
Feature Hashing for Large Scale Multitask Learning

Kilian Weinberger KILIAN@YAHOO-INC.COM
Anirban Dasgupta ANIRBAN@YAHOO-INC.COM
John Langford JL@HUNCH.NET
Alex Smola ALEX@SMOLA.ORG
Josh Attenberg JOSH@CIS.POLY.EDU

Yahoo! Research, 2821 Mission College Blvd., Santa Clara, CA 95051 USA

Abstract
Empirical evidence suggests that hashing is an
effective strategy for dimensionality reduction
and practical nonparametric estimation. In this
paper we provide exponential tail bounds for fea-
ture hashing and show that the interaction be-
tween random subspaces is negligible with high
probability. We demonstrate the feasibility of
this approach with experimental results for a new
use case — multitask learning with hundreds of
thousands of tasks.

1. Introduction
Kernel methods use inner products as the basic tool for
comparisons between objects. That is, given objects
x1, . . . , xn ∈ X for some domain X, they rely on

k(xi, xj) := 〈φ(xi), φ(xj)〉 (1)

to compare the features φ(xi) of xi and φ(xj) of xj respec-
tively.

Eq. (1) is often famously referred to as the kernel-trick. It
allows the use of inner products between very high dimen-
sional feature vectors φ(xi) and φ(xj) implicitly through
the definition of a positive semi-definite kernel matrix k
without ever having to compute a vector φ(xi) directly.
This can be particularly powerful in classification settings
where the original input representation has a non-linear de-
cision boundary. Often, linear separability can be achieved
in a high dimensional feature space φ(xi).

In practice, for example in text classification, researchers
frequently encounter the opposite problem: the original in-
put space is almost linearly separable (often because of the

Appearing in Proceedings of the 26 th International Conference
on Machine Learning, Montreal, Canada, 2009. Copyright 2009
by the author(s)/owner(s).

existence of handcrafted non-linear features), yet, the train-
ing set may be prohibitively large in size and very high di-
mensional. In such a case, there is no need to map the input
vectors into a higher dimensional feature space. Instead,
limited memory makes storing a kernel matrix infeasible.

For this common scenario several authors have recently
proposed an alternative, but highly complimentary vari-
ation of the kernel-trick, which we refer to as the
hashing-trick: one hashes the high dimensional input vec-
tors x into a lower dimensional feature space Rm with
φ : X→ Rm (Langford et al., 2007; Shi et al., 2009). The
parameter vector of a classifier can therefore live in Rm in-
stead of in the original input spaceRd (or in Rn in the case
of kernel matrices), where m � n and m � d. Different
from random projections, the hashing-trick preserves spar-
sity and introduces no additional overhead to store projec-
tion matrices.

To our knowledge, we are the first to provide exponential
tail bounds on the canonical distortion of these hashed inner
products. We also show that the hashing-trick can be partic-
ularly powerful in multi-task learning scenarios where the
original feature spaces are the cross-product of the data, X,
and the set of tasks, U . We show that one can use differ-
ent hash functions for each task φ1, . . . , φ|U |, to map the
data into one joint space with little interference. Sharing
amongst the different tasks is achieved with an additional
hash function φ0 that also maps into the same joint space.
The hash function φ0 is shared amongst all |U | tasks and
allows to learn their common components.

While many potential applications exist for the hashing-
trick, as a particular case study we focus on collaborative
email spam filtering. In this scenario, hundreds of thou-
sands of users collectively label emails as spam or not-
spam, and each user expects a personalized classifier that
reflects their particular preferences. Here, the set of tasks,
U , is the number of email users (this can be very large for
open systems such as Yahoo MailTMor GmailTM), and the
feature space spans the union of vocabularies in multitudes

Feature Hashing for Large Scale Multitask Learning

of languages.

This paper makes four main contributions: 1. In sec-
tion 2 we introduce specialized hash functions with unbi-
ased inner-products that are directly applicable to a large
variety of kernel-methods. 2. In section 3 we provide ex-
ponential tail bounds that help explain why hashed feature
vectors have repeatedly lead to, at times surprisingly, strong
empirical results. 3. In the same chapter we show that
the interference between independently hashed subspaces
is negligible with high probability, which allows large-scale
multi-task learning in a very compressed space. 4. In sec-
tion 5 we introduce collaborative email-spam filtering as a
novel application for hash representations and provide ex-
perimental results on large-scale real-world spam data sets.

2. Hash Functions
We introduce a variant on the hash kernel proposed by (Shi
et al., 2009). This scheme is modified through the introduc-
tion of a signed sum of hashed features whereas the original
hash kernels use an unsigned sum. This modification leads
to an unbiased estimate, which we demonstrate and further
utilize in the following section.

Definition 1 Denote by h a hash function h : N →
{1, . . . ,m}. Moreover, denote by ξ a hash function ξ :
N → {±1}. Then for vectors x, x′ ∈ `2 we define the
hashed feature map φ and the corresponding inner product
as

φ
(h,ξ)
i (x) =

∑
j:h(j)=i

ξ(j)xj (2)

and 〈x, x′〉φ :=
〈
φ(h,ξ)(x), φ(h,ξ)(x′)

〉
. (3)

Although the hash functions in definition 1 are defined over
the natural numbers N, in practice we often consider hash
functions over arbitrary strings. These are equivalent, since
each finite-length string can be represented by a unique nat-
ural number. Usually, we abbreviate the notation φ(h,ξ)(·)
by just φ(·). Two hash functions φ and φ′ are different
when φ = φ(h,ξ) and φ′ = φ(h′,ξ′) such that either h′ 6= h
or ξ 6= ξ′. The purpose of the binary hash ξ is to remove
the bias inherent in the hash kernel of (Shi et al., 2009).

In a multi-task setting, we obtain instances in combina-
tion with tasks, (x, u) ∈ X × U . We can naturally ex-
tend our definition 1 to hash pairs, and will write φu(x) =
φ((x, u)).

3. Analysis
The following section is dedicated to theoretical analysis
of hash kernels and their applications. In this sense, the

present paper continues where (Shi et al., 2009) falls short:
we prove exponential tail bounds. These bounds hold for
general hash kernels, which we later apply to show how
hashing enables us to do large-scale multitask learning ef-
ficiently. We start with a simple lemma about the bias and
variance of the hash kernel. The proof of this lemma ap-
pears in appendix A.

Lemma 2 The hash kernel is unbiased, that is
Eφ[〈x, x′〉φ] = 〈x, x′〉. Moreover, the variance is

σ2
x,x′ = 1

m

(∑
i 6=j x

2
ix
′
j
2 + xix

′
ixjx

′
j

)
, and thus, for

‖x‖2 = ‖x′‖2 = 1, σ2
x,x′ = O

(
1
m

)
.

This suggests that typical values of the hash kernel should
be concentrated within O(1√

m
) of the target value. We use

Chebyshev’s inequality to show that half of all observations
are within a range of

√
2σ. This, together with Talagrand’s

convex distance inequality, enables us to construct expo-
nential tail bounds.

3.1. Concentration of Measure Bounds

In this subsection we show that under a hashed feature-map
the length of each vector is preserved with high probability.
Talagrand’s inequality (Ledoux, 2001) is a key tool for the
proof of the following theorem (detailed in the appendix B).

Theorem 3 Let ε < 1 be a fixed constant and x be a given
instance. Let η = ‖x‖∞

‖x‖2 . Under the assumptions above, the
hash kernel satisfies the following inequality

Pr

{
| ‖x‖2φ − ‖x‖

2
2 |

‖x‖22
≥
√

2σx,x + ε

}
≤ exp

(
−
√
ε

4η

)
.

Note that an analogous result would also hold for the orig-
inal hash kernel of (Shi et al., 2009), the only modifica-
tion being the associated bias terms. The above result can
also be utilized to show a concentration bound on the inner
product between two general vectors x and x′.

Corollary 4 For two vectors x and x′, let us define

σ := max(σx,x, σx′,x′ , σx−x′,x−x′)

η := min
(
‖x‖∞
‖x‖2

,
‖x′‖∞
‖x′‖2

,
‖x− x′‖∞
‖x− x′‖2

)
.

Also let ∆ = ‖x‖2 + ‖x′‖2 + ‖x− x′‖2. Under the as-
sumptions above, we have that

Pr
[
| 〈x, x′〉φ−〈x, x

′〉 |>(
√

2σ+ε)∆/2
]
<3e−

√
ε

4η .

The proof for this corollary can be found in appendix C. We
can also extend the bound in Theorem 3 for the maximal

Feature Hashing for Large Scale Multitask Learning

canonical distortion over large sets of distances between
vectors as follows:

Corollary 5 Denote by X = {x1, . . . , xn} a set of vectors
which satisfy ‖xi − xj‖∞ ≤ η ‖xi − xj‖2 for all pairs i, j.
In this case with probability 1− δ we have for all i, j

| ‖xi − xj‖2φ − ‖xi − xj‖
2
2 |

‖xi − xj‖22
≤
√

2
m

+ 64η2 log2 n
2δ .

This means that the number of observations n (or corre-
spondingly the size of the un-hashed kernel matrix) only
enters logarithmically in the analysis.

Proof We apply the bound of Theorem 3 to each dis-
tance individually. Note the bound σ2 ≤ 1

m for all nor-
malized vectors. Also, since we have n(n−1)

2 pairs of dis-
tances the union bound yields a corresponding factor. Solv-

ing δ ≥ n(n−1)
2 e−

√
ε

4η for ε and easy inequalities proves the
claim.

3.2. Multiple Hashing

Note that the tightness of the union bound in Corollary 5
depends crucially on the magnitude of η. In other words,
for large values of η, that is, whenever some terms in x
are very large, even a single collision can already lead to
significant distortions of the embedding. This issue can
be amended by trading off sparsity with variance. A vec-
tor of unit length may be written as (1, 0, 0, 0, . . .), or
as
(

1√
2
, 1√

2
, 0, . . .

)
, or more generally as a vector with c

nonzero terms of magnitude c−
1
2 . This is relevant, for in-

stance whenever the magnitudes of x follow a known pat-
tern, e.g. when representing documents as bags of words
since we may simply hash frequent words several times.
The following corollary gives an intuition as to how the
confidence bounds scale in terms of the replications:

Lemma 6 If we let x′ = 1√
c
(x, . . . , x) then:

1. It is norm preserving: ‖x‖2 = ‖x′‖2 .

2. It reduces component magnitude by 1√
c

=
‖x′‖∞
‖x‖∞

.

3. Variance increases to σ2
x′,x′=

1
cσ

2
x,x+ c−1

c 2 ‖x‖42 .

Applying Lemma 6 to Theorem 3, a large magnitude can
be decreased at the cost of an increased variance.

3.3. Approximate Orthogonality

For multitask learning, we must learn a different parameter
vector for each related task. When mapped into the same

hash-feature space we want to ensure that there is little in-
teraction between the different parameter vectors. Let U be
a set of different tasks, u ∈ U being a specific one. Letw be
a combination of the parameter vectors of tasks in U \ {u}.
We show that for any observation x for task u, the inter-
action of w with x in the hashed feature space is minimal.
For each x, let the image of x under the hash feature-map
for task u be denoted as φu(x) = φ(ξ,h)((x, u)).

Theorem 7 Let w ∈ Rm be a parameter vector for tasks
in U \ {u}. In this case the value of the inner product
〈w, φu(x)〉 is bounded by

Pr {|〈w, φu(x)〉| > ε} ≤ 2e
− ε2/2
m−1‖w‖22‖x‖

2
2+ε‖w‖∞‖x‖∞/3

Proof We use Bernstein’s inequality (Bernstein, 1946),
which states that for independent random variables Xj ,
with E [Xj] = 0, if C > 0 is such that |Xj | ≤ C, then

Pr

 n∑
j=1

Xj>t

≤exp

(
− t2/2∑n

j=1 E
[
X2
j

]
+ Ct/3

)
. (4)

We have to compute the concentration property of
〈w, φu(x)〉 =

∑
j xjξ(j)wh(j). Let Xj = xjξ(j)wh(j).

By the definition of h and ξ, Xj are independent. Also,
for each j, since w depends only on the hash-functions for
U \ {u}, wh(j) is independent of ξ(j). Thus, E[Xj] =
E(ξ,h)

[
xjξ(j)wh(j)

]
= 0. For each j, we also have |Xj | <

‖x‖∞ ‖w‖∞ =: C. Finally,
∑
j E[X2

j] is given by

E

∑
j

(xjξ(j)wh(j))2

 = 1
m

∑
j,`

x2
jw

2
` = 1

m ‖x‖
2
2 ‖w‖

2
2

The claim follows by plugging both terms and C into the
Bernstein inequality (4).

Theorem 7 bounds the influence of unrelated tasks with any
particular instance. In section 5 we demonstrate the real-
world applicability with empirical results on a large-scale
multi-task learning problem.

4. Applications
The advantage of feature hashing is that it allows for sig-
nificant storage compression for parameter vectors: storing
w in the raw feature space naı̈vely requires O(d) numbers,
when w ∈ Rd. By hashing, we are able to reduce this to
O(m) numbers while avoiding costly matrix-vector multi-
plications common in Locality Sensitive Hashing. In addi-
tion, the sparsity of the resulting vector is preserved.

Feature Hashing for Large Scale Multitask Learning

The benefits of the hashing-trick leads to applications in
almost all areas of machine learning and beyond. In par-
ticular, feature hashing is extremely useful whenever large
numbers of parameters with redundancies need to be stored
within bounded memory capacity.

Personalization (Daume, 2007) introduced a very sim-
ple but strikingly effective method for multitask learning.
Each task updates its very specific own (local) weights and
a set of common (global) weights that are shared amongst
all tasks. Theorem 7 allows us to hash all these multiple
classifiers into one feature space with little interaction. To
illustrate, we explore this setting in the context of spam-
classifier personalization.

Suppose we have thousands of users U and want to per-
form related but not identical classification tasks for each
of the them. Users provide labeled data by marking emails
as spam or not-spam. Ideally, for each user u ∈ U , we
want to learn a predictor wu based on the data of that user
solely. However, webmail users are notoriously lazy in la-
beling emails and even those that do not contribute to the
training data expect a working spam filter. Therefore, we
also need to learn an additional global predictorw0 to allow
data sharing amongst all users.

Storing all predictors wi requires O(d × (|U | + 1)) mem-
ory. In a task like collaborative spam-filtering, |U |, the
number of users can be in the hundreds of thousands and
the size of the vocabulary is usually in the order of mil-
lions. The naı̈ve way of dealing with this is to elimi-
nate all infrequent tokens. However, spammers target this
memory-vulnerability by maliciously misspelling words
and thereby creating highly infrequent but spam-typical
tokens that “fall under the radar” of conventional classi-
fiers. Instead, if all words are hashed into a finite-sized
feature vector, infrequent but class-indicative tokens get a
chance to contribute to the classification outcome. Further,
large scale spam-filters (e.g. Yahoo MailTMor GMailTM)
typically have severe memory and time constraints, since
they have to handle billions of emails per day. To guaran-
tee a finite-size memory footprint we hash all weight vec-
tors w0, . . . , w|U | into a joint, significantly smaller, feature
space Rm with different hash functions φ0, . . . , φ|U |. The
resulting hashed-weight vector wh ∈ Rm can then be writ-
ten as:

wh = φ0(w0) +
∑
u∈U

φu(wu). (5)

Note that in practice the weight vector wh can be learned
directly in the hashed space. All un-hashed weight vectors
never need to be computed. Given a new document/email
x of user u ∈ U , the prediction task now consists of calcu-
lating 〈φ0(x) + φu(x), wh〉. Due to hashing we have two
sources of error – distortion εd of the hashed inner prod-
ucts and the interference with other hashed weight vectors

εi. More precisely:

〈φ0(x) + φu(x), wh〉 = 〈x,w0 + wu〉+ εd + εi. (6)

The interference error consists of all collisions between
φ0(x) or φu(x) with hash functions of other users,

εi=
∑

v∈U,v 6=0

〈φ0(x), φv(wv)〉+
∑

v∈U,v 6=u

〈φu(x), φv(wv)〉 . (7)

To show that εi is small with high probability we can
apply Theorem 7 twice, once for each term of (7).
We consider each user’s classification to be a separate
task, and since

∑
v∈U,v 6=0 wv is independent of the hash-

function φ0, the conditions of Theorem 7 apply with w =∑
v 6=0 wv and we can employ it to bound the second term,∑
v∈U,v 6=0 〈φu(x), φu(wv)〉. The second application is

identical except that all subscripts “0” are substituted with
“u”. For lack of space we do not derive the exact bounds.

The distortion error occurs because each hash function that
is utilized by user u can self-collide:

εd =
∑

v∈{u,0}

| 〈φv(x), φv(wv)〉 − 〈x,wv〉 |. (8)

To show that εd is small with high probability, we apply
Corollary 4 once for each possible values of v.

In section 5 we show experimental results for this set-
ting. The empirical results are stronger than the theoretical
bounds derived in this subsection—our technique outper-
forms a single global classifier on hundreds thousands of
users. In the same section we provide an intuitive explana-
tion for these strong results.

Massively Multiclass Estimation We can also regard
massively multi-class classification as a multitask problem,
and apply feature hashing in a way similar to the person-
alization setting. Instead of using a different hash func-
tion for each user, we use a different hash function for each
class.

(Shi et al., 2009) apply feature hashing to problems with
a high number of categories. They show empirically that
joint hashing of the feature vector φ(x, y) can be efficiently
achieved for problems with millions of features and thou-
sands of classes.

Collaborative Filtering Assume that we are given a very
large sparse matrix M where the entry Mij indicates what
action user i took on instance j. A common example for
actions and instances is user-ratings of movies (Bennett &
Lanning, 2007). A successful method for finding common
factors amongst users and instances for predicting unob-
served actions is to factorize M into M = U>W . If we

Feature Hashing for Large Scale Multitask Learning

NEU
Votre

Apotheke
...

1
0
-1
0
0
-1
0
1
0
...

text document (email) bag of words hashed,
sparse vector

x NEU
USER123_NEU

Votre
USER123_Votre

Apotheke
USER123_Apotheke

...

φ

φ0(x)+φu(x)

bag of words
(personalized)

Figure 1. The hashed personalization summarized in a schematic
layout. Each token is duplicated and one copy is individualized
(e.g. by concatenating each word with a unique user identifier).
Then, the global hash function maps all tokens into a low dimen-
sional feature space where the document is classified.

have millions of users performing millions of actions, stor-
ing U and W in memory quickly becomes infeasible. In-
stead, we may choose to compress the matrices U and W
using hashing. For U,W ∈ Rn×d denote by u,w ∈ Rm
vectors with

ui =
∑

j,k:h(j,k)=i

ξ(j, k)Ujk and wi =
∑

j,k:h′(j,k)=i

ξ′(j, k)Wjk.

where (h, ξ) and (h′, ξ′) are independently chosen hash
functions. This allows us to approximate matrix elements
Mij = [U>W]ij via

Mφ
ij :=

∑
k

ξ(k, i)ξ′(k, j)uh(k,i)wh′(k,j).

This gives a compressed vector representation of M that
can be efficiently stored.

5. Results
We evaluated our algorithm in the setting of personaliza-
tion. As data set, we used a proprietary email spam-
classification task of n = 3.2 million emails, properly
anonymized, collected from |U | = 433167 users. Each
email is labeled as spam or not-spam by one user in U . Af-
ter tokenization, the data set consists of 40 million unique
words.

For all experiments in this paper, we used the Vowpal Wab-
bit implementation1 of stochastic gradient descent on a
square-loss. In the mail-spam literature the misclassifica-
tion of not-spam is considered to be much more harmful
than misclassification of spam. We therefore follow the
convention to set the classification threshold during test
time such that exactly 1% of the not − spam test data is
classified as spam Our implementation of the personalized
hash functions is illustrated in Figure 1. To obtain a person-
alized hash function φu for user u, we concatenate a unique

1http://hunch.net/∼vw/

!"#$%
!"#&% !"##% !"##% !%

!"!'%

#"$'%

#"(#%

#")$% #")(%

#"##%

#"'#%

#"*#%

#")#%

#"$#%

!"##%

!"'#%

!$% '#% ''% '*% ')%

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

+,-./,01/2134%

5362-7/,8934%

./23,873%

Figure 2. The decrease of uncaught spam over the baseline clas-
sifier averaged over all users. The classification threshold was
chosen to keep the not-spam misclassification fixed at 1%.
The hashed global classifier (global-hashed) converges relatively
soon, showing that the distortion error εd vanishes. The personal-
ized classifier results in an average improvement of up to 30%.

user-id to each word in the email and then hash the newly
generated tokens with the same global hash function.

The data set was collected over a span of 14 days. We
used the first 10 days for training and the remaining 4 days
for testing. As baseline, we chose the purely global classi-
fier trained over all users and hashed into 226 dimensional
space. As 226 far exceeds the total number of unique words
we can regard the baseline to be representative for the clas-
sification without hashing. All results are reported as the
amount of spam that passed the filter undetected, relative
to this baseline (eg. a value of 0.80 indicates a 20% reduc-
tion in spam for the user)2.

Figure 2 displays the average amount of spam in users’ in-
boxes as a function of the number of hash keys m, relative
to the baseline above. In addition to the baseline, we eval-
uate two different settings.

The global-hashed curve represents the relative
spam catch-rate of the global classifier after hashing
〈φ0(w0), φ0(x)〉. At m = 226 this is identical to the
baseline. Early convergence at m = 222 suggests that at
this point hash collisions have no impact on the classifi-
cation error and the baseline is indeed equivalent to that
obtainable without hashing.

In the personalized setting each user u ∈ U gets her own
classifier φu(wu) as well as the global classifier φ0(w0).
Without hashing the feature space explodes, as the cross
product of u = 400K users and n = 40M tokens results
in 16 trillion possible unique personalized features. Fig-
ure 2 shows that despite aggressive hashing, personaliza-
tion results in a 30% spam reduction once the hash table is
indexed by 22 bits.

2As part of our data sharing agreement, we agreed not to in-
clude absolute classification error-rates.

Feature Hashing for Large Scale Multitask Learning

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

(#%"

('" $!" $$" $%" $&"

!"
#
$
%$

&!
!'
(#
)*
%+
(*
,#
-
.
*
%)
/
%0
#
!*
,&
1
*
2%

0%0&)!%&1%3#!3')#0,*%

)!*"

)(*"

)$+,*"

)%+-*"

)'+(.*"

)(&+,(*"

),$+&%*"

)&%+/0"

12345674"

Figure 3. Results for users clustered by training emails. For ex-
ample, the bucket [8, 15] consists of all users with eight to fifteen
training emails. Although users in buckets with large amounts of
training data do benefit more from the personalized classifier (up-
to 65% reduction in spam), even users that did not contribute to
the training corpus at all obtain almost 20% spam-reduction.

User clustering One hypothesis for the strong results in
Figure 2 might originate from the non-uniform distribution
of user votes — it is possible that by using personalization
and feature hashing we benefit a small number of users who
have labeled many emails, degrading the performance of
most users (who have labeled few or no emails) in the pro-
cess. In fact, in real life, a large fraction of email users do
not contribute at all to the training corpus and only interact
with the classifier during test time. The personalized ver-
sion of the test email φu(xu) is then hashed into buckets
of other tokens and only adds interference noise εi to the
classification.

To show that we improve the performance of most users,
it is therefore important that we not only report averaged
results over all emails, but explicitly examine the effects
of the personalized classifier for users depending on their
contribution to the training set. To this end, we place users
into exponentially growing buckets based on their num-
ber of training emails and compute the relative reduction
of uncaught spam for each bucket individually. Figure 3
shows the results on a per-bucket basis. We do not compare
against a purely local approach, with no global component,
since for a large fraction of users—those without training
data—this approach cannot outperform random guessing.
It might appear surprising that users in the bucket with none
or very little training emails (the line of bucket [0] is iden-
tical to bucket [1]) also benefit from personalization. After
all, their personalized classifier was never trained and can
only add noise at test-time. The classifier improvement of
this bucket can be explained by the subjective definition of
spam and not-spam. In the personalized setting the indi-
vidual component of user labeling is absorbed by the local
classifiers and the global classifier represents the common
definition of spam and not-spam. In other words, the global
part of the personalized classifier obtains better generaliza-
tion properties, benefiting all users.

6. Related Work
A number of researchers have tackled related, albeit differ-
ent problems.

(Rahimi & Recht, 2008) use Bochner’s theorem and sam-
pling to obtain approximate inner products for Radial Ba-
sis Function kernels. (Rahimi & Recht, 2009) extend this
to sparse approximation of weighted combinations of ba-
sis functions. This is computationally efficient for many
function spaces. Note that the representation is dense.

(Li et al., 2007) take a complementary approach: for sparse
feature vectors, φ(x), they devise a scheme of reducing the
number of nonzero terms even further. While this is in prin-
ciple desirable, it does not resolve the problem of φ(x) be-
ing high dimensional. More succinctly, it is necessary to
express the function in the dual representation rather than
expressing f as a linear function, where w is unlikely to be
compactly represented: f(x) = 〈φ(x), w〉.

(Achlioptas, 2003) provides computationally efficient ran-
domization schemes for dimensionality reduction. Instead
of performing a dense d ·m dimensional matrix vector mul-
tiplication to reduce the dimensionality for a vector of di-
mensionality d to one of dimensionality m, as is required
by the algorithm of (Gionis et al., 1999), he only requires 1

3
of that computation by designing a matrix consisting only
of entries {−1, 0, 1}.

(Shi et al., 2009) propose a hash kernel to deal with the is-
sue of computational efficiency by a very simple algorithm:
high-dimensional vectors are compressed by adding up all
coordinates which have the same hash value — one only
needs to perform as many calculations as there are nonzero
terms in the vector. This is a significant computational sav-
ing over locality sensitive hashing (Achlioptas, 2003; Gio-
nis et al., 1999).

Several additional works provide motivation for the investi-
gation of hashing representations. For example, (Ganchev
& Dredze, 2008) provide empirical evidence that the
hashing-trick can be used to effectively reduce the memory
footprint on many sparse learning problems by an order of
magnitude via removal of the dictionary. Our experimen-
tal results validate this, and show that much more radical
compression levels are achievable. In addition, (Langford
et al., 2007) released the Vowpal Wabbit fast online learn-
ing software which uses a hash representation similar to
that discussed here.

7. Conclusion
In this paper we analyze the hashing-trick for dimensional-
ity reduction theoretically and empirically. As part of our
theoretical analysis we introduce unbiased hash functions
and provide exponential tail bounds for hash kernels. These

Feature Hashing for Large Scale Multitask Learning

give further insight into hash-spaces and explain previously
made empirical observations. We also derive that random
subspaces of the hashed space are likely to not interact,
which makes multitask learning with many tasks possible.

Our empirical results validate this on a real-world applica-
tion within the context of spam filtering. Here we demon-
strate that even with a very large number of tasks and
features, all mapped into a joint lower dimensional hash-
space, one can obtain impressive classification results with
finite memory guarantee.

References
Achlioptas, D. (2003). Database-friendly random projec-

tions: Johnson-lindenstrauss with binary coins. Journal
of Computer and System Sciences, 66, 671–687.

Bennett, J., & Lanning, S. (2007). The Netflix Prize. Pro-
ceedings of Conference on Knowledge Discovery and
Data Mining Cup and Workshop 2007.

Bernstein, S. (1946). The theory of probabilities. Moscow:
Gastehizdat Publishing House.

Daume, H. (2007). Frustratingly easy domain adaptation.
Annual Meeting of the Association for Computational
Linguistics (p. 256).

Ganchev, K., & Dredze, M. (2008). Small statistical mod-
els by random feature mixing. Workshop on Mobile Lan-
guage Processing, Annual Meeting of the Association for
Computational Linguistics.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity
search in high dimensions via hashing. Proceedings of
the 25th VLDB Conference (pp. 518–529). Edinburgh,
Scotland: Morgan Kaufmann.

Langford, J., Li, L., & Strehl, A. (2007). Vow-
pal wabbit online learning project (Technical Report).
http://hunch.net/?p=309.

Ledoux, M. (2001). The concentration of measure phe-
nomenon. Providence, RI: AMS.

Li, P., Church, K., & Hastie, T. (2007). Conditional random
sampling: A sketch-based sampling technique for sparse
data. In B. Schölkopf, J. Platt and T. Hoffman (Eds.),
Advances in neural information processing systems 19,
873–880. Cambridge, MA: MIT Press.

Rahimi, A., & Recht, B. (2008). Random features for large-
scale kernel machines. In J. Platt, D. Koller, Y. Singer
and S. Roweis (Eds.), Advances in neural information
processing systems 20. Cambridge, MA: MIT Press.

Rahimi, A., & Recht, B. (2009). Randomized kitchen
sinks. In L. Bottou, Y. Bengio, D. Schuurmans and
D. Koller (Eds.), Advances in neural information pro-
cessing systems 21. Cambridge, MA: MIT Press.

Shi, Q., Petterson, J., Dror, G., Langford, J., Smola, A.,
Strehl, A., & Vishwanathan, V. (2009). Hash kernels.
Proc. Intl. Workshop on Artificial Intelligence and Statis-
tics 12.

A. Mean and Variance
Proof [Lemma 2] To compute the expectation we expand

〈x, x′〉φ =
∑
i,j

ξ(i)ξ(j)xix′jδh(i),h(j). (9)

Since Eφ[〈x, x′〉φ] = Eh[Eξ[〈x, x′〉φ]], taking expecta-
tions over ξ we see that only the terms i = j have nonzero
value, which shows the first claim. For the variance we
compute Eφ[〈x, x′〉2φ]. Expanding this, we get:

〈x, x′〉2φ=
∑
i,j,k,l

ξ(i)ξ(j)ξ(k)ξ(l)xix′jxkx
′
lδh(i),h(j)δh(k),h(l).

This expression can be simplified by noting that:

Eξ [ξ(i)ξ(j)ξ(k)ξ(l)]=δijδkl+[1−δijkl](δikδjl + δilδjk).

Passing the expectation over ξ through the sum, this allows
us to break down the expansion of the variance into two
terms.

Eφ[〈x, x′〉2φ] =
∑
i,k

xix
′
ixkx

′
k +

∑
i 6=j

x2
ix
′
j
2Eh

[
δh(i),h(j)

]
+
∑
i6=j

xix
′
ixjx

′
jEh

[
δh(i),h(j)

]

= 〈x, x′〉2 +
1
m

∑
i 6=j

x2
ix
′
j
2 +

∑
i 6=j

xix
′
ixjx

′
j

by noting that Eh

[
δh(i),h(j)

]
= 1

m for i 6= j. Using the fact
that σ2 = Eφ[〈x, x′〉2φ]−Eφ[〈x, x′〉φ]2 proves the claim.

B. Concentration of Measure
Our proof uses Talagrand’s convex distance inequality. We
first define a weighted Hamming distance function between
two hash-function φ and φ′ as follows.

d(φ, φ′) = sup
‖α‖2≤1

∑
i

αiI(h(i) 6= h′(i) or ξ(i) 6= ξ′(i))

=
√
| {i : h(i) 6= h′(i) or ξ(i) 6= ξ′(i)} |

Feature Hashing for Large Scale Multitask Learning

Next denote by d(φ,A) the distance between a hash func-
tion and a set A of hash functions, that is d(φ,A) =
infφ′∈A d(φ, φ′). In this case Talagrand’s convex distance
inequality (Ledoux, 2001) holds. If Pr(A) denotes the total
probability mass of the set A, then

Pr {d(φ,A) ≥ s} ≤ [Pr(A)]−1
e−s

2/4. (10)

Proof [Theorem 3] Without loss of generality assume that
‖x‖2 = 1. We can then easily generalize to the general x
case. From Lemma 2 it follows that the variance of ‖x‖2φ is
given by σ2

x,x = 2
N [1− ‖x‖44] and E(‖x‖2φ) = 1.

Chebyshev’s inequality states that P (|X − E(X)| ≤√
2σ) ≥ 1

2 . We can therefore denote

A :=
{
φ where

∣∣∣‖x‖2φ − 1
∣∣∣ ≤ √2σx,x

}
.

and obtain Pr(A) ≥ 1
2 . From Talagrand’s inequality (10)

we know that Pr({φ : d(φ,A) ≥ s}) ≤ 2e−s
2/4. Now as-

sume that we have a pair of hash functions φ and φ′, with
φ′ ∈ A. Let us define the difference of their hashed inner-
products as δ := ‖x‖2φ − 〈x, x〉φ′ . By the triangle inequal-
ity and because φ′ ∈ A, we can state that∣∣∣‖x‖2φ − 1

∣∣∣ ≤ ∣∣∣‖x‖2φ − 〈x, x〉φ′ ∣∣∣+
∣∣∣〈x, x〉φ′ − 1

∣∣∣
≤ |δ|+

√
2σ. (11)

Let us now denote the coordinate-wise difference between
the hashed features as vi := φ′i(x) − φi(x). With this def-
inition, we can express δ in terms of v: δ =

∑
i φi(x)2 −

φ′i(x)2 = −2 〈φ′(x), v〉 + ‖v‖22. By applying the Cauchy-
Schwartz inequality to the inner product 〈φ′(x), v〉, we ob-
tain |δ| ≤ 2‖φ′(x)‖2‖v‖2 + ‖v‖22. Plugging this into (11)
leads us to∣∣∣‖x‖2φ − 1

∣∣∣ ≤ 2‖φ′(x)‖2‖v‖2 + ‖v‖22 +
√

2σx,x. (12)

Next, we bound ‖v‖2 in terms of d(φ, φ′). To do this, ex-
pand vi =

∑
j xj(ξ

′
jδh′(j)i− ξjδh(j)i). As ξj ∈ {+1,−1},

we know that |ξj − ξ′j | ≤ 2. Further, xj ≤ ‖x‖∞ and we
can write

|vi| ≤ 2 ‖x‖∞
∑
j

δh(j)i + δh′(j)i. (13)

We can now make two observations: First note that∑
i

∑
j δh(j)i+δh′(j)i is at most 2twhere t = |{j : h(j) 6=

h′(j)}|. Second, from the definition of the distance func-
tion, we get that d(φ, φ′) ≥

√
t. Putting these together,∑

i

|vi| ≤ 4 ‖x‖∞ t ≤ 4 ‖x‖∞ d2(φ, φ′)

‖vi‖22 =
∑
i

|vi|2 ≤ 16 ‖x‖2∞ d4(φ, φ′).

(The last inequality holds because in the worst case all mass
is concentrated in a single entry of vi.) As a next step we
will express ‖φ′(x)‖2 in terms of σx,x. Because φ′ ∈ A,
we obtain that

‖φ′(x)‖2 =
√
〈x, x〉φ′ ≤ (1+

√
2σx,x)1/2 ≤ 1+σx,x/

√
2.

To simplify our notation, let us define β = 1 + σx,x/
√

2.
Plugging our upper bounds for ‖v‖2 and ‖φ′(x)‖2 into (12)
leads to∣∣∣‖x‖2φ−1

∣∣∣≤8 ‖x‖∞βd
2(φ, φ′)(β+2 ‖x‖∞d

2(φ, φ′))+
√

2σ.

As we have not specified our particular choice of φ′, we
can now choose it to be the closest vector to φ within A,
ie such that d(φ, φ′) = d(φ,A). By Talagrand’s inequality,
we know that with probability at least 1−2e−s

2/4 we obtain
d(φ,A) ≤ s and therefore with high probability:∣∣∣‖x‖2φ − 1

∣∣∣ ≤ 8 ‖x‖∞ βs2 + 16 ‖x‖2∞ s4 +
√

2σ.

A change of variables s2 =
√
β2+ε−β
4‖x‖∞

gives us that∣∣∣‖x‖2φ − 1
∣∣∣ ≤ √2σ + ε w.p. 1 − 2e−s

2/4. Noting that

s2 = (
√
β2 + ε − β)/4 ‖x‖∞ ≥

√
ε/4 ‖x‖∞, lets us ob-

tain our final result∣∣∣‖x‖2φ − 1
∣∣∣ ≤ √2σ + ε w.p. 1− 2e−

√
ε/4‖x‖∞ .

Finally, for a general x, we can derive the above result for
y = x

‖x‖2 . Replacing ‖y‖∞ = ‖x‖∞
‖x‖2 we get the following

version for a general x,

Pr

{
| ‖x‖2φ − ‖x‖

2
2 |

‖x‖22
≥
√

2σx,x + ε

}
≤ exp

(
−
√
ε‖x‖2

4‖x‖∞

)

C. Inner Product
Proof [Corollary 4] We have that 2 〈x, x′〉φ = ‖x‖2φ +
‖x′‖2φ−‖x− x′‖

2
φ. Taking expectations, we have the stan-

dard inner product inequality. Thus,

|2 〈φu(x), φu(x)〉 − 2 〈x, x〉 | ≤ | ‖φu(x)‖2 − ‖x‖2 |

+ | ‖φu(x′)‖2 − ‖x′‖2 |+ | ‖φ(x− x′)‖2 − ‖x− x′‖2 |

Using union bound, with probability 1 − 3 exp
(
−
√
ε

4η

)
,

each of the terms above is bounded using Theorem 3. Thus,
putting the bounds together, we have that, with probability
1− 3 exp

(
−
√
ε

4η

)
,

|2 〈φu(x), φu(x)〉 − 2 〈x, x〉 | ≤

≤ (
√

2σ + ε)(‖x‖2 + ‖x′‖2 + ‖x− x′‖2)

