
Graphical Models for the Internet
Amr Ahmed & Alexander Smola

Yahoo! Research & Australian National University, Santa Clara, CA
amahmed@cs.cmu.edu, alex@smola.org

mailto:amrahmed@cs.cmu.edu
mailto:amrahmed@cs.cmu.edu
mailto:alex@smola.org
mailto:alex@smola.org

Thanks

Joey
Gonzalez

Yucheng
Low

Qirong
Ho

Shravan
Narayanamurthy

Vanja
Josifovski

Choon Hui
Teo

Eric
Xing

James
Petterson

Jake
Eisenstein

Shuang Hong
Yang

Vishy
Vishwanathan

Markus
Weimer

Alexandros
Karatzoglou

Mohamed
Aly

Sergiy
Matyusevich

1. Data on the Internet

• Tiny (2 cores)
(512MB, 50MFlops, 1000 samples)

• Small (4 cores)
(4GB, 10GFlops, 100k samples)

• Medium (16 cores)
(32GB, 100GFlops, 1M samples)

• Large (256 cores)
(512GB, 1TFlops, 100M samples)

• Massive
... need to work hard get it to work

Size calibration

Data
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) >10B useful webpages

The Web for $100k/month
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

• 10 billion pages
(this is a small subset, maybe 10%)
10k/page = 100TB
($10k for disks or EBS 1 month)

• 1000 machines
10ms/page = 1 day
afford 1-10 MIP/page
($20k on EC2 for 0.68$/h)

• 10 Gbit link
($10k/month via ISP or EC2)

• 1 day for raw data
• 300ms/page roundtrip
• 1000 servers for 1 month

($70k on EC2 for 0.085$/h)

Data - Identity & Graph

100M-1B vertices

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - User generated content

>1B images, 40h video/minute

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - User generated content

>1B images, 40h video/minute

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

crawl it

>1B texts

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - Messages

>1B texts

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme) impossible without NDA

Data - Messages

Data - User Tracking

alex.smola.org

>1B ‘identities’

• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Data - User Tracking
• Webpages (content, graph)
• Clicks (ad, page, social)
• Users (OpenID, FB Connect)
• e-mails (Hotmail, Y!Mail, Gmail)
• Photos, Movies (Flickr, YouTube, Vimeo ...)
• Cookies / tracking info (see Ghostery)
• Installed apps (Android market etc.)
• Location (Latitude, Loopt, Foursquared)
• User generated content (Wikipedia & co)
• Ads (display, text, DoubleClick, Yahoo)
• Comments (Disqus, Facebook)
• Reviews (Yelp, Y!Local)
• Third party features (e.g. Experian)
• Social connections (LinkedIn, Facebook)
• Purchase decisions (Netflix, Amazon)
• Instant Messages (YIM, Skype, Gtalk)
• Search terms (Google, Bing)
• Timestamp (everything)
• News articles (BBC, NYTimes, Y!News)
• Blog posts (Tumblr, Wordpress)
• Microblogs (Twitter, Jaiku, Meme)

Personalization
• 100-1000M users

• Spam filtering
• Personalized targeting

& collaborative filtering
• News recommendation
• Advertising

• Large parameter space
(25 parameters = 100GB)

• Distributed storage
(need it on every server)

• Distributed optimization
• Model synchronization
• Time dependence
• Graph structure

• Ads

• Click feedback

• Emails

• Tags

• Editorial data is very
expensive! Do not use!

• Graphs

• Document collections

• Email/IM/Discussions

• Query stream

(implicit) Labels no labels
(typical case)

Challenges
• Scale

• Billions of instances (documents, clicks, users, ads)
• Rich data structure (ontology, categories, tags)
• Model does not fit into single machine

• Modeling
• Plenty of unlabeled data, temporal structure, side information
• User-understandable structure
• Solve problem. Don’t simply apply clustering/LDA/PCA/ICA
• We only cover building blocks

• Inference
• 10k-100k clusters/discrete objects, 1M-100M unique tokens
• Communication

• Tools
• Load distribution, balancing and synchronization
• Clustering, Topic Models

• Models
• Dynamic non-parametric models
• Sequential latent variable models

• Inference Algorithms
• Distributed batch
• Sequential Monte Carlo

• Applications
• User profiling
• News content analysis & recommendation

Roadmap

2. Basic Tools

Systems

Algorithms run on MANY REAL and FAULTY boxes
not Turing machines. So we need to deal with it.

• High Performance Computing
Very reliable, custom built, expensive

• Consumer hardware
Cheap, efficient, easy to replicate,
Not very reliable, deal with it!

Commodity Hardware

Slide from talk of Jeff Dean
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//people/jeff/stanford-295-talk.pdf

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)
from Ramakrishnan, Sakrejda, Canon, DoE 2011

Map Reduce
• 1000s of (faulty) machines
• Lots of jobs are mostly embarrassingly parallel

(except for a sorting/transpose phase)
• Functional programming origins

• Map(key,value)
processes each (key,value) pair and outputs a new (key,value) pair

• Reduce(key,value)
reduces all instances with same key to aggregate

• Example - extremely naive wordcount
• Map(docID, document)

for each document emit many (wordID, count) pairs
• Reduce(wordID, count)

sum over all counts for given wordID and emit (wordID, aggregate)

Map Reduce

Ghemawat & Dean, 2003

map(key,value) reduce(key,value)

easy fault tolerance
(simply restart workers)

moves computation to data

disk based inter process
communication

Map Reduce
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is (nodes run the filesystem, too)
• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O
• Need to wait for last reducer

Map Reduce
• Map must be stateless in blocks
• Reduce must be commutative in data
• Fault tolerance

• Start jobs where the data is (nodes run the filesystem, too)
• Restart machines if maps fail (have replicas)
• Restart reducers based on intermediate data

• Good fit for many algorithms
• Good if only a small number of MapReduce iterations needed
• Need to request machines at each iteration (time consuming)
• State lost in between maps
• Communication only via file I/O
• Need to wait for last reducer

unsuitable for
algorithms with
many iterations

Many alternatives
• Dryad/LINQ

Microsoft - directed acyclic graphs
• S4

Yahoo - streaming directed acyclic graphs
• Pregel

Google - bulk synchronous processing
• YARN

Use Hadoop scheduler directly
• Mesos, Hadoop workalikes & patches

 Clustering

Clustering
Density Estimation

Clustering

x

x

θ

y

p(x, �) = p(�)
nY

i=1

p(xi|�)

p(x, y, �) = p(⇥)
KY

k=1

p(�k)
nY

i=1

p(yi|⇥)p(xi|�, yi) θ

Clustering
Density Estimation

Clustering

x

x

θ

y

p(x, �) = p(�)
nY

i=1

p(xi|�)

p(x, y, �) = p(⇥)
KY

k=1

p(�k)
nY

i=1

p(yi|⇥)p(xi|�, yi) θ

find θfind θ

Clustering
Density Estimation

Clustering

x

x

θ

y

p(x, �) = p(�)
nY

i=1

p(xi|�)

p(x, y, �) = p(⇥)
KY

k=1

p(�k)
nY

i=1

p(yi|⇥)p(xi|�, yi) θ

find θfind θ

log-concave

general nonlinear

Clustering
• Optimization problem

• Options
• Direct nonconvex optimization (e.g. BFGS)
• Sampling (draw from the joint distribution)

for memory efficiency
• Variational approximation

(concave lower bounds aka EM algorithm)

maximize

�

X

y

p(x, y, �)

maximize

�
log p(⇥) +

KX

k=1

log p(�k) +
nX

i=1

log

X

yi�Y
[p(yi|⇥)p(xi|�, yi)]

Clustering
• Integrate out θ

• Y is coupled
• Sampling
• Collapsed p

x

y

θ• Integrate out y

• Nonconvex
optimization
problem

• EM algorithm

x

θ

x

Y

p(y|x) � p({x} | {xi : yi = y} ⇥Xfake)p(y|Y ⇥ Yfake)

Clustering
• Integrate out θ

• Y is coupled
• Sampling
• Collapsed p

x

y

θ• Integrate out y

• Nonconvex
optimization
problem

• EM algorithm

x

θ

x

Y

p(y|x) � p({x} | {xi : yi = y} ⇥Xfake)p(y|Y ⇥ Yfake)

Clustering
• Integrate out θ

• Y is coupled
• Sampling
• Collapsed p

x

y

θ• Integrate out y

• Nonconvex
optimization
problem

• EM algorithm

x

θ

x

Y

p(y|x) � p({x} | {xi : yi = y} ⇥Xfake)p(y|Y ⇥ Yfake)

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)

Gibbs sampling
• Sampling:

Draw an instance x from distribution p(x)
• Gibbs sampling:

• In most cases direct sampling not possible
• Draw one set of variables at a time

0.45 0.05
0.05 0.45

(b,g) - draw p(.,g)
(g,g) - draw p(g,.)
(g,g) - draw p(.,g)
(b,g) - draw p(b,.)
(b,b) ...

Gibbs sampling for clustering

Gibbs sampling for clustering

random
initialization

Gibbs sampling for clustering

sample
cluster labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model

Gibbs sampling for clustering

resample
cluster labels

Gibbs sampling for clustering

resample
cluster model e.g. Mahout Dirichlet Process Clustering

Topic models

Grouping objects

Grouping objects

Singapore

Grouping objects

Grouping objects

Grouping objects

airline

restaurant

university

Grouping objects

Australia

Singapore

USA

Topic Models

USA
airline

Singapore
airline

Singapore
food

USA
food

Singapore
university

Australia
university

Clustering & Topic Models
Clustering

?

group objects
by prototypes

Clustering & Topic Models
Clustering

?

group objects
by prototypes

Topics

decompose objects
into prototypes

Clustering & Topic Models

x

y

θ

prior

cluster
probability

cluster
label

instance x

y

θ

prior

topic
probability

topic label

instance

clustering Latent Dirichlet Allocation

α α

Clustering & Topic Models

Documentsmembership
Cluster/

topic
distributions

x =

clustering: (0, 1) matrix
topic model: stochastic matrix
LSI: arbitrary matrices

Topics in text

Latent Dirichlet Allocation; Blei, Ng, Jordan, JMLR 2003

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample z
independently

sample θ
independently

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently

sample z
independently

sample θ
independently

Joint Probability Distribution

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(⇤, z,⌅, x|�,⇥)

=
KY

k=1

p(⌅k|⇥)
mY

i=1

p(⇤i|�)

m,miY

i,j

p(zij |⇤i)p(xij |zij ,⌅)

sample Ψ
independently slow

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

sample z
sequentially

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

sample z
sequentially

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)
fast

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

Griffiths & Steyvers, 2005

Collapsed Sampler

xij

zij

θi

language prior

topic
probability

topic label

instance

α

ψkβ

p(z, x|�,⇥)

=
mY

i=1

p(zi|�)
kY

k=1

p({xij |zij = k} |⇥)
fast

n�ij(t, w) + �t

n�i(t) +
P

t �t

n�ij(t, d) + �t

n�i(d) +
P

t �t

Griffiths & Steyvers, 2005

Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

3. Design Principles

Scaling Problems

3 Problems

mean
variance

cluster weight

data cluster ID

3 Problems

global state
data local state

3 Problems

too big for
single machine

huge only local

3 Problems

data

local state

global state

Vanilla LDA

User
profiling

global state

3 Problems

data

local state

global state

Vanilla LDA

User
profiling

global state

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

3 Problems

global state
is too large

does not fit
into memory

network load
& barriers

does not fit
into memory

local state
is too large

stream local
data from disk

asynchronous
synchronization

partial view

Global state synchronization

Lock and Barrier

• Changes in μ affect distribution in z

• Changes in z affect distribution in μ
(in particular for a collapsed sampler)

• Lock z, then recompute μ
• Lock all but single zi (for collapsed sampler)

Variable replication

• No locks between machines to access z

• Synchronization mechanism for global μ needed

• In LDA this is the local copy of the (topic,word) counts

1 copy per machinebackground sync

Distribution

global
replica

rack

cluster

Distribution

global
replica

rack

cluster

Message Passing
• Start with common state
• Child stores old and new state
• Parent keeps global state
• Transmit differences asynchronously

• Inverse element for difference
• Abelian group for commutativity

(sum, log-sum, cyclic group, exponential families)

local to global global to local

x x+ (xglobal � x

old)

x

old x

global

� x� x

old

x

old x

x

global x

global + �

Distribution
• Dedicated server for variables

• Insufficient bandwidth (hotspots)
• Insufficient memory

• Select server via consistent hashing
(random trees a la Karger et al. 1999 if needed)

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Distribution & fault tolerance
• Storage is O(1/k) per machine
• Communication is O(1) per machine
• Fast snapshots O(1/k) per machine (stop sync and dump state per vertex)
• O(k) open connections per machine
• O(1/k) throughput per machine

m(x) = argmin
m2M

h(x,m)

Synchronization Protocol

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously

local

global

r=1

Synchronization
• Data rate between machines is O(1/k)
• Machines operate asynchronously (barrier free)
• Solution

• Schedule message pairs
• Communicate with r random machines simultaneously
• Use Luby-Rackoff PRPG for load balancing

• Efficiency guarantee

4 simultaneous connections are sufficient

Architecture

Sequential Algorithm (Gibbs sampler)

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

Sequential Algorithm (Gibbs sampler)

this kills parallelism

• For 1000 iterations do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Update CPU local (word, topic) table
• Update global (word, topic) table

Distributed asynchronous sampler
• For 1000 iterations do (independently per computer)

• For each thread/core do
• For each document do

• For each word in the document do
• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table

Distributed asynchronous sampler

continuous
sync

barrier
free

concurrent
cpu hdd net

minimal
view

• For 1000 iterations do (independently per computer)
• For each thread/core do

• For each document do
• For each word in the document do

• Resample topic for the word
• Update local (document, topic) table
• Generate computer local (word, topic) message

• In parallel update local (word, topic) table
• In parallel update global (word, topic) table

Multicore Architecture

• Decouple multithreaded sampling and updating
(almost) avoids stalling for locks in the sampler

• Joint state table
• much less memory required
• samplers syncronized (10 docs vs. millions delay)

• Hyperparameter update via stochastic gradient descent
• No need to keep documents in memory (streaming)

tokens

topics

file

combiner

count

updater

diagnostics

&

optimization

output to

file
topics

sampler
sampler

sampler
sampler

sampler

Intel Threading Building Blocks

joint state table

Cluster Architecture

• Distributed (key,value) storage via ICE
• Background asynchronous synchronization

• single word at a time to avoid deadlocks
• no need to have joint dictionary
• uses disk, network, cpu simultaneously

sampler sampler sampler sampler

iceiceiceice

Cluster Architecture

• Distributed (key,value) storage via ICE
• Background asynchronous synchronization

• single word at a time to avoid deadlocks
• no need to have joint dictionary
• uses disk, network, cpu simultaneously

sampler sampler sampler sampler

iceiceiceice

Making it work
• Startup

• Naive: randomly initialize topics on each node
(read from disk if already assigned - hotstart)

• Forward sampling for startup much faster
• Aggregate changes on the fly

• Failover
• State constantly being written to disk

(worst case we lose 1 iteration out of 1000)
• Restart via standard startup routine

• Achilles heel: need to restart from checkpoint if even
a single machine dies.

Easily extensible
• Better language model (topical n-grams)

can process millions of users (vs 1000s)
• Conditioning on side information (upstream)

estimate topic based on authorship, source,
joint user model ...

• Conditioning on dictionaries (downstream)
integrate topics between different languages

• Time dependent sampler for user model
approximate inference per episode

Google
LDA Mallet Irvine’08 Irvine’09 Yahoo LDA

Multicore no yes yes yes yes

Cluster MPI no MPI point 2 point ICE

State table dictionary
split

separate
sparse separate separate joint

sparse

Schedule synchronous
exact

synchronous
exact

synchronous
exact

asynchronous
approximate

messages

asynchronous
exact

Speed (2010 numbers)
• 1M documents per day on 1 computer

(1000 topics per doc, 1000 words per doc)
• 350k documents per day per node

(context switches & memcached & stray reducers)
• 8 Million docs (Pubmed)

(sampler does not burn in well - too short doc)
• Irvine: 128 machines, 10 hours
• Yahoo: 1 machine, 11 days
• Yahoo: 20 machines, 9 hours

• 20 Million docs (Yahoo! News Articles)
• Yahoo: 100 machines, 12 hours

Fast sampler

• 8 Million documents, 1000 topics, {100,200,400} machines, LDA
• Red (symmetric latency bound message passing)
• Blue (asynchronous bandwidth bound message passing & message scheduling)

• 10x faster synchronization time
• 10x faster snapshots
• Scheduling improves 10% already on 150 machines

• Tools
• Load distribution, balancing and synchronization
• Clustering, Topic Models

• Models
• Dynamic non-parametric models
• Sequential latent variable models

• Inference Algorithms
• Distributed batch
• Sequential Monte Carlo

• Applications
• User profiling
• News content analysis & recommendation

Roadmap

