
Marianas Labs

Alexander Smola
CMU Machine Learning and Marianas Labs

github.com/dmlc

Fast, Cheap and Deep
Scaling machine learning

SFW

http://github.com/dmlc

Marianas Labs

Many thanks to
• Mu Li
• Dave Andersen
• Chris Dyer
• Li Zhou
• Ziqi Liu
• Manzil Zaheer
• Qicong Chen
• Amr Ahmed (Google)
• Yu-Xiang Wang
• Jay Yoon Lee
• Ha Loc Do (SMU)

• CXXNET Team
• Tianqi Chen (UW)
• Bing Xu
• Naiyang Wang

• Minerva Team
• Minjie Wang
• Tianjun Xiao
• Jianpeng Li
• Jiaxing Zhang

Marianas Labs

This talk in 3 slides

Marianas Labs

Parameter Server

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Server

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Server

Marianas Labs

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Parameter
Server

Multicore

Marianas Labs

Data (local or cloud)

read

write

Data (local or cloud)

local
state

(or copy)

update

Parameter
Server

GPUs (for Deep Learning)

Marianas Labs

Details
• Parameter Server Basics  

Logistic Regression (Classification)
• Large Distributed State  

Factorization Machines (CTR)
• Memory Subsystem  

Matrix Factorization (Recommender)
• GPUs  

Deep Learning (Images)

Marianas Labs

Estimate Click
Through Rate

p(click|{z}
=:y

| ad, query| {z }
=:x

, w)

Marianas Labs

sparse models
for advertising

Click Through Rate (CTR)
• Linear function class

• Logistic regression  
 

• Optimization Problem

• Solve distributed over many machines 
(typically 1TB to 1PB of data)

f(x) = hw, xi

minimize

w
� log p(f |X,Y)

minimize

w

mX

i=1

log(1 + exp(�yi hw, xii)) + � kwk1

p(y|x,w) = 1

1 + exp (�y hw, xi)

Marianas Labs

Optimization Algorithm
• Compute gradient on data
• l1 norm is nonsmooth, hence proximal operator 
 

• Updates for l1 are very simple  
 

• All steps decompose by coordinates
• Solve in parallel (and asynchronously)

argmin
w

kwk1 +
�

2
kw � (wt � ⌘gt)k

wi sgn(wi)max(0, |wi|� ✏)

2

Marianas Labs

Parameter Server Template

• Compute gradient on (subset of data) on each client
• Send gradient from client to server asynchronously 
push(key_list,value_list,timestamp)

• Proximal gradient update on server per coordinate
• Server returns parameters 
pull(key_list,value_list,timestamp)

Smola & Narayanamurthy, 2010, VLDB
Gonzalez et al., 2012, WSDM
Dean et al, 2012, NIPS
Shervashidze et al., 2013, WWW
Google, Baidu, Facebook,  
Amazon, Yahoo, Microsoft

Marianas Labs

Each key segment is then duplicated into the k anti-
clockwise neighbor server nodes for fault tolerance. If
k = 1, then the segment with the mark in the example will
be duplicated at Server 3. A new node comes is first ran-
domly (via a hash function) inserted into the ring, and then
takes the key segments from its clockwise neighbors. On
the other hand, if a node is removed or if it fails, its seg-
ments will be served by its nearest anticlockwise neigh-
bors, who already own a duplicated copy if k > 0. To
recover a failed node, we just insert a node back into the
failed node’s previous positions and then request the seg-
ment data from its anticlockwise neighbors.

4.5 Node Join and Leave

5 Evaluation
5.1 Sparse Logistic Regression
Sparse logistic regression is a linear binary classifier,
which combines a logit loss with a sparse regularizer:

min

w2Rp

nX

i=1

log(1 + exp(�yi hxi, wi)) + �kwk1,

where the regularizer kwk1 has a desirable property to
control the number of non-zero entries in the optimal solu-
tion w

⇤, but its non-smooth property makes this objective
function hard to be solved.

We compared parameter server with two specific-
purpose systems developed by an Internet company. For
privacy purpose, we name them System-A, and System-
B respectively. The former uses an variant of the well-
known L-BFGS [21, 5], while the latter runs an variant
of block proximal gradient method [24], which updates a
block of parameters at each iteration according to the first-
order and diagonal second-order gradients. Both systems
use sequential consistency model, but are well optimized
in both computation and communication.

We re-implemented the algorithm used by System-B on
parameter server. Besides, we made two modifications.
One is that we relax the consistency model to bounded
delay. The other one is a KKT filter to avoid sending gra-
dients which may do not affect the parameters.

Specifically, let gk be the global (first-order) gradient
on feature k at iteration t. Then, the according parameter
wk will not be changed at this iteration if wk = 0 and
��  gk  � due to the update rule. Therefore it is not
necessary for workers to send gk at this iteration. But a
worker does not know the global gk without communica-
tion, instead, we let a worker i approximate gk based on
its local gradient gik by g̃k = ckg

i
k/c

i
k, where ck is the

global number of nonzero entries on feature k and c

i
k is

the local count, which are constants and can be obtained
before iterating. Then, the worker skips sending gk if

wk = 0 and � �+�  g̃k  ���,

where � 2 [0,�] is user defined constant.

Method Consistency LOC
System-A L-BFGS Sequential 10,000
System-B Block PG Sequential 30,000
Parameter Block PG Bounded Delay 300Server KKT Filter

Table 3: xx

These there systems are compared in Table 3. Notably,
both System-A and System-B consist of more than 10K
lines of code, but parameter server only uses less than 300.

To demonstrate the efficiency of parameter server, we
collected a computational advertisement dataset with 170
Billions of examples and 65 Billions of unique features.
The raw text data size is 636 TB, and the compressed for-
mat is 141 TB. We run these systems on 1000 machines,
each one has 16 cores, 192GB memory, and are connected
by 10GB Ethernet. For parameter server, we use 800 ma-
chines to form the worker group. Each worker caches
around 1 billions of parameters. The rest 200 machines
make the server group, where each machine runs 10 (vir-
tual) server nodes.

10
−1

10
0

10
1

10
10.6

10
10.7

time (hour)

o
b
je

ct
iv

e
 v

a
lu

e

System−A
System−B
Parameter Server

Figure 8: Convergence results of sparse logistic regres-
sion, the goal is to achieve small objective value using
less time.

We run these three systems to achieve the same objec-
tive value, the less time used the better. Both system-B
and parameter server use 500 blocks. In addition, param-
eter server fix ⌧ = 4 for the bounded delay, which means
each worker can parallel executes 4 blocks.

8

Solving it at scale
• 2014 - Li et al., OSDI’14

• 500 TB data, 1011 variables
• Local file system stores files
• 1000 servers (corp cloud),
• 1h time, 140 MB/s learning

• 2015 - Online solver
• 1.1 TB (Criteo), 8·108 variables, 4·109 samples
• S3 stores files (no preprocessing) - better IO library
• 5 machines (c4.8xlarge),
• 1000s time, 220 MB/s learning

2014

Marianas Labs

Details
• Parameter Server Basics  

Logistic Regression (Classification)
• Large Distributed State  

Factorization Machines (CTR)
• Memory Subsystem  

Matrix Factorization (Recommender)
• GPUs  

Deep Learning (Images)

Marianas Labs

A Linear Model
is not enough

p(y|x,w)

Marianas Labs

Factorization Machines
• Linear Model  
 

• Polynomial Expansion (Rendle, 2012)

memory hogmemory hog

too large for
individual machine

f(x) = hw, xi

f(x) = hw, xi+
X

i<j

xixj tr
⇣
V

(2)
i ⌦ V

(2)
j

⌘
+

X

i<j<k

xixjxk tr
⇣
V

(3)
i ⌦ V

(3)
j ⌦ V

(3)
k

⌘
+ . . .

Marianas Labs

Prefetching to the rescue
• Most keys are infrequent 

(power law distribution)
• Prefetch the embedding  

vectors for a minibatch from 
parameter server

• Compute gradients and push to server
• Variable dimensionality embedding
• Enforcing sparsity (ANOVA style)
• Adaptive gradient normalization
• Frequency adaptive regularization (CF style)

feature occurs in a minibatch. The consequence of this is
that parameters associated with frequent features are less
overregularized. The penalty can be presented as

⌦[w, V] =
1
2

X

i

⇥
�
i

w2
i

+ µ
i

kV
i

k22
⇤
with �

i

/ µ
i

. (11)

Lemma 2 (Dynamic Regularization) Assume that we solve
a factorization machines problem with the following updates
in a minibatch update setting: for each feature i,

I
i

 I {[x
j

]
i

6= 0 for some (x
j

, y
j

) 2 B} (12)

w
i

 w
i

� ⌘
t

b

X

(xj ,yj)2B

@
wi l(f(xj

), y
j

)� ⌘
t

�w
i

I
i

(13)

V
i

 V
i

� ⌘
t

b

X

(xj ,yj)2B

@
Vi l(f(xj

), y
j

)� ⌘
t

µV
i

I
i

(14)

Here B denotes the minibatch and b the according size, and
I
i

denotes whether or not feature i appears in this minibatch.
Then e↵ective regularization is given by

�
i

= �⇢
i

and µ
i

= µ⇢
i

where ⇢
i

= 1� (1� n
i

/m)b ⇡ n
i

b

m

Proof. The probability that a particular feature occurs
in a random minibatch is ⇢

i

= 1 � (1 � n
i

/m)b. Observe
that while the amount of regularization on the minibatches
is not independent, it is additive (and exchangeable). Hence
the expected amount of regularizations are ⇢

i

� and ⇢
i

µ, re-
spectively. Expanding the Taylor series in ⇢

i

yields the ap-
proximation.

Note that for b = 1 we obtain the conventional frequency de-
pendent regularization, whereas in the batch setting b = m
we obtain the Frobenius regularization. That is, choosing
the minibatch size conveniently allows us to interpolate be-
tween both extremes e�ciently.

3.4 Putting All Things Together
We obtain the following model and optimization problem:

minimize
w,V

1
|X|

X

(x,y)

l(f(x), y) + �1 kwk1

+
1
2

X

i

⇥
�
i

w2
i

+ µ
i

kV
i

k22
⇤

(15)

subject to V
i

= 0 if w
i

= 0 and V
ij

= 0 for j > k
i

where the choice of constants �1, �i

, µ
i

and k
i

are as dis-
cussed above. This model di↵ers in two key parts from stan-
dard FM models: We add frequency adaptive regularization
to better model the possible nonuniform sparsity pattern in
the data. Secondly, we use sparsity regularization and mem-
ory adaptive constraints to control the model size, which
benefits both the statistical model and system performance.

4. DISTRIBUTED OPTIMIZATION
Minimizing (15) is challenging since the potentially large

model brings large communication cost. We focus on asyn-
chronous optimization method, which hides synchronization
cost by communicating and computing in parallel. It has
been shown that asynchronous block subspace descent can
e↵ectively solve nonconvex objective function with nons-
mooth `1 regularizer [8]. However, it requires expensive

1 2 3

server
nodes:

worker
nodes:

t=1 t=1 t=2t=2 t=3 t=4

Figure 1: An illustration of asynchronous SGD. Workers
W1 and W2 first pull weights from the servers at time 1.
Next W1 pushes the gradient back and therefore increase
the timestamp at the servers. Worker W3 pulls the weight
immediately after that. Then W2 and W3 push the gradient
back. The delays for W1, W2, and W3 are 0, 1, and 1.

data preprocessing. In this paper, we consider asynchronous
stochastic gradient descent (SGD) [8] for optimization.

4.1 Asynchronous Stochastic Gradient Descent
For simplicity we assume there is a single (virtual) server

node, which maintains the model w and V (the parameter
server framework provides for a clean abstraction for mul-
tiple servers). Multiple workers run SGD independently of
each other. Each worker repeatedly reads data, pulls recent
model from the server, computes gradient, and then pushes
back the gradient. Due to the network delay, the received
gradient the server used to update the model may be not
computed based on the most recent model. An example is
illustrated in Figure 1.
A worker can calculate the gradient of the loss in the stan-

dard way [14]. We first compute the partial gradient of f

@
wif(x,w, V) = x

i

(16)

@
Vijf(x,w, V) = x

i

[V x]
j

� x2
i

V
ij

, (17)

Note that the term V x can be pre-computed. Invoking the
chain rule yields the gradient of l. Denote by w(t) and V (t)
the model stored at the server on time t. Assume that at
time t the server received gradient pushed from one worker

g✓(t) @
✓

l(f(x,w(t� ⌧), V (t� ⌧)), y) (18)

where ✓ can be either w or V , and ⌧ is the delay, indicating
that the gradient was computed using the model at time
t� ⌧ .
As mentioned in Section 3.3, we use frequency adaptive

regularization for w and V and the sparse induce `1 norm
for w. In addition, we use AdaGrad [4] to better model the
possible nonuniform sparsity in the data. In other words,
assume � the scalar in (14), and scalars ⌘

V

and �
V

, the
server updates V

ij

by

n
ij

 n
ij

+
h
gV
ij

(t)
i2

V
ij

(t+ 1) V
ij

(t)� ⌘
V

�
V

+
p
n
ij

⇣
gV
ij

(t) + µV
ij

(t)
⌘
, (19)

where n
ij

is initialized to 0. Updating w is slightly di↵er-
ent to V due to the nonsmooth `1 regularizer. We adopted
FTRL [10], which solves a “smoothed” proximal operator
based on AdaGrad. Similarly denote by ⌘

w

and �
w

the

Marianas Labs

Better Models

10
0

10
1

10
2

10
6

10
8

10
10

10
12

dimesion (k)

m
o
d

e
l s

iz
e

no mem adaption
freqency
freqency + l1 shrk

10
0

10
1

10
2

10
7

10
9

10
11

10
13

dimesion (k)

m
o
d

e
l s

iz
e

no mem adaption
freqency
freqency + l1 shrk

(a) Number of non-zero entries in V .

10
0

10
1

10
2

300

400

500

600

700

800

tim
e
 (

se
c)

no mem adaption
freqency
freqency + l1 shrk

10
0

10
1

10
2

200

300

400

500

600

dimesion (k)

tim
e
 (

se
c)

no mem adaption
freqency
freqency + l1 shrk

(b) Runtime for one iteration.

10
0

10
1

10
2

−3

−2.5

−2

−1.5

−1

−0.5

0

dimesion (k)

re
la

tiv
e
 lo

g
lo

ss
 (

%
)

no mem adaption
freqency
freqency + l1 shrk

10
0

10
1

10
2

−1

−0.8

−0.6

−0.4

−0.2

0

dimesion (k)

re
la

tiv
e
 lo

g
lo

ss
 (

%
)

no mem adaption
freqency
freqency + l1 shrk

(c) Relative test logloss comparing to logistic regression (k = 0 and 0 relative loss).

Figure 2: Using di↵erent adaptive memory constraints when varying the embedding dimension. Left: Criteo2. Right: CTR2.

A more interesting observation is that these memory adap-
tive constraints do not a↵ect the test accuracy. To the con-
trary, we even see a slight improvement when the dimension
k is greater than 8 for CTR2. The reason could be that the
model capacity control is of great importance when the di-
mension k is large. And these memory adaptive constraints
can provide additional capacity control besides the `2 and
`1 regularizers.

5.3 Fixed-point Compression

We evaluate lossy fixed-point compression for data com-
munication. By default, both the model and gradient entries
are represented as 32 bit floats. In this experiment, we com-
press these values to lower precision integers. More specifi-
cally, given a bin size b and number of bits n, we represent
x by the following n-bit integer

z :=
jx
b
⇥ 2n

k
+ �, (23)

where � is a Bernoulli random variable chosen such as to
ensure that E[z] = 2n x

b

.

(Criteo 1TB)

k

what
everyone
else does

Marianas Labs

Faster Solver (small Criteo)

1 2 3 4
0

100

200

300

400

500

#byte per entry

G
ig

a
b

yt
e

Criteo2
CTR2

(a) Total data sent by workers in one iteration. The compression

rates from 4-byte to 1-byte are 4.2x and 2.9x for Criteo2 and CTR2,

respectively.

1 2 3 4
−2

0

2

4

6

#byte per entry

re
la

tiv
e

 lo
g

lo
ss

 (
%

)

Criteo2
CTR2

(b) The relative test logloss comparing to no fixed-point compression.

Figure 3: Compressing model and gradient using the fixed-
point compression, where 4-byte means using the default
32-bit floating-point format.

We implemented the fixed-point compression as a user-
defined filter in the parameter server framework. Since mul-
tiple numbers are communicated in each round, we choose
b to be the absolute maximum value of these numbers. In
addition, we used the key caching and lossless data compres-
sion (via LZ4) filters.

The results for n = 8, 16, 24 are shown in Figure 3. As ex-
pected, fixed-point compression linearly reduces the network
tra�c volume, since the tra�c is dominated by communi-
cating the model and gradient. A more interesting observa-
tion is that we obtained a 4.2x compression rate from 32-bit
floating-point to 8-bit fixed-point on Criteo2. The reason is
the latter improves the compression rate for the following
lossless LZ4 compression.

We observed di↵erent e↵ects of accuracy on these two
datasets: CTR2 is robust to the number precision, while
Criteo2 has a 6% increase of logloss if only using 1-byte pre-
sentation. However, a medium compression rate even im-
proves the model accuracy. This might be because the lossy
compression acts as a regularization to the objective func-
tion.

5.4 Comparison with LibFM

10
1

10
2

10
3

10
4

10
−0.348

10
−0.345

10
−0.342

10
−0.339

time (sec)

te
st

 lo
g
lo

ss

LibFM
DiFacto, 1 worker
DiFacto, 10 workers

(a) Criteo1

10
0

10
1

10
2

10
3

10
−0.193

10
−0.191

10
−0.189

time (sec)

te
st

 lo
g
lo

ss

LibFM
DiFacto, 1 worker
DiFacto, 10 workers

(b) CTR1

Figure 4: Comparison with LibFM on a single machine. The
data preprocessing time for LibFM is omitted.

To our best knowledge, there is no publicly released dis-
tributed FM solver. Hence we only compare DiFacto to the
popular single machine package LibFM developed by Ren-
dle [14]. We only report results on Criteo1 and CTR1 on a
single machine, since LibFM fails on the other two larger
datasets. We perform a similar grid search of the hyper-
parameters as we did for DiFacto. As LibFM only uses
single thread, we run DiFacto with 1 worker and 1 server
in sequential execution order. We also report the perfor-
mance using 10 workers and 10 servers on a single machine
for reference.
The results are shown in Figure 4. As can been seen,

DiFacto converges significantly faster than LibFM, it uses
2 times fewer iterations to reach the best model. This is
because the adaptive learning rate used in DiFacto better
models the data sparsity and the adaptive regularization and
constraints can further accelerate the convergence. In par-
ticular, the latter results in a lower test logloss on the CTR1

dataset, where the number of features exceeds the number
of examples, requiring improved capacity control.
Also note that DiFacto with a single worker is twice slower

than LibFM per iteration. This is because the data commu-

sec

LibFM died on
large models

Marianas Labs

Multiple Machines  
Li, Wang, Liu, Smola, WSDM’16, submitted

0 5 10 15 20
0

2

4

6

8

10

of machines

sp
e

e
d

u
p

 (
x)

Criteo2
CTR2

Figure 5: The speedup from 1 machine to 16 machines,
where each machine runs 10 workers and 10 servers. The
di↵erence between the test logloss is within 0.5%, which is
omitted in the figure.

nication overhead between the worker and the server cannot
be ignored in the sequential execution. More importantly,
DiFacto does not require any data preprocessing to map ar-
bitrary 64-bit integer and string feature indices, which are
used in both Criteo1 and CTR2, to continuous integer indices.
The cost of this data preprocessing step, required by LibFM
but not shown in Figure 4, even exceeds the cost of train-
ing (1,400 seconds for Criteo1). Nevertheless, DiFacto with a
single worker still outperforms LibFM thanks to the faster
convergence. In addition, it is 10 times faster than LibFM
when using 10 workers on the same machine.

5.5 Scalability
Finally, we study the scalability of DiFacto by varying the

number of physical machines used in training. We run 10
workers and 10 servers in each machine, and increase the
number of machines from 1 to 16. Both the time for each
iteration and the logloss on the test dataset are recorded and
shown in Figure 5.

We observe an 8x speedup from 1 machine to 16 machines
on both Criteo2 and CTR2. The reason for the satisfactory
performance is twofold. First, asynchronous SGD eliminates
the need for synchronization between workers and it is toler-
ant to stragglers. Even though we used dedicated machines
for the job, they still share network bandwidth with oth-
ers. In particular, we observed a large variation of read
speed when streaming data from Amazon’s S3 service, de-
spite using the IO optimized c4.8xlarge series of machines.
Second, DiFacto uses several filters which e↵ectively reduce
the amount of network tra�c. Even though CTR2 produces
10 times more network tra�c than Criteo2, they have similar
speedup performance.

There is a longstanding suspicion that the convergence of
asynchronous SGD slows down when increasing the number
of workers. Nonetheless, we did not observe a substantial
di↵erence in model accuracy. In other words, the relative dif-
ference of the objective logloss on test datasets is below 0.5%
when increasing the number of workers from 10 to 160. The
reason might because the datasets we used are highly sparse
and the features are not extremely correlated. Hence incon-
sistency due to concurrently updating by multiple workers

may not have a major e↵ect.

6. CONCLUSION
In this paper we presented DiFacto, a high performance

distributed factorization machine. DiFacto uses a refined
factorization machine model with adaptive memory con-
straints and frequency adaptive regularization, which per-
form fine-grain control of model capacity based on both data
and model statistics. DiFacto solves the model based on
asynchronous stochastic gradient descent. We analyzed the
theoretical convergence and implemented it in the parameter
server framework. We evaluated DiFacto thoroughly on two
real computational advertising datasets with up to billions of
examples and features. We showed that DiFacto produces
hundreds more compact model, yet it retains similar gen-
eralization accuracy. We also demonstrated that DiFacto
converges faster than the state-of-the-art package LibFM.
Furthermore, DiFacto is able to solve terabyte scale prob-
lems on modest machines within few hours.

References
[1] A. Ahmed, Nino Shervashidze, Shravan Narayana-

murthy, Vanja Josifovski, and Alexander J. Smola. Dis-
tributed large-scale natural graph factorization. In
World Wide Web Conference, Rio de Janeiro, 2013.

[2] R. M. Bell and Y. Koren. Lessons from the netflix
prize challenge. SIGKDD Explorations, 9(2):75–79,
2007. URL http://doi.acm.org/10.1145/1345448.

1345465.
[3] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin,

Q. Le, M. Mao, M. Ranzato, A. Senior, P. Tucker,
K. Yang, and A. Ng. Large scale distributed deep net-
works. In Neural Information Processing Systems, 2012.

[4] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgra-
dient methods for online learning and stochastic opti-
mization. Journal of Machine Learning Research, 12:
2121–2159, 2010.

[5] Criteo Labs. Criteo terabyte click logs, 2014.
http://labs.criteo.com/downloads/download-terabyte-
click-logs.

[6] Q.V. Le, T. Sarlos, and A. J. Smola. Fastfood — com-
puting hilbert space expansions in loglinear time. In
International Conference on Machine Learning, 2013.

[7] M. Li, D. G. Andersen, J. Park, A. J. Smola, A. Amhed,
V. Josifovski, J. Long, E. Shekita, and B. Y. Su. Scaling
distributed machine learning with the parameter server.
In OSDI, 2014.

[8] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Com-
munication e�cient distributed machine learning with
the parameter server. In Neural Information Processing
Systems, 2014.

[9] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu.
Asynchronous parallel stochastic gradient for noncon-
vex optimization. arXiv preprint arXiv:1506.08272,
2015.

[10] B. McMahan. Follow-the-regularized-leader and mirror
descent: Equivalence theorems and l1 regularization. In
International Conference on Artificial Intelligence and
Statistics, pages 525–533, 2011.

[11] H Brendan McMahan, Gary Holt, D Sculley, Michael
Young, Dietmar Ebner, Julian Grady, Lan Nie, Todd

80x LibFM speed  
on 16 machines

Marianas Labs

Details
• Parameter Server Basics  

Logistic Regression (Classification)
• Large Distributed State  

Factorization Machines (CTR)
• Memory Subsystem  

Matrix Factorization (Recommender)
• GPUs  

Deep Learning (Images)

Marianas Labs

Recommender Systems
• Users u, movies m (or projects)
• Function class

• Loss function for recommendation (Yelp, Netflix) 
 

rum = hvu, wmi+ bu + bm

X

u⇠m

(hvu, wmi+ bu + bm � yum)2

Marianas Labs

Recommender Systems
• Regularized Objective  
 

• Update operations

• Very simple SGD algorithm (random pairs)
• This should be cheap …

X

u⇠m

(hvu, wmi+ bu + bm + b
0

� rum)2 +
�

2

h
kUk2

Frob

+ kV k2
Frob

i

vu (1� ⌘t�)vu � ⌘twm (hvu, wmi+ bu + bm + b0 � rum)

wm (1� ⌘t�)wm � ⌘tvu (hvu, wmi+ bu + bm + b0 � rum)

memory subsystem

Marianas Labs

This should be cheap …
• O(md) burst reads and O(m) random reads
• Netflix dataset  

m = 100 million, d = 2048 dimensions, 30 steps
• Runtime should be > 4500s

• 60 GB/s memory bandwidth = 3300s
• 100 ns random reads = 1200s 

We get 560s. Why?
Liu, Wang, Smola, RecSys 2015

Marianas Labs

Power law in Collaborative Filtering

of ratings
100 102 104 106

M
ov

ie
 it

em
 c

ou
nt

s

100

101

102

103

104 Netflix dataset

ratings

m

ov
ie

s

Marianas Labs

Key Ideas
• Stratify ratings by users  

(only 1 cache miss / read per user / out of core)
• Keep frequent movies in cache  

(stratify by blocks of movie popularity)
• Avoid false sharing between sockets  

(key cached in the wrong CPU causes miss)

Marianas Labs

Key Ideas

GraphChi
Partitioning

Marianas Labs

Key Ideas

SC-SGD
partitioning

Marianas Labs

Speed (c4.8xlarge)

Num of Dimensions
0 500 1000 1500 2000

Se
co

nd
s

0

100

200

300

400

500

600

700

800

900

1000

C-SGD
Fast SGLD
Graphchi
Graphlab
BIDMach

Num of Dimensions
0 500 1000 1500 2000

Se
co

nd
s

0

1000

2000

3000

4000

5000

6000

C-SGD
Fast SGLD
Graphchi
Graphlab

Netflix - 100M, 15 iterations Yahoo - 250M, 30 iterations

g2.8xlarge

Marianas Labs

Convergence
• GraphChi blocks

(users, movies) into
random groups

• Poor mixing
• Slow convergence

Runtime in sec (30 epoches in total)
0 1000 2000 3000 4000 5000 6000

Te
st

in
g

R
M

SE

1.2

1.4

1.6

1.8

2

2.2

2.4

C-SGD at k=2048
GraphChi SGD at k=2048
Fast SGLD at k=2048

Marianas Labs

Details
• Parameter Server Basics  

Logistic Regression (Classification)
• Large Distributed State  

Factorization Machines (CTR)
• Memory Subsystem  

Matrix Factorization (Recommender)
• GPUs  

Deep Learning (Images)

github.com/dmlc

http://github.com/dmlc

Marianas Labs

The Challenge
• Multiple good single-machine toolkits

• Caffe - convolution optimized (images)
• CXXNET - good tensor library
• Minerva - Scheduler & Layout on CPU/GPU
• Torch - Lua + interesting C preprocessor 

(very very popular, though)
• Theano - Deep network compiler built by ML

• Don’t reinvent the wheel for deep learning
• Integrate with parameter server

Marianas Labs

Minerva (dmlc/minerva)
• Tensor interface in python (similar to numpy)
• Dataflow engine
• Auto parallel execution

• On multi-core CPU
• On multi-GPU

• Optimizes layout automatically

Zhang et al, ’14 (NIPS workshop)

Marianas Labs

Minerva Scaling

Images/
second AlexNet VGGNet GoogLeNet

1 card 189.63 14.37 82.47
2 cards 371.01 29.58 160.53

4 cards 632.09 50.26 309.27

Marianas Labs

Distributed Deep Learning

Marianas Labs

Distributed Deep Learning

Marianas Labs

Scaling on AWS g2.2xlarge

1Gbit network limit
(alexnet scaling)

Marianas Labs

Amazon just released g2.8xlarge …
• 12 instances (48 GPUs) @ $0.50/h spot
• Minibatch size 512
• BSP with 1 delay between machines
• 2 GB/s bandwidth between machines (awful)

10.113.170.187,10.157.109.227, 10.169.170.55, 10.136.52.151, 10.45.64.250, 10.166.137.100,  
10.97.167.10, 10.97.187.157, 10.61.128.107, 10.171.105.160, 10.203.143.220, 10.45.71.20 (all over the place in availability zone)

• Compressing to 1 byte per coordinate helps a bit
but adds latency due to extra pass (need to fix)

• 37x speedup on 48 GPUS
• Imagenet’12 dataset in trained in 4h, i.e. $24  

(with alexnet; googlenet even better for network)

Marianas Labs

Summary
• Parameter Server Basics  

Logistic Regression
• Large Distributed State  

Factorization Machines
• Memory Subsystem  

Matrix Factorization
• GPUs  

Deep Learning
• Much more - Topic Models, NLP 

Docker, Sketches, Fault Tolerance

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Data (local or cloud)

read

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

write

Data (local or cloud)

local
state

(or copy)

update

Server

Server

We are hiring!

