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Course Overview

1 Estimation in exponential families
Maximum Likelihood and Priors
Clifford Hammersley decomposition

2 Applications
Conditional distributions and kernels
Classification, Regression, Conditional random fields

3 Inference and convex duality
Maximum entropy inference
Approximate moment matching

4 Maximum mean discrepancy
Means in feature space, Covariate shift correction

5 Hilbert-Schmidt independence criterion
Covariance in feature space
ICA, Feature selection
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Outline
1 Two Sample Problem

Direct Solution
Kolmogorov Smirnov Test
Reproducing Kernel Hilbert Spaces
Test Statistics

2 Data Integration
Problem Definition
Examples

3 Attribute Matching
Basic Problem
Linear Assignment Problem

4 Sample Bias Correction
Sample Reweighting
Quadratic Program and Consistency
Experiments
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Two Sample Problem

Setting
Given X := {x1, . . . , xm} ∼ p and Y := {y1, . . . , yn} ∼ q,
test whether p = q.

Applications
Cross platform compatibility of microarrays
Need to know whether distributions are the same.
Database schema matching
Need to know which coordinates match.
Sample bias correction
Need to know how to reweight data.
Feature selection
Need features which make distributions most different.
Parameter estimation
Reduce two-sample to one-sample test.
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Indirect Solution

Plug in estimators
Estimate p̂ and q̂ and compute D(p̂, q̂).

Parzen Windows and L2 distance

p̂(x) =
1
m

m∑
i=1

κ(xi , x) and q̂(y) =
1
n

n∑
i=1

κ(yi , y)

Computing squared L2 distance between p̂ and q̂ yields

‖p̂ − q̂‖2
2 =

1
m2

m∑
i,j=1

k(xi , xj)−
2

mn

m,n∑
i,j=1

k(xi , yj) +
1
n2

n∑
i,j=1

k(yi , yj)

where k(x , x ′) =
∫

κ(x , t)κ(x ′, t)dt .
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Problems

Curse of dimensionality when estimating p̂ and q̂
Statistical analysis (multi-stage procedure).
What to do on strings, images, structured data?
This quantity is biased (even for p = q its expected value
does not vanish).
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Direct Solution

Key Idea
Avoid density estimator, use means directly.

Maximum Mean Discrepancy (Fortet and Mourier, 1953)

D(p, q, F) := sup
f∈F

Ep [f (x)]− Eq [f (y)]

Theorem (via Dudley, 1984)

D(p, q, F) = 0 iff p = q, when F = C0(X) is the space of
continuous, bounded, functions on X.

Theorem (via Steinwart, 2001; Smola et al., 2006)
D(p, q, F) = 0 iff p = q, when F = {f | ‖f‖H ≤ 1}is a unit ball in a
Reproducing Kernel Hilbert Space, provided that H is universal.
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Direct Solution

Proof.
If p = q it is clear that D(p, q, F) = 0 for any F.
If p 6= q there exists some f ∈ C0(X) such that

Ep[f ]− Eq[f ] = ε > 0

Since H is universal, we can find some f ∗ such that
‖f − f ∗‖∞ ≤ ε

2 .
Rescale f ∗ to fit into unit ball.

Goals
Empirical estimate for D(p, q, F).
Convergence guarantees.
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Kolmogorov Smirnov Statistic

Function Class
Real-valued in one dimension, X = R
F are all functions with total variation less than 1.
Key: F is absolute convex hull of ξ(−∞,t](x) for t ∈ R.

Optimization Problem

sup
f∈F

Ep [f (x)]− Eq [f (y)] =

sup
t∈R

∣∣Ep
[
ξ(−∞,t](x)

]
− Eq

[
ξ(−∞,t](y)

]∣∣ = ‖Fp − Fq‖∞

Estimation
Use empirical estimates of Fp and Fq.
Use Glivenko-Cantelli to obtain statistic.
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Hilbert Space Setting

Function Class
Reproducing Kernel Hilbert Space H with kernel k .
Evaluation functionals

f (x) = 〈k(x , ·), f 〉 .

Computing means via linearity

Ep [f (x)] = Ep [〈k(x , ·), f 〉] =

〈
Ep [k(x , ·)]︸ ︷︷ ︸

:=µp

, f

〉

1
m

m∑
i=1

f (xi) =
1
m

m∑
i=1

〈k(xi , ·), f 〉 =

〈
1
m

m∑
i=1

k(xi , ·)︸ ︷︷ ︸
:=µX

, f

〉

Computing means via 〈µp, f 〉 and 〈µX , f 〉.
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Hilbert Space Setting

Optimization Problem

sup
‖f‖≤1

Ep [f (x)]− Eq [f (y)] = sup
‖f‖≤1

〈µp − µq, f 〉 = ‖µp − µq‖H

Kernels

‖µp − µq‖2
H = 〈µp − µq, µp − µq〉

=Ep,p 〈k(x , ·), k(x ′, ·)〉 − 2Ep,q 〈k(x , ·), k(y , ·)〉
+ Eq,q 〈k(y , ·), k(y ′, ·)〉

=Ep,pk(x , x ′)− 2Ep,qk(x , y) + Eq,qk(y , y ′)
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Maximum Mean Discrepancy Statistic

Goal: Estimate D(p, q, F)

Ep,pk(x , x ′)− 2Ep,qk(x , y) + Eq,qk(y , y ′)

U-Statistic: Empirical estimate D(X , Y , F)

1
m(m−1)

∑
i 6=j

k(xi , xj)− k(xi , yj)− k(yi , xj) + k(yi , yj)︸ ︷︷ ︸
=:h((xi ,yi ),(xj ,yj ))

Theorem
D(X , Y , F) is an unbiased estimator of D(p, q, F).
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Distinguishing Normal and Laplace
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Uniform Convergence Bound

Theorem (Hoeffding, 1963)
For the kernel of a U-statistic κ(x , x ′) with |κ(x , x ′)| ≤ r we have

Pr


∣∣∣∣∣∣Ep [κ(x , x ′)]− 1

m(m−1)

∑
i 6=j

κ(xi , xj)

∣∣∣∣∣∣ > ε

 ≤ 2 exp
(
−mε2

r2

)

Corollary (MMD Convergence)

Pr {|D(X , Y , F)− D(p, q, F)| > ε} ≤ 2 exp
(
−mε2

r2

)
Consequences

We have O( 1√
m) uniform convergence, hence the

estimator is consistent.
We can use this as a test: solve the inequality for a given
confidence level δ. Bounds can be very loose.
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Asymptotic Bound

Idea
Use asymptotic normality of U-Statistic, estimate variance σ2.

Theorem (Hoeffding, 1948)

D(X , Y , F) asymptotically normal with variance 4σ2

m and

σ2 = E
x ,y

[[
E

x ′,y ′
k((x , y), (x ′, y ′))

]2
]
−

[
E

x ,y ,x ′,y ′
k((x , y), (x ′, y ′))

]2

.

Test
Estimate σ2 from data.
Reject hypothesis that p = q if D(X , Y , F) > 2ασ/

√
m,

where α is confidence threshold.
Threshold is computed via (2π)−

1
2
∫∞

α
exp(−x2/2)dx = δ.
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Outline
1 Two Sample Problem

Direct Solution
Kolmogorov Smirnov Test
Reproducing Kernel Hilbert Spaces
Test Statistics

2 Data Integration
Problem Definition
Examples

3 Attribute Matching
Basic Problem
Linear Assignment Problem

4 Sample Bias Correction
Sample Reweighting
Quadratic Program and Consistency
Experiments
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Application: Data Integration

Goal
Data from various sources
Check whether we can combine it

Comparison
MMD using the uniform convergence bound
MMD using the asymptotic expansion
t-test
Friedman-Rafsky Wolf test
Friedman-Rafsky Smirnov test
Hall-Tajvidi

Important Detail
Our test only needs a double for loop for implementation.
Other tests require spanning trees, matrix inversion, etc.
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Toy Example: Normal Distributions
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Microarray cross-platform comparability

Platforms H0 MMD t-test FR FR
Wolf Smirnov

Same accepted 100 100 93 95
Same rejected 0 0 7 5
Different accepted 0 95 0 29
Different rejected 100 5 100 71

Cross-platform comparability tests on microarray level for
cDNA and oligonucleotide platforms

repetitions: 100
sample size (each): 25
dimension of sample vectors: 2116
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Cancer diagnosis

Health status H0 MMD t-test FR FR
Wolf Smirnov

Same accepted 100 100 97 98
Same rejected 0 0 3 2
Different accepted 0 100 0 38
Different rejected 100 0 100 62

Comparing samples from normal and prostate tumor
tissues. H0 is hypothesis that p = q

repetitions 100
sample size (each) 25
dimension of sample vectors: 12,600
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Tumor subtype tests

Subtype H0 MMD t-test FR FR
Wolf Smirnov

Same accepted 100 100 95 96
Same rejected 0 0 5 4
Different accepted 0 100 0 22
Different rejected 100 0 100 78

Comparing samples from different and identical tumor
subtypes of lymphoma. H0 is hypothesis that p = q.

repetitions 100
sample size (each) 25
dimension of sample vectors: 2,118
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Application: Attribute Matching

Goal
Two datasets, find corresponding attributes.
Use only distributions over random variables.
Occurs when matching schemas between databases.

Examples
Match different sets of dates
Match names
Can we merge the databases at all?

Approach
Use MMD to measure distance between distributions over
different coordinates.
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Application: Attribute Matching
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Linear Assignment Problem

Goal
Find good assignment for all pairs of coordinates (i , j).

maximize
π

m∑
i=1

Ciπ(i) where Cij = D(Xi , X ′
j , F)

Optimize over the space of all permutation matrices π.
Linear Programming Relaxation

maximize
π

tr C>π

subject to
∑

i

πij = 1 and
∑

j

πij = 1 and πij ≥ 0 and πij ∈ {0, 1}

Integrality constraint can be dropped, as the remainder of the
matrix is unimodular.

Hungarian Marriage (Kuhn, Munkres, 1953)
Solve in cubic time.
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Schema Matching with Linear Assignment

Key Idea
Use D(Xi , X ′

j , F) = Cij as compatibility criterion.
Results

Dataset Data d m rept. % correct
BIO uni 6 377 100 92.0
CNUM uni 14 386 100 99.8
FOREST uni 10 538 100 100.0
FOREST10D multi 2 1000 100 100.0
ENYZME struct 6 50 50 100.0
PROTEINS struct 2 200 50 100.0
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Sample Bias Correction

The Problem
Training data X , Y is drawn iid from Pr(x , y).
Test data X ′, Y ′ is drawn iid from Pr′(x ′, y ′).
Simplifying assumption: only Pr(x) and Pr′(x ′) differ.
Conditional distributions Pr(y |x) are the same.

Applications
In medical diagnosis (e.g. cancer detection from
microarrays) we usually have very different training and
test sets.
Active learning
Experimental design
Brain computer interfaces (drifting distributions)
Adapting to new users
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Importance Sampling

Swapping Distributions
Assume that we are allowed to draw from p but want to draw
from q:

Eq [f (x)] =

∫
q(x)
p(x)︸︷︷︸
β(x)

f (x)dp(x) = Ep

[
q(x)
p(x)

f (x)
]

Reweighted Risk
Minimize reweighted empirical risk plus regularizer, as in
SVM, regression, GP classification.

1
m

m∑
i=1

β(xi)l(xi , yi , θ) + λΩ[θ]

Problem We need to know β(x).
Problem We are ignoring the fact that we know the test set.
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Reweighting Means

Theorem
The optimization problem

minimize
β(x)≥0

‖Eq [k(x , ·)]− Ep [β(x)k(x , ·)]‖2

subject to Ep [β(x)] = 1

is convex and its unique solution is β(x) = q(x)/p(x).

Proof.
1 The problem is obviously convex: convex objective and

linear constraints. Moreover, it is bounded from below by 0.
2 Hence it has a unique minimum.
3 The “guess” β(x) = q(x)/p(x) achieves the minimum value.
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Proof.
1 The problem is obviously convex: convex objective and

linear constraints. Moreover, it is bounded from below by 0.
2 Hence it has a unique minimum.
3 The “guess” β(x) = q(x)/p(x) achieves the minimum value.
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Empirical Version

Re-weight empirical mean in feature space

µ[X , β] :=
1
m

m∑
i=1

βik(xi , ·)

such that it is close to the mean on test set

µ[X ′] :=
1
m′

m′∑
i=1

k(x ′i , ·)

Ensure that βi is proper reweighting.
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Optimization Problem

Quadratic Program

minimize
β

∥∥∥∥∥ 1
m

m∑
i=1

βik(xi , ·)−
1
m′

m′∑
i=1

k(x ′i , ·)

∥∥∥∥∥
2

subject to 0 ≤ βi ≤ B and
m∑

i=1

βi = m

Upper bound on βi for regularization
Summation constraint for reweighted distribution
Standard solvers available
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Consistency

Theorem
The reweighted set of observations will behave like one
drawn from q with effective sample size m2/ ‖β‖2.
The bias of the estimator is proportional to the square root
of the value of the objective function.

Proof.
1 Show that for smooth functions expected loss is close. This

only requires that both feature map means are close.
2 Show that expected loss is close to empirical loss (in a

transduction style, i.e. conditioned on X and X ′.
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Regression Toy Example
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Regression Toy Example
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Breast Cancer - Bias on features
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Breast Cancer - Bias on labels
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More Experiments
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Summary
1 Two Sample Problem

Direct Solution
Kolmogorov Smirnov Test
Reproducing Kernel Hilbert Spaces
Test Statistics

2 Data Integration
Problem Definition
Examples

3 Attribute Matching
Basic Problem
Linear Assignment Problem

4 Sample Bias Correction
Sample Reweighting
Quadratic Program and Consistency
Experiments
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