Graphical Models for the Internet

Amr Ahmed and Alexander Smola Yahoo Research, Santa Clara, CA

Thus far ...

- Motivation
- Basic tools
 - Clustering
 - Topic Models
- Distributed batch inference
 - Local and global states
 - Star synchronization

Up next

Inference

- Online Distributed Sampling
- Single machine multi-threaded inference
- Online EM and Submodular Selection

Applications

- User tracking for behavioral Targeting
- Content understanding
- User modeling for content recommendation

4. Online Model

Scenarios

Batch Large-Scale

Covered in part 1

Mini-batches

- We already have a model
- Data arrives in batches
- We would like to keep model up-to-data

Time

Time-sensitive

- Data arrives one item at a time
- Model should be up-to-data

4.1 Dynamic Clustering

The Chinese Restaurant Process

- Allows the number of mixtures to grow with the data
- They are called non-parametric models
 - Means the number of effective parameters grow with data
 - Still have hyper-parameters that control the rate of growth
 - α : how fast a new cluster/mixture is born?
 - G₀: Prior over mixture component parameters

The Chinese Restaurant Process

Generative Process

- -For data point x_i
 - Choose table $j \propto m_i$ and Sample $x_i \sim f(\phi_i)$
 - Choose a new table K+1 $\propto \alpha$
 - Sample $\phi_{K+1} \sim G_0$ and Sample $x_{i} \sim f(\phi_{K+1})$

The rich gets richer effect **CANNOT** handle sequential data

Recurrent CRP (RCRP) [Ahmed and Xing 2008]

- Adapts the number of mixture components over time
 - Mixture components can die out
 - New mixture components are born at any time
 - Retained mixture components parameters evolve according to a Markovian dynamics

The Recurrent Chinese Restaurant Process

OR the parameters of cluster 3 at time epoch 1

Generative Process

- -Customers at time T=1 are seated as before:
 - Choose table $j \propto m_{i,1}$ and Sample $x_{i} \sim f(\phi_{i,1})$
 - Choose a new table $K+1 \propto \alpha$
 - Sample $\phi_{K+1,1} \sim G_0$ and Sample $x_i \sim f(\phi_{K+1,1})$

The Recurrent Chinese Restaurant Process

T=1

$$m'_{2,1}=3$$

$$m'_{3,1}=1$$

T=1

$$\begin{array}{c|c} \hline \\ \phi_{1,1} \\ \hline \\ \phi_{2,1} \\ \hline \end{array} \qquad \begin{array}{c} m'_{2,1} = 3 \\ \phi_{2,1} \\ \hline \end{array} \qquad \begin{array}{c} m'_{3,1} = 1 \\ \phi_{3,1} \\ \hline \end{array}$$

T=1

$$\frac{2}{6+\alpha}$$

Sample $\phi_{1,2} \sim P(. | \phi_{1,1})$

And so on

T=1

Recurrent Chinese Restaurant Process

- Can be extended to model higher-order dependencies
- Can decay dependencies over time
 - Pseudo-counts for table k at time t is

4.2 Online Distributed Inference

Tracking Users Interest

Characterizing User Interests

Short term vs long-term

Characterizing User Interests

- Short term vs long-term
- Latent

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

Flight London Hotel weather classes registration housing rent School Supplies Loan semester

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

When to show a financing ad?

Input

- Queries issued by the user or tags of watched content
- Snippet of page examined by user
- Time stamp of each action (day resolution)

Output

- Users' daily distribution over interests
- Dynamic interest representation
- Online and scalable inference
- Language independent

Mixed-Membership Formulation

In Graphical Notation

- 1. Draw once $\Omega | \alpha \sim \text{Dir}(\alpha/K)$.
- 2. Draw each topic $\phi_k | \beta \sim \text{Dir}(\beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i | \lambda, \Omega \sim \text{Dir}(\lambda \Omega)$.
 - (b) For each word
 - (a) Draw a topic $z_{ij}|\theta_d \sim \text{Mult}(\theta_i)$.
 - (b) Draw a word $w_{ij}|z_{ij}, \phi \sim \text{Multi}(\phi_{z_{ij}}).$

In Polya-Urn Representation

- Collapse multinomial variables: $heta, \Omega$
- Fixed-dimensional Hierarchal Polya-Urn representation
 - Chinese restaurant franchise

Global topics trends

Recipe Chocolate Pizza Food Chicken Milk Butter Powder

Car
Blue C
Book Bu
Kelley As
Prices H
Small Pa
Speed Re
large

Bank iob Career Online Business Credit Assistant Card Hiring debt Part-time portfolio Receptio **Finance** nist Chase

Topic word-distributions

Car speed offer camry accord career

User-specific topics trends (mixing-vector)

User interactions: queries, keyword from pages viewed

Car Blue Book Kelley Prices Small Speed large

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Generative Process

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic word-distribution

job Career **Business** Assistant Hiring Part-time Receptio nist

Bank Online Credit Card debt portfolio Finance Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic worddistribution

Car Blue Book Kelley Prices Small Speed large

job Career Business Assistant Hiring Part-time Receptio nist Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic word-distribution

Car Kelley Prices

job Career **Business** Assistant Hiring Part-time Receptio nist

Bank Online Credit Card debt portfolio Finance Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic worddistribution

Car Blue Book Kelley Prices Small Speed large

job Bank Career Online **Business** Credit Assistant Card Hiring debt Part-time portfolio Receptio Finance nist Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample from word the new topic worddistribution

Problems

- Static Model
- Does not evolve user's interests
- Does not evolve the global trend of interests
- Does not evolve interest's distribution over terms

At time t

Car Blue Book Kelley Prices Small Speed large

job Career Business Assistant Hiring Part-time Receptio nist

Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Build a dynamic model

Connect each level using a RCRP

Observation 1

- -Popular topics at time t are likely to be popular at time t+1
- $\phi_{k,t+1}$ is likely to smoothly evolve from $\phi_{k,t}$

Car
Blue
Book
Kelley
Prices
Small
Speed
large

job Career Business Assistant Hiring Part-time Receptio nist

Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

Intuition

Captures current trend of the car industry (new release for e.g.)

Observation 1

 $\phi_{k,t}$

- -Popular topics at time t are likely to be popular at time t+1
- $\varphi_{k,t+1}$ is likely to smoothly evolve from $\varphi_{k,t}$

Car job

Blue
Book
Kelley
Prices
Small
Speed
large

JOD

job
Career
Business
Assistant
Hiring
Part-time
Receptionis
t

Bank
Online
Credit
Card
debt
portfolio
Finance
Chase

- For each user interaction
 - Choose an intent from local distribution
 - Sample word from the topic's word-distribution
 - •Choose a new intent $\propto \lambda$
 - Sample a new intent from the global distribution
 - Sample word from the new topic worddistribution

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

$$\tilde{\beta}_{kw}^t = \sum_{h=1}^{t-1} \exp^{\frac{h-t}{\kappa_0}} n_{kw}^h$$

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

- 1. Draw once $\Omega^t | \alpha, \tilde{m}^t \sim \text{Dir}(\tilde{\mathbf{m}}^t + \alpha/K)$.
- 2. Draw each topic, $\phi_k^t | \beta, \tilde{\beta}_k^t \sim \text{Dir}(\tilde{\beta}_k^t + \beta)$.
- 3. For each user i:
 - (a) Draw topic proportions $\theta_i^t | \lambda, \Omega^t, \tilde{\mathbf{n}}_i^t \sim \text{Dir}(\lambda \Omega^t + \tilde{\mathbf{n}}_i^t)$.
 - (b) For each word
 - (a) Draw a topic $z_{in}^t | \theta_i^t \sim \text{Mult}(\theta_i^t)$.
 - (b) Draw a word $w_{in}^t | z_{ij}^t, \phi^t \sim \text{Multi}(\phi_{z_{ij}^t}^t)$.

Topics evolve over time?

User's intent evolve over time?

Capture long and term interests of users?

4.2 Online Distributed Inference

Work Flow

Work Flow

Online Scalable Inference

- Online algorithm
 - Greedy 1-particle filtering algorithm
 - Works well in practice
 - Collapse all multinomials except Ω_t
 - This makes distributed inference easier
 - At each time t:

$$P(\Omega^t, \mathbf{z}^t | \tilde{\mathbf{n}}^t, \tilde{\beta}^t, \tilde{\mathbf{m}}^t)$$

- Distributed scalable implementation
 - Used first part architecture as a subroutine
 - Added synchronous sampling capabilities

Distributed Inference (at time t)

Distributed Inference (at time t)

After collapsing

Use Star-Synchronization

Fully Collapsed

Distributed Inference (at time t)

$$P(z_{ij}^t = k | w_{ij}^t = w, \Omega^t, \tilde{\mathbf{n}}_i^t) \propto$$

$$\left(n_{ik}^{t,-j} + \tilde{n}_{ik}^{t} + \lambda \frac{m_{k}^{t} + \tilde{m}_{k}^{t} + \frac{\alpha}{K}}{\sum_{l} m_{l}^{t} + \tilde{m}_{l}^{t} + \frac{\alpha}{K}}\right) \frac{n_{kw}^{t,-j} + \tilde{\beta}_{kw}^{t} + \beta}{\sum_{l} n_{kl}^{t,-j} + \tilde{\beta}_{kl}^{t} + \beta}$$

Local trend

Global trend

Topic factor

Semi-Collapsed

Semi-Collapsed

Semi-Collapsed

$$P(z_{ij}^t = k | w_{ij}^t = w, \Omega^t, \tilde{\mathbf{n}}_i^t)$$

$$\propto \left(n_{ik}^{t,-j} + \tilde{n}_{ik}^t + \lambda \Omega^t\right) \frac{n_{kw}^{t,-j} + \tilde{\beta}_{kw}^t + \beta}{\sum_l n_{kl}^{t,-j} + \tilde{\beta}_{kl}^t + \beta}$$

Distributed Sampling Cycle

Distributed Sampling Cycle

Sampling Ω

- Introduce auxiliary variable $m_{\rm kt}$
 - How many times the global distribution was visited
 - $P(m_k^t|n_{1k}^t,\cdots$, $n_{ik}^t,\cdots)$ ~ AnotniaK

$$P(\Omega^t | \mathbf{m}^t, \tilde{\mathbf{m}}^t) \sim \text{Dir}(\tilde{\mathbf{m}}^t + \mathbf{m}^t + \alpha/K)$$

Distributed Sampling Cycle

4.2 Online Distributed Inference

Behavioral Targeting

Experimental Results

- Tasks is predicting convergence in display advertising
- Use two datasets
 - 6 weeks of user history
 - Last week responses to Ads are used for testing
- Baseline:
 - User raw data as features
 - Static topic model

dataset	# days	# users	# campaigns	size
1	56	13.34M	241	242GB
2	44	33.5M	216	435GB

Interpretability

Performance in Display Advertising

Number of conversions

Performance in Display Advertising

Weighted ROC measure

	base	TLDA	TLDA+base	LDA+base
dataset 1	54.40	55.78	56.94	55.80
dataset 2	57.03	57.70	60.38	58.54

Effect of number of topics

	topics	TLDA	TLDA + base
dataset 1	50	55.32	56.01
	100	55.5	56.56
	200	55.8	56.94
dataset 2	50	59.10	60.40
	100	59.14	60.60
	200	58.7	60.38

Static Batch models

How Does It Scale?

Distributed Inference Revisited

To collapse or not to collapse?

- Not collapsing
 - Keeps conditional independence
 - Good for parallelization
 - Requires synchronous sampling
 - Might mix slowly

- Collapsing
 - Mixes faster
 - Hinder parallelism
 - Use star-synchronization
 - Works well if sibling depends on each others via aggregates
 - Requires asynchronous communication

Inference Primitive

- Collapse a variable
 - Star synchronization for the sufficient statistics
- Sampling a variable
 - Local
 - Sample it locally (possibly using the synchronized statistics)
 - Shared
 - Synchronous sampling using a barrier
- Optimizing a variable
 - Same as in the shared variable case
 - Ex. Conditional topic models

Online Models

- Batch Large-Scale
 - Covered in part 1

Mini-batches

- We already have a model
- Data arrives in batches
- We would like to keep model up-to-data

Time

Time-sensitive

- Data arrives one item at a time
- Model should be up-to-data

What Is Coming?

Inference

- Online Distributed Sampling
- Single machine multi-threaded inference
- Online EM and Submodular Selection

Applications

- User tracking for behavioral Targeting
- Content understanding
- User modeling for content recommendation

4.2 Scalable SMC Inference

Storylines

News Stream

Add-ons turn tax

<u>. L:11 :...</u>

BEYOND FOSSIL FUELS

Using Waste, Swedish City Shrinks Its Fossil Fuel Use

AP

Republicans and lawmake Bill Clinton e Full Story »

Slideshow:

Related: Ta

China says inflation up 5.1 percent in Nov central role in financing the

RELATED QUOTES

Suit to Recover

Madoff's Money

Calls Austrian

an Accomplice By DIANA B. HENRIQUES and

Sonja Kohn, an Austrian

masterminding a 23-year conspiracy that played a

gigantic Ponzi scheme.

Post a Comment

banker, is accused of

PETER LATTMAN

BEIJING - China's inflation surged to a 28-month high in November, Consumer Sentiment CNBC officials said Saturday, despite government efforts to increase food supplies and end diesel shortages.

> The 5.1 percent inflation rate was driven by a 11.7 percent jump in food prices year on year.

The news comes as China's leaders meet for the top economic widely anticipated interest rate hike to help bring rapid economic

"I think this means that an interest rate hike of 25 basis points is very likely by the end of the year," said CLSA analyst Andy Rothman.

As part of its an undergrou

^DJI	11,410.32	+40.26
^GSPC	1,240.40	+7.40
^IXIC	2,637.54	+20.87

Wall Street Video: Bright

Future TheStreet.com

By CARA ANNA, Associated Press - 1 hr 50 mins ago Wall Street Video: Charting

> planning conference of the year and as financial markets watch for a growth to a more sustainable level.

News Stream

- Realtime news stream
 - Multiple sources (Reuters, AP, CNN, ...)
 - Same story from multiple sources
 - Stories are related

Goals

- Aggregate articles into a storyline
- Analyze the storyline (topics, entities)
 - How does the story develop over time?
 - Who are the main entities?
 - What topics are addressed?

A Unified Model

- Jointly solves the three main tasks
 - Clustering,
 - Classification
 - Analysis
- Building blocks
 - A Topic model
 - High-level concepts (unsupervised classification)
 - Dynamic clustering (RCRP)
 - Discover tightly-focused concepts
 - Named entities
 - Story developments

Infinite Dynamic Cluster-Topic Hybrid

Infinite Dynamic Cluster-Topic Hybrid

The Graphical Model

- Topic model
- Topics per cluster
- RCRP for cluster
- Hierarchical DP for article
- Separate model for named entities
- Story specific correction

4.2 Fast SMC Inference

Inference via SMC

Online Inference Algorithm

- A Particle filtering algorithm
- Each particle maintains a hypothesis
 - What are the stories
 - Document-story associations
 - Topic-word distributions
- Collapsed sampling
 - Sample (z_d, s_d) only for each document

Particle Filter Representation


```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do

for f \in \{1, \dots F\} do

Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC

\omega^f \leftarrow \omega^f P(\mathbf{x}_{td} | \mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1}) end for

Normalize particle weights

if \|\omega_t\|_2^{-2} < threshold then

resample particles

for f \in \{1, \dots F\} do

MCMC pass over 10 random past documents end for

end if
```


end for

Fold the document into the structure of each filter

- s and z are tightly coupled
- Alternatives
 - Sample s then sample z (high variance)

Document td entities w w w w w w w w

```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do

for f \in \{1, \dots F\} do

Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC

\omega^f \leftarrow \omega^f P(\mathbf{x}_{td} | \mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1}) end for

Normalize particle weights

if \|\omega_t\|_2^{-2} < threshold then

resample particles

for f \in \{1, \dots F\} do

MCMC pass over 10 random past documents end for

end if
```


end for

Fold the document into the structure of each filter

- s and z are tightly coupled
- Alternatives
 - Sample **s** then sample **z** (high variance)
 - Sample **z** then sample **s** (doesn't make sense)

Document td entities w w w w w w w w w

```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do

for f \in \{1, \dots F\} do

Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC

\omega^f \leftarrow \omega^f P(\mathbf{x}_{td} | \mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1})

end for

Normalize particle weights

if \|\omega_t\|_2^{-2} < threshold then

resample particles

for f \in \{1, \dots F\} do

MCMC pass over 10 random past documents

end for

end if
```


end for

Fold the document into the structure of each filter

- s and z are tightly coupled
- Alternatives
 - Sample **s** then sample **z** (high variance)
 - Sample **z** then sample **s** (doesn't make sense)
- Idea
 - Run a few iterations of MCMC over s and z
 - Take last sample as the proposed value

```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do for f \in \{1, \dots F\} do Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC \omega^f \leftarrow \omega^f P(\mathbf{x}_{td}|\mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1}) end for Normalize particle weights if \|\omega_t\|_2^{-2} < threshold then resample particles for f \in \{1, \dots F\} do MCMC pass over 10 random past documents end for end if end for
```


How good each filter look now?

```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do for f \in \{1, \dots F\} do

Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC

\omega^f \leftarrow \omega^f P(\mathbf{x}_{td}|\mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1}) end for

Normalize particle weights

if \|\omega_t\|_2^{-2} < threshold then resample particles

for f \in \{1, \dots F\} do

MCMC pass over 10 random past documents end for end if
```


Get rid of bad filter Replicate good one

end for


```
Initialize \omega_1^f to \frac{1}{F} for all f \in \{1, \dots F\} for each document d with time stamp t do for f \in \{1, \dots F\} do Sample s_{td}^f, \mathbf{z}_{td}^f using MCMC \omega^f \leftarrow \omega^f P(\mathbf{x}_{td}|\mathbf{z}_{td}^f, \mathbf{s}_{td}^f, \mathbf{x}_{1:t,d-1}) end for

Normalize particle weights if \|\omega_t\|_2^{-2} < threshold then resample particles for f \in \{1, \dots F\} do

MCMC pass over 10 random past documents end for end if
```


Get rid of bad filter Replicate good one

Particles get replicated

- Particles get replicated
 - Use thread-safe Inheritance tree

- Particles get replicated
 - Use thread-safe Inheritance tree [extends Canini et. Al 2009]

- Particles get replicated
 - Use thread-safe Inheritance tree [extends Canini et. Al 2009]

- Particles get replicated
 - Use thread-safe Inheritance tree [extends Canini et. Al 2009]

- Particles get replicated
 - Use thread-safe Inheritance tree [extends Canini et. Al 2009]
 - Inverted representation for fast lookup

Why this is useful?

$$P(\mathbf{e}_{td}|s_{td} = s, \text{rest})$$

$$\frac{\Gamma\left(\sum_{e=1}^{E} \left[C_{se}^{-td} + \Omega_{0}\right]\right)}{\Gamma\left(\sum_{e=1}^{E} \left[C_{td,e} + C_{se}^{-td} + \Omega_{0}\right]\right)} \prod_{e=1}^{E} \frac{\Gamma\left(C_{td,e} + C_{se}^{-td} + \Omega_{0}\right)}{\Gamma\left(C_{se}^{-td} + \Omega_{0}\right)}$$

- Only focus on stories that mention at least one entity
 - Otherwise pre-compute and reuse
- We can use fast samplers for z as well [Yao et. Al. KDD09]

Experiments

- Yahoo! News datasets over two months
 - Three sub-sampled sets with different characteristics
- Editorially-labeled documents
 - Cannot-like and must-link pairs
- Performance measures using clustering accuracy
- Baseline
 - A strong offline Correlation clustering algorithm [WSDM 11]
 - Scaled with LSH to compute neighborhood graph (similar to Petrovic 2010)

Structured Browsing

Sports

games
Won
Team
Final
Season
League
held

Politics

Government
Minister
Authorities
Opposition
Officials
Leaders
group

Unrest

Police
Attach
run
man
group
arrested
move

UEFA-soccer

Champions Juventus
Goal AC Milan
Leg Real Madrid
Coach Milan
Striker Lazio
Midfield Ronaldo
penalty Lyon

Tax-bills

Tax Bush
Billion Senate
Cut US
Plan Congress
Budget Fleischer
Economy White House
lawmakers Republican

Border-Tension

Nuclear
Border
India
Dialogue
Comparite
Diplomatic
Militant
Insurgency
Musharraf
Wajpayee

Pakistan
India
Kashmir
New Delhi
Islamabad
Insurgency
Musharraf
Vajpayee

Structured Browsing

More Like India-Pakistan story

Based on topics

Middle-east-conflict

Peace Israel
Roadmap Palestinian
Suicide West bank
Violence Sharon
Settlements Hamas
bombing Arafat

Nuclear+ topics [politics]

Nuclear programs

Nuclear South Korea summit South Korea U.S policy Bush missile program

Border-Tension

Nuclear Pakistan
Border India
Dialogue Kashmir
Diplomatic New Delhi
militant Islamabad
Insurgency Musharraf
wissile Vajpayee

Structured Browsing

Sports

games Won Team Final Season

Politics

Government Minister **Authorities** Opposition Officials

Unrest

Police Attach run man group

More on Personalization later on the talk

Champions

Goal Leg

Coach

Striker Midfield

penalty

Juventus

AC Milan Real Madrid

Milan

Lazio

Ronaldo

Lyon

Tax Billion

Cut

Plan

Budget

Economy

lawmakers

Bush

Senate

US

Congress

Fleischer

White House

Republican

Nuclear Border

Dialogue

Diplomatic

militant

Insurgency

missile

Pakistan

India Kashmir

New Delhi

Islamabad

Musharraf

Vajpayee

Quantitative Evaluation

Number of topics = 100

Sample	Sample	Num	Num	Story	LSHC
No.	size	Words	Entities	Acc.	Acc.
1	111,732	19,218	12,475	0.8289	0.738
2	274,969	29,604	21,797	0.8388	0.791
3	547,057	40,576	32,637	0.8395	0.800

Effect of number of topics

sample-No.	K=50	K=100	K=200	K=300
1	0.8261	0.8289	0.8186	0.8122
2	0.8293	0.8388	0.8344	0.8301
3	0.8401	0.8395	0.8373	0.8275

Scalability

Model Contribution

Removed	Time	Names	Story	Topics
Feature		entites	words	(equiv. RCRP)
Accuracy	0.8225	.6937	0.8114	0.7321

- Named entities are very important
- Removing time increase processing up to 2 seconds per document

Putting Things Together

Time vs. Machines

- Data arrives dynamically
- How to keep models up to date?

	Batch	Mini-batches	Truly online
Single-Machine	Gibbs Variational	Online-LDA	SMC
Multi-Machine	Star-Synch.	Star-Synch + Synchronous step	?

4.3 User Preference

Online EM and Submodularity

Storyline Summarization

• How to summarize a storyline with few articles?

Storyline Summarization

- How to summarize a storyline with few articles?
- How to personalize the summary?

Storyline Summarization

- How to summarize a storyline with few articles?
- How to personalize the summary?

User Interaction

Passive

- We observe the user generated contents
- Model user based on those content using unsupervised techniques

Explicit

- We present users with content
- User give explicit feedback
 - Like/dislike
- Learn user preference using supervised techniques

Implicit

- Mixture between the two
- Present the user with items
- Observe which items the user interact with
- Learning user preference using semi-supervised models

User Satisfaction

Modular

- Present users with items she prefers
 - Regardless of the context
- Targets relevance
- Ex: vector space models

Submodular

- More of the same thing is not always better
 - Dimensioning return
- Targets diversity
- Ex: TDN [ElArini et. Al. KDD 09]

Sequential Click-View Model

Modeling Views based on position

$$p(v_i = 1 \mid v_{i-1} = 1, c_{i-1} = 1) = \frac{1}{(1 + \exp(-\alpha_i))}$$

$$p(v_i = 1 \mid v_{i-1} = 1, c_{i-1} = 0) = \frac{1}{(1 + \exp(-\beta_i))}$$

Sequential Click-View Model

Modeling clicks using position and information gain

Sequential Click-View Model

Online Inference

- Treat missing views as hidden variables
 - Realistic interaction model

- Use the online EM algorithm
 - Infer the value of hidden variables

- Optimize parameters using SGD
 - Use additive weights
 - Background + story + category + user

Online Inference

$$\Psi^* = \arg\min_{\Psi} \sum_{(c,d)} -\log p(c|\Psi,d) + \lambda \Omega(\Psi)$$

$$\Psi = \Psi_0 + \Psi_u + \Psi_s + \Psi_c.$$

How Does it Work?

How Does It Work?

5. Summary Future Directions

Summary

Tools

- Load distribution, balancing and synchronization
- Clustering, Topic Models

Models

- Dynamic non-parametric models
- Sequential latent variable models

Inference Algorithms

- Distributed batch
- Sequential Monte Carlo

Applications

- User profiling
- News content analysis & recommendation

Future Directions

- Theoretical bounds and guarantees
- Network data
 - Graph partitioning
- Non-parametric models
 - Learning structure from data
- Working under communication constraints
- Data distribution for particle filters