.)

(g.9) - draw p(.,g)
(b,g) - draw p(b,.)
(b,b) ...




Gibbs sampling for clustering



Gibbs sampling for clustering

random \/
initialization




Gibbs sampling for clustering

sample
cluster labels



Gibbs sampling for clustering

resample
cluster model



Gibbs sampling for clustering

resample
cluster labels



Gibbs sampling for clustering

resample
cluster model



Gibbs sampling for clustering

resample
cluster labels



Gibbs sampling for clustering

resample
cluster model e.g. Mahout Dirichlet Process Clustering



Inference Algorithm # Model



Inference Algorithm # Model
Corollary: EM # Clustering



Topic models



Grouping obijects
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Clustering & Topic Models
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Clustering & Topic Models

Clustering Topics
group objects decompose objects
by prototypes into prototypes <, oo




Clustering & Topic Models

clustering Latent Dirichlet Allocation

® e
& &

YAaHoOO!



Clustering & Topic Models

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices VAEHOO!



Topics In text

The William Randolph Hearst Foundation will give $1.25 million to Lincoln Center, Metropoli-
tan Opera Co., New York Philharmonic and Juilliard School. “Our board felt that we had a
real opportunity to make a mark on the future of the performing arts with these grants an act
every bit as important as our traditional areas of support in health, medical research, education
and the social services,” Hearst Foundation President Randolph A. Hearst said Monday in
announcing the grants. Lincoln Center’s share will be $200.,000 for its new building, which
will house young artists and provide new public facilities. The Metropolitan Opera Co. and
New York Philharmonic will receive $400.,000 each. The Juilliard School, where music and
the performing arts are taught, will get $250,000. The Hearst Foundation, a leading supporter
of the Lincoln Center Consolidated Corporate Fund, will make its usual annuval $100.000
donation, too.

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003




Collapsed Gibbs Sampler



Joint Probability Distribution




Joint Probability Distribution
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Collapsed Sampler
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Collapsed Sampler
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Collapsed Sampler

Griffiths & Steyvers, 2005
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Sequential Algorithm (Gibbs sampler)

* For 1000 iterations do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
* Update CPU local (word, topic) table
* Update global (word, topic) table

YAaHoOO!



Sequential Algorithm (Gibbs sampler)

* For 1000 iterations do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
* Update CPU local (word, topic) table
* Update global (word, topic) table

this kills parallelism

YAaHoOO!



State of the art

UMass Mallet, UC Irvine, Google
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State of the art

UMass Mallet, UC Irvine, Google

* For 1000 iterations do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
e Update CPU local (word, topic) table
* Update global (word, topic) table

changes rapidly
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UMass Mallet, UC Irvine, Google

* For 1000 iterations do
* For each document do
* For each word in the document do
e Resample topic for the word
* Update local (document, topic) table
e Update CPU local (word, topic) table
* Update global (word, topic) table

changes rapidly
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State of the art

UMass Mallet, UC Irvine, Google

* For 1000 iterations do
* For each document do
* For each word in the document do
e Resample topic for the word
* Update local (document, topic) table
e Update CPU local (word, topic) table
* Update global (word, topic) table

changes rapidly

table out
of sync
memory

inefficient

network
bound

or n(t,d=1) n(t,w=w,) nt,
)

W moderately fast




Our Approach

* For 1000 iterations do (independently per computer)
* For each thread/core do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
* Generate computer local (word, topic) message
* In parallel update local (word, topic) table
* In parallel update global (word, topic) table

YAaHoOO!
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Our Approach

* For 1000 iterations do (independently per computer)
* For each thread/core do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
* Generate computer local (word, topic) message
* In parallel update local (word, topic) table
* In parallel update global (word, topic) table

network memory table out
bound inefficient of sync
concurrent minimal continuous
cpu hdd net view sync YaHoO!




Our Approach

* For 1000 iterations do (independently per computer)
* For each thread/core do
* For each document do
* For each word in the document do
* Resample topic for the word
* Update local (document, topic) table
* Generate computer local (word, topic) message
* In parallel update local (word, topic) table
* In parallel update global (word, topic) table

network memory table out :
: : blocking
bound inefficient of sync
concurrent minimal continuous barrier
cpu hdd net view sync free !lel®]]




Architecture details




Multicore Architecture

Intel Threading Building Blocks

: lagnosti
count diag OS €S output to |
: , topics
S updater file
b optlmlzatlon

joint state table

Decouple multithreaded sampling and updating
(almost) avoids stalling for locks in the sampler

Joint state table

* much less memory required

* samplers syncronized (10 docs vs. millions delay)
Hyperparameter update via stochastic gradient descent

No need to keep documents in memory (streaming)
YAaHoOO!



Cluster Architecture

* Distributed (key,value) storage via memcached
* Background asynchronous synchronization
* single word at a time to avoid deadlocks
* no need to have joint dictionary
* uses disk, network, cpu mmultaneouslyYAHOo!@



Cluster Architecture

—— .

* Distributed (key,value) storage via ICE
* Background asynchronous synchronization
* single word at a time to avoid deadlocks
* no need to have joint dictionary
* uses disk, network, cpu mmultaneouslyYAHoo!@



Making it work

e Startup

* Randomly initialize topics on each node
(read from disk if already assigned - hotstart)
e Sequential Monte Carlo for startup much faster
* Aggregate changes on the fly
* Failover
e State constantly being written to disk
(worst case we lose 1 iteration out of 1000)
e Restart via standard startup routine

* Achilles heel: need to restart from checkpoint if even
a single machine dies.

YAaHoOO!



Easily extensible

e Better language model (topical n-grams)
can process millions of users (vs 1000s)

e Conditioning on side information (upstream)
estimate topic based on authorship, source,
joint user model ...

e Conditioning on dictionaries (downstream)
integrate topics between different languages

e Time dependent sampler for user model
approximate inference per episode

YAaHoOO!



yes

yes

messages

MPI no MPI point 2 point| memcached
dictionary | separate joint
: separate | separate
split sparse sparse
asynchronous
synchronous | synchronous | synchronous ) asynchronous
approximate
exact exact exact exact




Speed

* 1M documents per day on 1 computer
(1000 topics per doc, 1000 words per doc)
e 350k documents per day per node
(context switches & memcached & stray reducers)
e 8 Million docs (Pubmed)
(sampler does not burn in well - too short doc)
* |rvine: 128 machines, 10 hours
* Yahoo: 1 machine, 11 days
 Yahoo: 20 machines, 9 hours
e 20 Million docs (Yahoo! News Articles)

* Yahoo: 100 machines, 12 hours
YAaHoOO!



Scalability

200k documents/computer
40

30

20

10

0 CPUs
1 10 20 50 100

O Runtime (hours) Initial topics per word x10

Likelihood even improves with parallelism!

-3.295 (1 node) -3.288 (10 nodes) -3.287 (20 nodes)



The Competition

Dataset size (millions) 50k

20 50000
13 Throughput/h
1
5 . 37500
0 ]
Google Irvine  Yahoo
o 25000
Cluster size
12500

130
97.5
65 6.4k
32.5 150 -
0 0

Google Irvine  Yahoo Google Irvine Yahoo

YAaHoOO!




Design Principles



Variable Replication

e Global shared variable
computer

local copy

* Make local copy
* Distributed (key,value) storage table for global copy
* Do all bookkeeping locally (store old versions)

e Sync local copies asynchronously using message passing
(no global locks are needed)

* This is an approximation!



Asymmetric Message Passing

* Large global shared state space
(essentially as large as the memory in computer)

* Distribute global copy over several machines
(distributed key,value storage)




Out of core storage

* Very large state space
* Gibbs sampling requires us to traverse the data sequentially many

times (think 1000x)

e Stream local data from disk and update coupling variable each
time local data is accessed

e This is exact

tokens

diagnostics
9 output to |
& . topics
o file
optimization

count
updater




Summary - Part 3

* Inference in graphical models

 Clustering

* Topic models

e Sampling

* Implementation details



Part 4 - Advanced Modeling



Advances in Representation




Extensions to topic models

* Prior over document topic vector
* Usually as Dirichlet distribution

* Use correlation between topics (CTM)
* Hierarchical structure over topics @

* Document structure

* Bag of words
* n-grams (Li & McCallum)
* Simplical Mixture (Girolami & Kaban)
* Side information
 Upstream conditioning (Mimno & McCallum)

« Downstream conditioning (Petterson et al.)

« Supervised LDA (Blei and McAulliffe 2007; Lacoste,
Sha and Jordan 2008; Zhu, Ahmed and Xing 2009)




Correlated topic models

* Dirichlet distribution

* Can only model which topics are hot

* Does not model relationships between topics



Correlated topic models

* Dirichlet distribution

* Can only model which topics are hot

* Does not model relationships between topics
» Key idea

* We expect to see documents about sports and
health but not about sports and politics

* Uses a logistic normal distribution as a prior
» Conjugacy is no longer maintained

* Inference is harder than in LDA

Blei & Lafferty 2005; Ahmed & Xing 2007



Dirichlet prior on topics

Alpha =[2.00 2.00 2.00] Alpha =[10.00 10.00 10.00]

20

115

Alpha =[2.00 10.00 2.00] Alpha =[0.90 0.90 0.90]




Log-normal prior on topics

0.15
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0.04

0.02

0 =e" 9 with n ~ N(u,X)
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Pachinko Allocation

* Model the prior as a Directed Acyclic Graph
* Each document is modeled as multiple paths

* To sample a word, first select a path and then
sample a word from the final topic

* The topics reside on the leaves of the tree

(a) Dinchlet Multinomial

(c) Four-Level PAM (d) Arbitrary PAM

Li and McCallum 2006



Pachinko Allocation
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Topic Hierarchies

» Topics can appear anywhere in the tree
* Each document is modeled as
» Single path over the tree (Blei et al., 2004)
* Multiple paths over the tree (Mimno et al.,2007)



Topic Hierarchies

/
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Blei et al. 2004

algorithm, learning,
training, method,

synaptic, motion, we, NeEw,
response, processing problem, on
cell, chip, recognition, b, hidden, control,
neuron, analog, speech, X, units, reinforcement,
circuit, visi, character, e, layer, learning,
cells, synapse, word, n, input, policy,
input, weight, system, P, output, state,
1, digital, classification, any, unit, actions,
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synapses design phonetic training vector optimal




Topical n-grams

* Documents as bag of words

* Exploit sequential structure
* N-gram models @

* Capture longer phrases

» Switch variables to
determine segments

* Dynamic programming

needed T) _T

Girolami & Kaban, 2003; Wallach, 2006; Wang & McCallum, 2007




Speech Recognition

Support Vector Machines

LDA n-gram (2+) n-gram (1) LDA n-gram (2+) n-gram (1)
recognition speech recognition speech kernel support vectors kernel
system training data word linear test error training
word neural network tramning vector support vector machines  support
face error rates system support tramning error margin
context neural net recognition set feature space sV
character hidden markov model hmm nonlinear | tramning examples solution
hmm feature vectors speaker data decision function kernels
based continuous speech performance algorithm | cost functions regularization
frame training procedure phoneme space test inputs adaboost
segmentation | continuous speech recognition acoustic pca kkt conditions test
traming gamma filter words function | leave-one-out procedure  data
characters hidden control context problem | soft margin generalization
set speech production systems margin bayesian transduction examples
probabilities neural nets frame vectors training patterns cost
teatures mput representation tramned solution tramning points convex
faces output layers sequence training Maximuim margin algorithm
words training algorithm phonetic sV strictly convex working
frames test set speakers kernels regularization operators  feature
database speech frames mlp matrix base classifiers SV

mlp speaker dependent hybrid machines | convex optimization functions




Side information

e Upstream conditioning (Mimno et al., 2008)
* Document features are informative for topics

* Estimate topic distribution e.g. based on authors, links,
timestamp

* Downstream conditioning (Petterson et al., 2010)
* Word features are informative on topics

* Estimate topic distribution for words e.g. based on dictionary,
lexical similarity, distributional similarity

e Class labels (Blei and McAulliffe 2007; Lacoste, Sha and Jordan
2008; Zhu, Ahmed and Xing 2009)

* Joint model of unlabeled data and labels
* Joint likelihood - semisupervised learning done right!



Downstream conditioning
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Recommender Systems

Rating (i, J) /IB
) | " I~
@D }/(,ZD\\ | 4 4h\word @
“A y / in item j ~
Ai Vi (14—, |
B §TOT
Q’J Win [ N (’D

User i Itemj |

Agarwal & Chen, 2010



Chinese Restaurant Process
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Problem

 How many clusters should we pick?
* How about a prior for infinitely many clusters?
* Finite model

* Infinite model
Assume that the total smoother weight is constant

n(y) and p(new|Y, o) = 2

Y, a) =
p(ylY, a) Ty oy e




Chinese Restaurant Metaphor

6+0

Generative Process @

-For data point x,

- Choose table j < m; and Sample x;.. f(q)j)
- Choose a new table K+1 x o
- Sample ¢, . G, and Sample x... f(¢,.,)

Pitman; Antoniak; Ishwaran; Jordan et al.; Teh et al.;



Evolutionary Clustering

* Time series of objects, e.g. news stories
 Stories appear / disappear
* Want to keep track of clusters automatically



Recurrent Chinese Restaurant Process




Recurrent Chinese Restaurant Process




Recurrent Chinese Restaurant Process




Recurrent Chinese Restaurant Process




Recurrent Chinese Restaurant Process

2
6+
Sample (1)1’2 P(l q)l,l)



Recurrent Chinese Restaurant Process
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Longer History

T=3
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User modeling
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User modeling

* Queries issued by the user or Tags of watched content

* Snippet of page examined by user

* Time stamp of each action (day resolution)

* Users’ daily distribution over intents
* Dynamic intent representation

Travel
Flight
London College

Hotel
weather

finance




Time dependent models

* LDA for topical model of users where
* User interest distribution changes over time
* Topics change over time
e This is like a Kalman filter except that
* Don’t know what to track (a priori)
e Can’t afford a Rauch-Tung-Striebel smoother

* Much more messy than plain LDA
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At time t

Food Chicken
Pizza mileage

n In
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* For each user interaction
* Choose an intent from local distribution
« Sample word from the topic’s word-distribution

Choose a new intent < o

« Sample a new intent from the global distribution
« Sample word from the new topic word-distribution
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ROC score improvement
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ROC score improvement
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News Stream

cut bill into
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WASHINGTON - In the

1 hr 32 mins ago

,~p BEYOND FOSSIL FUELS

Republicans is bec USing WaSte, Swedish (

and lawmakers. Bu 5l
Bill Clinton even ba 5.
Full Story » B

(34 Video: Gibbs: | Hay [, Sl
| Slideshow: Preside '« ! é W
| Related: Tax fight | | “‘.

Add-ons turn tax

'Christmas t——_'

Suit to Recover

Madoff’s Money

Calls Austrian

an Accomplic
China says inflation up 5.1 perce == " Her

Sonja Kohn, an Austrian

Associated Press b Buzzup! 19 votes banker, is accused of 5, Print
masterminding a 23-year
By CARA ANNA, Associated Press conspiracy that played a
ldan: i . . . central role in financing the
(24 Wall Street Video: Charting  gE|JING — China's inflation st . . ) & ovember,
Consumer Sentiment CNBC . meessescessssssssances ~ gigantic Ponzi scheme.
officials said Saturday, despit ase food

supplies and end diesel shortz ~ ' oSt @ Comment

(£ Wall Street Video: Bright

Future TheStreet.com The 5.1 percent inflation rate was driven by a 11.7 percent jump in

food prices year on year.

The news comes as China's leaders meet for the top economic

RELATED QUOTES planning conference of the year and as financial markets watch for a

ADJI 11,410.32 +40.26  widely anticipated interest rate hike to help bring rapid economic
AGSPC 1,240.40 +7.40 growth to a more sustainable level.
AXIC 2,637.54 +20.87

“| think this means that an interest rate hike of 25 basis points is very
likely by the end of the year," said CLSA analyst Andy Rothman.

As part of its citywide system, Kristianstad burns wood waste like tree prunings and scraps from flooring factories to power
an 1inderoronnd dietrict beatino orid



e Over 1 high quality news article per second
* Multiple sources (Reuters, AP, CNN, ...)

e Same story from multiple sources

e Stories are related

* Goals
* Aggregate articles into a storyline

* Analyze the storyline (topics, entities)



Clustering / RCRP

* Assume active story

@»‘»@ distribution at time t

* Draw story indicator

;
* Draw words from story
2

distribution

* Down-weight story counts for

——
6 next day

Ahmed & Xing, 2008




Clustering / RCRP

e Pro

* Nonparametric model of story generation
(no need to model frequency of stories)

* No fixed number of stories

* Efficient inference via collapsed sampler
* Con

* We learn nothing]!

* No content analysis



Latent Dirichlet Allocation

¥
0
6)

* Generate topic distribution
per article

* Draw topics per word from
topic distribution

* Draw words from topic specific
word distribution

b1
Blei, Ng, Jordan, 2003



Latent Dirichlet Allocation

* Pro
* Topical analysis of stories
e Topical analysis of words (meaning, saliency)
* More documents improve estimates

* Con

* No clustering



More Issues



More Issues

 Named entities are special, topics less
(e.g. Tiger Woods and his mistresses)

* Some stories are strange
(topical mixture is not enough - dirty models)

* Articles deviate from general story
(Hierarchical DP)



Storylines

Amr Ahmed, Qirong Ho, Jake Eisenstein,
Alex Smola, Choon Hui Teo, 2011



Storylines Model
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e Topic model
* Topics per cluster
* RCRP for cluster

 Hierarchical DP for
article

e Separate model
for named entities

 Story specific
correction
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Storylines Model

Each story has:

Distribution over words
Distribution over topics
Distribution over named entites
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Each story has:

Distribution over words
Distribution over topics
Distribution over named entites
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Storylines Model

Document’s topic mix is sampled from its story prior
Words inside a document either global or story specific



Generative process

For each document d € {1,--- . D;}:

(a) Draw the storyline indicator
Sta|S1:6—1,Se.1:a-1 ~ RCRP(vy, A\, A)

(b) If s,; 1s a new storyline,
1. D1 aw a distribution over words
Benen |Go ~ Dir(fio)
11. Draw a distribution over named entities
"‘q ev&|(70 NDll( )
1i1. Draw a Dirichlet distribution over topic pro-

portions 7, |G ~ Dir(mp)
(c) Draw the topic proportions #,,|s,s ~ Dir(am,, )
(d) Draw the words
td|5td ~ LD“\( St {C)l L Qs itd})
(e) Draw the named entities etd|._std ~ Mult(£2,, )
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Generative process

For each document d € {1,--- , D;}:

(a) Draw the storyline indicator
SealS1:4—1-Se.1:a_1 ~ RCRP(v, A\, A)

(b) If s,, 1s a new storyline,
1. Draw a distribution over words
3o | Go ~ Dir(5p)
11. Draw a distribution over named entities
Q... |Go ~ Dir(Qo)
1. Draw a Dirichlet distribution over topic pro-
portions 7, __ |G ~ Dir(mp)
(c) Draw the topic proportions #,,|s,s ~ Dir(am,, )
(d) Draw the words
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(e) D1aw the named entities etd|std ~ Mult(£2,, )




Generative process

For each document d € {1,--- , D;}:

(a) Draw the storyline indicator
SealS1:4—1-Se.1:a_1 ~ RCRP(v, A\, A)
(b) If s,; 1s a new storyline,
1. D1 aw a distribution over words
qne“ |C70 ~ Dll( 30)
11. D1 aw a distribution over named entities
Q.. ... |Go ~ Dir(Qp)
1i1. Draw a Dirichlet distribution over topic pro-
portions 7, |G ~ Dir(mp)
(c) Draw the topic proportions 6, ,|s,, ~ Dir(am,, d)
(d) Draw the words
tdlstd ~ LDA( Sed {Ol , Ok B d})
(e) Draw the named entities etd|std ~ Mult(£2,, )




Generative process

For each document d € {1,--- , D;}:

(a) Draw the storyline indicator
SealS1:4—1-Se.1:a_1 ~ RCRP(v, A\, A)
(b) If s,; 1s a new storyline,

1. D1 aw a distribution over words
3o oo |Go ~ Dir(3o)
11. D1 aw a distribution over named entities
Q.. ... |Go ~ Dir(Qp)
1i1. Draw a Dirichlet distribution over topic pro-
portions 7, |G ~ Dir(mp)
(c) Draw the topic proportions 6, ,|s,, ~ Dir(am,, d')
(d) Draw the words
td|sthLD'31( Sed? {C)l L Qs 3“d})
(e) Draw the named entities etd|std ~ Mult(£2,, )




Generative process

For each document d € {1,--- . D;}:

(a) Draw the storyline indicator
SealS14—1+Se1:a_1 ~ RCRP(~v, A\, A)
(b) If s,; 1s a new storyline,
1. Draw a distribution over words
Be.ow |Go ~ Dir(5o)
11. Draw a distribution over named entities
Q.. ... |Go ~ Dir(Qp)
1. D1 aw a Dirichlet distribution over topic pro-
portions 7, |G ~ Dir(mp)
(c) Draw the topic proportions #,,|s,s ~ Dir(am,, )
(d) Draw the words
td|5td ~ LD“\( Spg {C)l © L D itd})
(e) Draw the named entities etd| S.a ~ Mult(£2,, )




Generative process

For each document d € {1,--- . D;}:

(a) Draw the storyline indicator
SealS14—1+Se1:a_1 ~ RCRP(~v, A\, A)
(b) If s,; 1s a new storyline,
1. Draw a distribution over words
Be.ow |Go ~ Dir(5o)
11. Draw a distribution over named entities
Q.. ... |Go ~ Dir(Qp)
1. D1 aw a Dirichlet distribution over topic pro-
portions 7, |G ~ Dir(mp)
(c) Draw the topic proportions #,,|s,s ~ Dir(am,, )
(d) Draw the words
td|5td ~ LD“\( Spg {C)l © L D itd})
(e) Draw the named entities etd| S.a ~ Mult(£2,, )
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e Sequential Monte Carlo (Particle Filter)

* For new time period draw stories s, topics z
P(St41, 2e41|T1. 441, 51,85 21...¢)

using Gibbs Sampling for each particle
* Reweight particle via

p($t+1 ‘331...167 S1...t; Z1...t)

* Regenerate particles if 12 norm too heavy



» TDT5 (Topic Detection and Tracking)
macro-averaged minimum detection cost: 0.714

time entities topics story words

0.84 0.90 0.86 0.75

This is the best performance on TDT5!

* Yahoo News data
... beats all other clustering algorithms



Stories

Sports Politics Unrest
8 games government police
e won minister attack
n- team authorities run
final opposition man
O season officials group
I_ league leaders arrested
held group move
UEFA-soccer Tax bills India-Pakistan tension
m Champions juventus taX Bush nuclear Pakistan
LLl | goal AC Milan billion Senate border India
Z | leg Real Madrid cut uSs dialogue Kashmir
== | COach Milan plan Congress diplomatic New Delhi
| striker [ azio budget Fleischer militant Islamabad
> midfield Ronaldo economy White House insurgency Musharraf
m penalty Lyon lawmakers  Republican missile Vajpayee
0 Magh TNATAVN Mo




Related Stories

“Show similar
stories by topic”

Middle-east conflict

Peace
Roadmap
Suicide
Violence
Settlements
bombing

Israel
Palestinian
West bank
Sharon
Hamas
Arafat

India-Pakistan tension

nuclear
border
dialogue
diplomatic
militant
insurgency
missile

Pakistan
India
Kashmir
New Delhi
Islamabad
Musharraf
Vajpayee

“Show similar
stories, require the
word nuclear”

North Korea nuclear

2";':]?: North Korea
u ) South Korea
warmng US

policy * Bush
missile

program Pyongyang

S 5 5 =5




Detecting ldeologies

Ahmed and Xing, 2010



ldeologies

Build a model to describe both
collections of data

Visualization

* How does each ideology view mainstream events?
* On which topics do they differ?
* On which topics do they agree?




ldeologies

Build a model to describe both
collections of data

Visualization

Classification

\/
Visualization
Classification

*Given a new news article or a blog post, the system should infer
* From which side it was written
* Justify its answer on a topical level (view on abortion, taxes, health care)




ldeologies

Build a model to describe both
collections of data

Visualization

Classification

Structured browsing

*Given a new news article or a blog post, the user can ask for :
*Examples of other articles from the same ideology about the same topic
*Documents that could exemplify alternative views from other ideologies




Building a factored model
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 Bitterlemons:

* Middle-east conflict, document written by Israeli and Palestinian authors.
* ~300 documents form each view with average length 740
* Multi author collection
* 80-20 split for test and train
* Political Blog-1:
* American political blogs (Democrat and Republican)
* 2040 posts with average post length = 100 words
* Follow test and train split as in (Yano et al., 2009)
* Political Blog-2 (test generalization to a new writing style)
* Same as 1 but 6 blogs, 3 from each side
* ~14k posts with ~200 words per post
* 4 blogs for training and 2 blogs for test



Israeli
View

Bitterlemons dataset

US role

arafat state leader roadmap
election month iraq yasir
senior involvement clinton
terrorism

o>

bush US president american
sharon administration prime
pressure policy washington

I

palestinian
israel
peace
year political
process
state
end
right
government
need conflict
way
security

~

Roadmap process

powell minister colin visit
internal policy statement
express pro previous
package work transfer
european

process force terrorism unit
provide confidence element
interim discussion union
succee point build positive
recognize present timetable

1

roadmap phase security
ceasefire state plan
international step authority

end settlement
implementation obligation
stop expansion commitment
fulfill unit illegal present
previous assassination meet
forward

Arab Involvement

y

peace strategic plo hizballah
islamic neighbor territorial
radical iran relation think
obviou countri mandate
greater conventional intifada
affect jihad time

syria syrian negotiate lebanon
deal conference concession
asad agreement regional
october initiative relationship

track negotiation official
leadership position
withdrawal time victory
present second stand
circumstance represent
sense talk strategy issue
participant parti negotiator

Palestinian
View

\_

~

palestinian
israeli
Peace
political
occupation
process
end security
conflict
way
government
people
time year
force
negotiation

J




Classification accuracy

Bitterlemons dataset
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Generalization to new blogs

Blog-2 dataset
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Finding alternate views

View Retrieval

LM
-—mview-LDA -

Average Rank
N

View Retrieval

LM ’

10 20 30 40 50

Topics

—~—mview-LDA
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Topics

Rank

at Full Recall
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View Retrieval

N
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Topics

60

- Given a document written in one ideology, retrieve the equivalent

- Baseline: SVM + cosine similarity
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Unlabeled data
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Unlabeled data
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* In theory this is simple
*Add a step that samples the document view (v)
*Doesn’t mix in practice because tight coupling between v and (x,,x,,z)
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* In theory this is simple
*Add a step that samples the document view (v)
*Doesn’t mix in practice because tight coupling between v and (x,,x,,z)

*Solution
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* In theory this is simple
*Add a step that samples the document view (v)
*Doesn’t mix in practice because tight coupling between v and (x,,x,,z)

*Solution
*Sample v and (x;,X,,z) as a block using a Metropolis-Hasting step




Unlabeled data
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* In theory this is simple
*Add a step that samples the document view (v)
*Doesn’t mix in practice because tight coupling between v and (x,,x,,z)

*Solution
*Sample v and (x;,X,,z) as a block using a Metropolis-Hasting step

* This is a huge proposal!




Summary - Part 4

* Extensions to basic topic model (correlated
topics, beyond bag of words, features)

e Chinese Restaurant Process
* Recurrent CRP

e User modeling

e Storylines

* Ideology detection



Related work

e Tools

e GraphLab (CMU - Guestrin, Low,

Gonzalez ...)

* Factorie (UMass - McCallum & coworkers)
e HBC (Hal Daume)

* Variational Bayes .NET (MSR Cambridge)
* See more on alex.smola.org / blog.smola.org



