

Fast, Cheap and Deep Scaling machine learning

Alexander Smola Machine Learning and Marianas Labs github.com/dmlc

Marianas Labs

Many thanks to

- Mu Li
- Dave Andersen
- Chris Dyer
- Li Zhou
- Ziqi Liu
- Manzil Zaheer
- Qicong Chen
- Amr Ahmed (Google)
- Yu-Xiang Wang
- Jay Yoon Lee

Marianas Labs

Ha Loc Do (SMU)

CXXNET Team

- Tianqi Chen (UW)
- Bing Xu
- Naiyang Wang
- Minerva Team
 - Minjie Wang
 - Tianjun Xiao
 - Jianpeng Li
 - Jiaxing Zhang

This talk in 3 slides

Marianas Labs

Parameter Server

Marianas

Labs

Multicore

GPUs (for Deep Learning)

Details

- Parameter Server Basics
 Logistic Regression (Classification)
- Large Distributed State
 Factorization Machines (CTR)
- Memory Subsystem
 Matrix Factorization (Recommender)
- GPUs Deep Learning (Images)

Marianas Labs

machine learning

Web News

Videos

Images More -

Estimate Click

Through Rate

Search tools

About 60,400,000 results (0.39 seconds)

Qualcomm Machine Learning - qualcomm.com

4.3 $\star \star \star \star \star \star$ rating for qualcomm.com Qualcomm is Teaching Robots to Solve Problems. Welcome to Today.

Books

Enhanced Machine Ad www.ayasdi.com/ -

Get better results by comb

What is Machine Le

Ad www.sas.com/ -A Machine Learning Intro

Marlanas

SAS Software has 4,179 followers on Google+

Scholarly articles for machine learning

Genetic algorithms and **machine learning** - Goldberg - Cited by 1971 An introduction to MCMC for **machine learning** - Andrieu - Cited by 1261 **Machine learning** for the detection of oil spills in ... - Kubat - Cited by 750

Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational **learning** theory in artificial intelligence. **Machine learning** explores the construction and study of algorithms that can learn from and make predictions on data.

Ads

Google Ads Team Is Hiring www.google.com/jobs/12 Have math skills? Submit your resume

Unstructured Big Data

www.contentanalyst.com/
Optimize the Discovery of What's
Important in Unstructured Big Data

Machine Learning Services www.tryolabs.com/ -

Expert agile development services focused on ML web apps. Hire us!

Predictive Analytic World

www.predictiveanalyticsworld.com/Boston Take machine learning to the next level. Sept 27 – Oct 1, Boston

MS Data Analytics Program

www.sru.edu/DataAnalytics
Apply Today to Further Your
Education in Data Analytics at SRU!

Click Through Rate (CTR)

Linear function class

$$f(x) = \langle w, x \rangle$$

Logistic regression

$$p(y|x,w) = \frac{1}{1 + \exp\left(-y\left\langle w,x\right\rangle\right)}$$

Optimization Problem

Marianas

sparse models for advertising

$$\underset{w}{\text{minimize}} \sum_{i=1}^{m} \log(1 + \exp(-y_i \langle w, x_i \rangle)) + \lambda \|w\|_1$$

1

 Solve distributed over many machines (typically 1TB to 1PB of data) Labs

Optimization Algorithm

- Compute gradient on data
- I₁ norm is nonsmooth, hence proximal operator $\underset{w}{\operatorname{argmin}} \|w\|_1 + \frac{\gamma}{2} \|w - (w_t - \eta g_t)\|_2$
- Updates for I_1 are very simple

Marianas Labs

 $w_i \leftarrow \operatorname{sgn}(w_i) \max(0, |w_i| - \epsilon)$

- All steps decompose by coordinates
- Solve in parallel (and asynchronously)

Parameter Server Template

arıanas

Smola & Narayanamurthy, 2010, VLDB Gonzalez et al., 2012, WSDM Dean et al, 2012, NIPS Shervashidze et al., 2013, WWW Google, Baidu, Facebook, Amazon, Yahoo, Microsoft

- Compute gradient on (subset of data) on each client
- Send gradient from client to server asynchronously push(key_list,value_list,timestamp)
- Proximal gradient update on server per coordinate
- Server returns parameters
 pull(key_list,value_list,timestamp)

Solving it at scale

- 2014 Li et al., OSDI'14
 - 500 TB data, 10¹¹ variables
 - Local file system stores files
 - 1000 servers (corp cloud),
 - 1h time, 140 MB/s learning
- 2015 Online solver

ianas Labs

- 1.1 TB (Criteo), 8 · 10⁸ variables, 4 · 10⁹ samples
- S3 stores files (no preprocessing) better IO library
- 5 machines (c4.8xlarge),
- 1000s time, 220 MB/s learning

Details

- Parameter Server Basics
 Logistic Regression (Classification)
- Large Distributed State
 Factorization Machines (CTR)
- Memory Subsystem
 Matrix Factorization (Recommender)
- GPUs Deep Learning (Images)

Marianas Labs

Videos

Images More -

A Linear Model

is not enough

Search tools

p(y|x,w)

About 60,400,000 results (0.39 seconds)

Qualcomm Machine Learning - qualcomm.com

 $4.3 \star \star \star \star \star \star$ rating for qualcomm.com Qualcomm is Teaching Robots to Solve Problems. Welcome to Today.

Books

Enhanced Machine Ad www.ayasdi.com/ -

Get better results by comb

What is Machine Le

Ad www.sas.com/ -A Machine Learning Intro

Marlanas

SAS Software has 4,179 followers on Google+

Scholarly articles for machine learning

Genetic algorithms and **machine learning** - Goldberg - Cited by 1971 An introduction to MCMC for **machine learning** - Andrieu - Cited by 1261 **Machine learning** for the detection of oil spills in ... - Kubat - Cited by 750

Machine learning is a subfield of computer science that evolved from the study of pattern recognition and computational **learning** theory in artificial intelligence. **Machine learning** explores the construction and study of algorithms that can learn from and make predictions on data.

Ads

Google Ads Team Is Hiring www.google.com/jobs/12 Have math skills? Submit your resume

Unstructured Big Data

www.contentanalyst.com/

Optimize the Discovery of What's

Important in Unstructured Big Data

Machine Learning Services

Expert agile development services focused on ML web apps. Hire us!

Predictive Analytic World

www.predictiveanalyticsworld.com/Boston Take machine learning to the next level. Sept 27 – Oct 1, Boston

MS Data Analytics Program

www.sru.edu/DataAnalytics ▼ Apply Today to Further Your Education in Data Analytics at SRU!

Factorization Machines

- Linear Model
 - $f(x) = \langle w, x \rangle$

Labs

Marianas

Polynomial Expansion (Rendle, 2012)

$$(x) = \langle w, x \rangle + \sum_{i < j} x_i x_j \operatorname{tr} \left(V_i^{(2)} \otimes V_j^{(2)} \right) + \sum_{i < j < k} x_i x_j x_k \operatorname{tr} \left(V_i^{(3)} \otimes V_j^{(3)} \otimes V_k^{(3)} \right) + \dots$$

too large for individual machine

egie Mellon University

memory hog

Prefetching to the rescue

- Most keys are infrequent (power law distribution)
- Prefetch the embedding vectors for a minibatch from parameter server

- Compute gradients and push to server
 - Variable dimensionality embedding
 - Enforcing sparsity (ANOVA style)
 - Adaptive gradient normalization

ianas Labs

Frequency adaptive regularization (CF style)

Better Models

Faster Solver (small Criteo)

Multiple Machines

Li, Wang, Liu, Smola, WSDM'16, submitted

Details

Carnegie Mellon University

- Parameter Server Basics
 Logistic Regression (Classification)
- Large Distributed State
 Factorization Machines (CTR)
- Memory Subsystem
 Matrix Factorization (Recommender)
- GPUs Deep Learning (Images)

Marianas Labs

Recommender Systems

- Users u, movies m (or projects)
- Function class

$$r_{um} = \langle v_u, w_m \rangle + b_u + b_m$$

Loss function for recommendation (Yelp, Netflix)

$$\sum_{u \sim m} \left(\langle v_u, w_m \rangle + b_u + b_m - y_{um} \right)^2$$

Inspired by Your Wish List See more

Recommender Systems

Regularized Objective

$$\sum_{u \sim m} \left(\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um} \right)^2 + \frac{\lambda}{2} \left[\|U\|_{\text{Frob}}^2 + \|V\|_{\text{Frob}}^2 \right]$$

Update operations

 $v_u \leftarrow (1 - \eta_t \lambda) v_u - \eta_t w_m \left(\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um} \right)$ $w_m \leftarrow (1 - \eta_t \lambda) w_m - \eta_t v_u \left(\langle v_u, w_m \rangle + b_u + b_m + b_0 - r_{um} \right)$

- Very simple SGD algorithm (random pairs)
- This should be cheap ... RAS -Trcd--Tpc-CAS Tcac memory subsystem Addr[0..M] Cal 2 VD 1 VD2 VD G Data[0.1 FPM/EDO read timing Marlanas Labs **Carnegie Mellon University**

This should be cheap ...

- O(md) burst reads and O(m) random reads
- Netflix dataset
 m = 100 million, d = 2048 dimensions, 30 steps
- Runtime should be > 4500s

Labs

Nallanas

- 60 GB/s memory bandwidth = 3300s
- 100 ns random reads = 1200s

We get 560s. Why?

Liu, Wang, Smola, RecSys 2015

Power law in Collaborative Filtering

Key Ideas

- Stratify ratings by users

 (only 1 cache miss / read per user / out of core)
- Keep frequent movies in cache (stratify by blocks of movie popularity)
- Avoid false sharing between sockets (key cached in the wrong CPU causes miss)

Κ	SC-SGD		GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Key Ideas

Κ	SC-SGD		GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Key Ideas

Κ	SC-SGD		GraphChi	
	L1 Cache	L3 Cache	L1 Cache	L3 Cache
16	2.84%	0.43%	12.77%	2.21%
256	2.85%	0.50%	12.89%	2.34%
2048	3.3%	1.7%	15%	9.8%

Speed (c4.8xlarge)

Convergence

- GraphChi blocks (users, movies) into random groups
- Poor mixing
- Slow convergence

Details

- Parameter Server Basics
 Logistic Regression (Classification)
- Large Distributed State
 Factorization Machines (CTR)
- Memory Subsystem
 Matrix Factorization (Recommender)
- GPUs

Marianas Labs

Deep Learning (Images)

github.com/dmlc

The Challenge

- Multiple good single-machine toolkits
 - Caffe convolution optimized (images)
 - CXXNET good tensor library
 - Minerva Scheduler & Layout on CPU/GPU
 - Torch Lua + interesting C preprocessor (very very popular, though)
 - Theano Deep network compiler built by ML
- Don't reinvent the wheel for deep learning
- Integrate with parameter server

Marianas Labs

Minerva (dmlc/minerva)

- Tensor interface in python (similar to numpy)
- Dataflow engine
- Auto parallel execution
 - On multi-core CPU
 - On multi-GPU

Marianas Labs

Optimizes layout automatically

Zhang et al, '14 (NIPS workshop)

Minerva Scaling

Distributed Deep Learning

Marianas Labs

Distributed Deep Learning

k

llon University

Scaling on AWS g2.2xlarge

📀 bandwidth 🛛 🔳 speedup

1Gbit network limit (alexnet scaling)

Amazon just released g2.8xlarge ...

- 12 instances (48 GPUs) @ \$0.50/h spot
- Minibatch size 512

Marianas Labs

- BSP with 1 delay between machines
- 2 GB/s bandwidth between machines (awful)

10.113.170.187,10.157.109.227, 10.169.170.55, 10.136.52.151, 10.45.64.250, 10.166.137.100, 10.97.167.10, 10.97.187.157, 10.61.128.107, 10.171.105.160, 10.203.143.220, 10.45.71.20 (all over the place in availability zone)

- Compressing to 1 byte per coordinate helps a bit but adds latency due to extra pass (need to fix)
- 37x speedup on 48 GPUS
- Imagenet'12 dataset in trained in 4h, i.e. \$24 (with alexnet; googlenet even better for network)

Summary

Server

- Parameter Server Basics
 Logistic Regression
- Large Distributed State

Data (local or clou

Carnegie Mellon University

(or copy

Me Ma GP

Deep Learning

Fag

Much more - Topic Models, NLP
 Docker, Sketches, Fault Tolerance
 Marianas Labs