
Adaptive Collaborative Filtering

Markus Weimer
TU Darmstadt

Darmstadt, Germany
weimer@acm.org

Alexandros Karatzoglou
LITIS, INSA

Rouen, France
alexis@ci.tuwien.ac.at

Alex Smola
NICTA, Canberra 2601,

Australia
alex.smola@gmail.com

ABSTRACT
We present a flexible approach to collaborative filtering which
stems from basic research results. The approach is flexible
in several dimensions: We introduce an algorithm where the
loss can be tailored to a particular recommender problem.
This allows us to optimize the prediction quality in a way
that matters for the specific recommender system. The in-
troduced algorithm can deal with structured estimation of
the predictions for one user . The most prominent outcome
of this is the ability of learning to rank items along user pref-
erences. To this end, we also present a novel algorithm to
compute the ordinal loss in O(n logn) as apposed to O(n2).
We extend this basic model such that it can accommodate
user and item offsets as well as user and item features if they
are present. The latter unifies collaborative filtering with
content based filtering. We present an analysis of the algo-
rithm which shows desirable properties in terms of privacy
needs of users, parallelization of the algorithm as well as col-
laborative filtering as a service. We evaluate the algorithm
on data provided by WikiLens. This data is a cross-domain
data set as it contains ratings on items from a vast array of
categories. Evaluation shows that cross-domain prediction
is possible.

Categories and Subject Descriptors
H3.3 [Information Search and Retrieval]: Information
filtering—Collaborative Filtering ; H3.4 [Systems and Soft-
ware]: Performance evaluation (efficiency and effectiveness);
G3 [Probability and Statistics]: Correlation and regres-
sion analysis; G1.6 [Optimization]: Gradient methods—
Bundle Methods

General Terms
Algorithms, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’08, October 23–25, 2008, Lausanne, Switzerland.
Copyright 2008 ACM 978-1-60558-093-7/08/10 ...$5.00.

Keywords
Collaborative Filtering, Structured Estimation

1. INTRODUCTION
Customers of online businesses such as Netflix, Amazon

or iTunes are guided through the ever increasing number of
offerings via personalized recommendations. It comes as no
surprise that better recommender systems are a competitive
advantage in their business.

Research on better recommender systems is often targeted
at specific issues which give rise to specific algorithms. For
instance, collaborative filtering algorithms have the very de-
sirable property not to depend on features of the items of-
fered or the customers thereof. Instead, they rely on the
rating or purchase information alone.

This is a good thing, as features are hard to get for a
variety of reasons. First of all, users might be unwilling to
share their data beyond some ratings or even only the pur-
chase record. Second, many companies sell products from a
vast array of categories. This makes it hard or impossible to
come up with a consistent set of features to use across the
catalogue. And, last but not least: Feature extraction is a
laborious and error prone task.

On the other hand, features are often available and not
using them would be wasteful. Thus, recent work has fo-
cused on recommender systems that combine collaborative
filtering with feature based approaches [1]. In this paper, we
will contribute to this track of research and also add another
layer of adaptivity to collaborative filtering algorithms:

The term “better recommendations” frequently depends
on the particular needs of the service providers. In many
cases, a good predicted ranking of the items for a user along
her preferences is much more desirable than a correct predic-
tion of the actual rating. Recommendation systems should
thus be adaptable to predict the ranking correctly at the
expense of correct ratings.

Our Contribution.
We present an algorithm that stems from basic research

on matrix factorizations. Careful design and analysis of this
algorithm shows desirable properties:

• The algorithm does not depend on explicit features,
yet it can use them if present. Thus, it is suitable for
learning from multi category item sets where a com-
mon feature set is unobtainable.

• The algorithm can use a multitude of loss functions
to encode the notion of a “good” recommendation. It

275

is set up in a way to allow any kind of notion that
can be computed on the predictions for one user. One
specifically interesting case is the one of ranking.

• It does not need access to the actual ratings, but only
to loss values and gradients thereof (see below). Thus,
the rating data can be kept decentralized. This not
only reassures users, but also opens the door to another
application: Collaborative Filtering as a service, where
all customers benefit from each other without having
to share their data.

Additionally, we present a novel, efficient algorithm to
compute the ordinal regression loss and its gradient. This
algorithm does so in in O(n logn) time as apposed to O(n2)
of traditional approaches. We evaluate our algorithm on a
new data set which poses an interesting question: Whether
or not it is possible to do cross-domain collaborative filtering.
The data set as well as the code run for the experiments will
be made available after publishing.

The paper is organized as follows: Section 2 presents some
related work on factor models for collaborative filtering. Sec-
tion 3 describes the MMMF model underlying this work.
We present a formulation that allows arbitrary notions of
“good” recommendations to be optimized using the struc-
tured prediction framework. We also present two represen-
tative loss functions to do so. We performed experiments on
a multi-category data set. These experiments are described
in Section 4. We conclude the paper in Section 5 with some
remarks on future extensions.

2. RELATED WORK
Recommender algorithms are traditionally divided into

Content-based methods and Collaborative Filtering.
Content-based recommenders are based on methods that

operate on supplied data about the users and the items.
Typically, this data is in the form of text and text analysis
techniques are used to extract a set of attributes character-
izing an item or a user. Users and items are then matched
based on this set of attributes. Content-based methods
are limited by the availability and content of the data for
items and users. Collaborative filtering recommender sys-
tems avoid the problem of data availability by analyzing the
collective taste information of users. A third category of rec-
ommender systems are hybrid recommender systems which
essentially are based on a combination of a content-based
and collaborative filtering approach. Our system is mainly
a collaborative filtering system but can be easily extended
to a hybrid recommender system as we will describe bellow.

A common approach to collaborative filtering is to fit a
factor model to the data. For example by extracting a fea-
ture vector for each user and item in the data set such that
the inner product of these features minimizes an implicit or
explicit loss functional [3]. The underlying idea behind these
methods is that both user preferences and item properties
can be modeled by a number of factors.

The known rating data in a collaborative filtering based
recommender system can be thought of as a sparse n ×m
matrix Y of rating/purchase information, where n denotes
the number of users and m is the number of items. In this
context, Yij indicates the rating of item j given by user i.
Typically, the rating is given on a five star scale and thus
Y ∈ {0, . . . , 5}n×m, where the value 0 indicates that a user

did not rate an item. In this sense, 0 is special since it does
not indicate that a user dislikes an item but rather that data
is missing.

The basic idea of matrix factorization approaches is to
fit the original matrix Y with a low rank approximation
F . If F has rank k, user preferences are assumed to be
a linear combination of only k ’model’ preferences. The
approximation is usually found such that it minimizes the
sum of the squared distances between the known entries in
Y and their predictions in F . One possibility of doing so
is by using a Singular Value Decomposition (SVD) of Y
and by using only a small number of the vectors obtained
by this procedure. In the information retrieval community
this numerical operation is commonly referred to as Latent
Semantic Indexing.

Note, however, that this method does not do justice to
the way Y was formed. An entry Yij = 0 indicates that we
did not observe a (user,object) pair. It does, however, not
indicate that user i disliked object j. In [8], an alternative
approach is suggested, which is the basis of the method de-
scribed in this paper. We aim to find two matrices U and M
where U ∈ Rn×d and M ∈ Rd×m such that F = UM with
the goal to approximate the observed entries in Y rather
than approximating all entries at the same time.

In general, finding a globally optimal solution of the low
rank approximation problem is infeasible in practice: the
matrix norm proposed by [8] requires semi definite program-
ming, which is feasible only for hundreds, at most, thousands
of terms. Departing from this goal, Maximum Margin Ma-
trix Factorization (MMMF) aims at minimizing the Frobe-
nius norms of U and M , each of which is a convex problem
when taken in isolation and thus tractable by current opti-
mization techniques. It was shown in [9, 10] that optimizing
the Frobenius norm is a good proxy for optimizing the rank
in its application to model complexity control. Similar ideas
based on matrix factorization have been also proposed in [6,
11].

Real world recommender systems often only present a few
(typically ten) suggestions to the user which are ordered in
terms of that user’s predicted preferences. This observation
is key in the reasoning of [14]. In this work, the authors
propose to extend the general MMMF framework in order
to minimize structured (ranking) losses instead of the sum
of squared errors on the known ratings. Thus, the recom-
mender function does no longer predict the absolute rating
of unrated items, but the ranking of the top k items. To
enable effective optimization of the structured ranking loss,
a novel optimization technique [7] was used to minimize the
loss in terms of the Normalized Discounted Cumulative Gain
(NDCG).

3. STRUCTURED MAXIMUM MARGIN
MATRIX FACTORIZATION

We follow the maximum margin matrix factorization ap-
proach to collaborative filtering. In matrix factorization
approaches, the goal is to find matrices U ∈ Rn×d and
M ∈ Rd×m such that F = UM is close to Y . Note that
F contains entries for all elements while Y only contains
non zero entries for the known ratings. This approach is
based on the modeling assumption that any particular rat-
ing of item j by user i is a linear combination of item and
user features. Here, a row i of U (referred to as Ui∗) rep-

276

resents the feature vector for user i and a column j of M
(referred to as M∗j) is the feature vector for item j. The
predicted rating of item j by user i then is:

Fij = 〈Ui∗,M∗j〉
As the goal is to find the matrices U and M , the algorithm

effectively learns feature vectors for both items and users.
In order to find a good factorization F into U and M ,

the notion of what a “good” prediction is needs to be clearly
defined. Many common approaches as well as the original
MMMF formulation use the notion of a squared error on the
non zero entries in Y as a measure. We deviate from this by
introducing loss functions which encode the specific quality
needed in a specific recommender system.

In our system, the quality of the prediction is measured
as the loss L(F, Y) of having prediction F while the reality
is Y . The loss ignores the non zero elements in Y , as the
zeros indicate unrated items as opposed to a rating of zero.
Training the system now amounts to finding U and M such
that L(F = UM,Y) is minimized for the known ratings.
The actual loss function used is application dependent. We
will discuss two appropriate loss functions for recommender
systems below in Section 3.1.

However, minimizing the loss on the known training data
will most often yield poor performance on the unknown data
the system is applied to due to a tendency of overfitting.
Overfitting is prevented in supervised machine learning by
the means of a regularizer which measures model complex-
ity. The idea is that less complex models perform better
on unseen data. Example: In binary SVMs, the L2 (Eu-
clidian) norm of the weight vector is used as the regular-
ization term. This corresponds to the intuition of a wide
margin of separation between the two classes. For matrices,
it has been shown that the Frobenius norm is an appropriate
measure for complexity with a similar connotation of wide
margins [10]. Hence the name Maximum Margin Matrix
Factorization.

Minimizing both the loss and the Frobenius norm of the
matrices leads to the following optimization problem:

min
U,M

L(F = UM,Y) +
λm

2
‖M‖2F +

λu

2
‖U‖2F (1)

Here λm, λu are the regularization parameters for the M
and U matrix respectively. They allow for a trade-off be-
tween model complexity and prediction quality on the train-
ing data. We will discuss the actual optimization procedure
of this seemingly simple objective function below in Sec-
tion 3.2, after discussing the loss functions.

3.1 The Loss
We consider two main categories of loss functions. First,

totally separable losses that decompose for the non-zero el-
ements in Y . The squared loss is the most prominent ex-
ample from this category. However, recommender systems
typically operate in an environment where the absolute val-
ues in F don’t really matter. What matters is the prediction
accuracy in terms of the relative user preferences. This is
reflected in the second loss category considered here which
we call non separable losses. Naturally, the loss now only de-
composes per user. The question “Does the system sort the
elements in the same order the user would?” cannot be an-
swered without knowing all ratings predicted for that user.

To be able to use efficient optimization techniques (see be-
low), the gradient of the loss with respect to the prediction
F is of great interest.

We will now present one exemplary loss function together
with its respective gradient from each category.

Squared Loss.
In the original MMMF formulation, L(F, Y) was chosen

to be the sum of the squared errors [9]:

L(F, Y) =
1

2

nX
i=0

mX
j=0

Sij(Fij − Yij)2 (2)

where

Sij =

(
1 if user i rated item j

0 otherwise

This loss decomposes for the non zero elements of Y and
consequently it is amenable to efficient minimization by re-
peatedly solving a linear system of equations for each row
and column of U and M separately (i.e. in parallel) — the
objective function in (1) is convex quadratic in U and M
respectively whenever the other term is fixed.

To be able to use efficient optimization techniques, the
gradient of the loss needs to be known. The gradient of
L(F, Y) with respect to F can be computed efficiently, since
∂FijL(F, Y) = SijFij − Yij . This means that we have

∂FL(F, Y) = S.∗(F − Y) (3)

where .∗ implies element-wise multiplication of S with F−
Y . In other words, the gradient of the loss is a sparse matrix.

Non separable Loss.
This decomposition into losses, depending on Yij and Fij

alone, fails when dealing with structured losses that take an
entire row of predictions, i.e. all predictions for a given user
into account. Such losses are closer to what is needed in rec-
ommender systems, since users typically want to get good
recommendations about which items they are interested in.
A fairly accurate description of which items they hate is
probably less desirable. The recent paper [14] describes an
optimization procedure which is capable of dealing with such
problems. In general, a non separable loss takes on the fol-
lowing form:

L(F, Y) :=

nX
i=1

l(Fi∗, Yi∗) (4)

Gradients of L(F, Y) decompose immediately into per row
gradients ∂Fi∗ l(Fi∗, Yi∗). This allows for efficient gradient
computation.

Ordinal Loss.
We now discuss an extension of a common ranking loss,

namely the ordinal regression score, as suggested in [2]. For
simplicity of notation we only study a row-wise loss l(f, y),
where we assume that f := Fi∗ and y := Yi∗ have already
been compressed to contain only nonzero entries in Yi∗ with
the corresponding entries of Fi∗ having been selected accord-
ingly.

Assume that y is of length m containing mj items of score
j, that is

P
j mj = m. For a given pair of items (u, v)

277

we consider them to be ranked correctly whenever yu > yv

implies that also fu > fv. A loss of 1 is incurred whenever
this implication does not hold. That is, we count

X
yu>yv

C(yu, yv) {fu ≤ fv} . (5)

Here C(yu, yv) denotes the cost of confusing an item with
score yu with one of score yv. Since there are

n =
1

2

"
m2 −

X
j

m2
j

#
terms in the sum we need to renormalize the error by n
in order to render losses among different users compara-
ble. Moreover, we need to impose a soft-margin loss on
the comparator {fu ≤ fv} to obtain a convex differentiable
loss. This yields the loss

l(f, y) = 2

P
yu>yv

C(yu, yv) max(0, 1− fu + fv)

m2 −
P

j m
2
j

(6)

The gradient of ∂f l(f, y) can be computed in a straight-
forward fashion via

∂f l(f, y) = −2

P
yu>yv

C(yu, yv)

m2 −
P

j m
2
j

(7)

In general, computing losses using preferences such as (6)
is an O(m2) operation. However, we may extend the reason-
ing of [4] to more than binary scores to obtain an O(m logm)
algorithm instead.

Algorithm 1 relies on sorting f before taking sums. It uses
the decomposition of the soft margin loss via

max(0, 1− fu + fv) = max(0, (fv + 0.5)− (fu − 0.5))

= max(0, cv+m − cv)

where c = [f−0.5, f+0.5] to disentangle upper and lower
bounds. It then traverses the sorted list of c to check for how
many terms an upper or lower bound is violated by means
of auxiliary counters b and u.

3.2 Optimization
The optimization problem (1) is seemingly simple, as it

is unconstrained and continuous: Every choice of U and M
represents a feasible, yet sometimes bad solution. However,
it lacks a very desirable property to be solvable on internet
scale data sets: It is not jointly convex in U and M , at
least not for the loss functions discussed here. If it were
jointly convex, we could apply efficient convex optimization
routines to solve it.

For the original MMMF formulation using the squared
loss, a direct solution can be obtained using a semi definite
reformulation [9]. However, this dramatically limits the size
of the problem to several thousand users / items.

Our algorithm is based on the following observation: The
function (1) is, however, still convex in U and M if the other
matrix is kept fixed for the losses discussed here. We can
thus resort to alternating subspace descent as proposed in
[5] by keeping U fixed and minimizing over M and repeating

Algorithm 1 (r, g) = l(f, y, C)

input Vectors f and y, score matrix C
output Loss l and gradient g

initialize l = 0 (loss) and g = 0 (gradient)
for i = 1 to n do
bi = 0 (lower counter) and ui = mi (upper counter)

end for
Let c = [f − 1

2
, f + 1

2
] ∈ R2m

Rescale C ← 2C/(m2 − ‖u‖22)
index = argsort(c) (find overlaps between pairs)
for i = 1 to 2m do
j = index(i) mod m and z = yj

if index(i) ≤ m (from the first half) then
for k = 1 to z − 1 (we should be better than those)
do
l← l − C(k, z)ukcj and gj ← gj − C(k, z)uk

end for
bz ← bz + 1 (there are now bz + 1 elements below us)

else
for (they should be better than us) k = z + 1 to n
do
r ← r + C(z, k)bkcj+m and gj ← gj + C(z, k)bk

end for
uz ← uz − 1 (we’ve just seen one more term from
above)

end if
end for

the process for M with U fixed. This leads to the following
procedure:

repeat
For fixed M minimize (1) with respect to U .
For fixed U minimize (1) with respect to M .

until no more progress is made or a maximum iteration
count is reached.

As to be expected when optimizing a non-convex function,
this approach does not ensure that a global minimum is
reached. However, it has been shown to be rather efficient
and scalable at least for problems of 108 nonzero entries in
Y (Netflix)[14].

Each optimization step is now a convex problem and thus
amenable to efficient convex optimization procedures. Our
implementation uses a bundle method solver. Recently, bun-
dle methods have been introduced with promising results for
optimizing regularized risk functions in supervised machine
learning[7]. The bundle method used by us has been shown
to need 1/ε function evaluations to reach a solution that is
ε-close to the optimum. Standard solvers such as LBFGS
typically need 1/ε2 evaluations.

This difference is important, as the evaluation of losses
for structured output often involve computing the solution
of a discrete optimization problem [12]. Example: For some
ranking losses, the computation of the loss and its gradient
involves the solution of a linear assignment problem in the
size of the rated items of a user, which is an operation that
scales with O(n3) [14].

The key idea behind bundle methods is to compute suc-
cessively improving linear lower bounds of an objective func-
tion through first order Taylor approximations as shown in
Figure 1. Several lower bounds from previous iterations are
bundled in order to gain more information on the global be-

278

Figure 1: A convex function (solid) is bounded
from below by Taylor approximations of first order
(dashed). Adding more terms improves the bound.

havior of the function. The minimum of these lower bounds
is then used as a new location where to compute the next
approximation, which leads to increasingly tighter bounds
and convergence.

We will now describe the two phases, referred to as User
Phase and Item Phase in more detail.

User Phase.
The goal of the user phase is to optimize the objective

function (1) with respect to U . We assume that the loss
is at least of the non separable kind as introduced above.
Thus, the loss and its gradient decompose per row of F and
Y . Additionally, the Frobenius norm of a matrix decomposes
per row, too:

‖U‖2F = trUU t =

nX
i=1

‖Ui∗‖2

Thus, the optimization step over U can be decomposed
into n independent optimizations, one for each user. Each
of these optimizations will update a row in U :

min
Ui∗

l(Ui∗M,Yi∗) +
λu

2
‖Ui∗‖2 (8)

where n denotes the number of users. Each of these n
optimization problems can be solved independently.

Please note that this is a standard regularized risk mini-
mization problem for each user besides the special treatment
of the zero entries in Y . When building these optimization
problems it may be advisable to compress Yi∗ into a dense
vector which not only removes this special treatment but
also allows for faster computation.

As the optimization steps for the users are independent
of each other, the optimization can be done in a distributed
fashion.

Item phase.
The item phase is not that straightforward, as the loss

does not decompose per item. If it would as in the case of
the squared loss, we could resort to the very same procedure
as described above for the user phase.

In the case of a non separable loss, we need to optimize
the whole matrix M at once. To do so, we must be able to
compute the loss as well as its gradient with respect to M .
Computing the gradient of the Frobenius norm is straight-
forward, as the Frobenius norm decomposes per entry. We
compute the gradient of L(F = UM,Y) with respect to M
by applying the chain rule:

∂ML(F, Y) = U>∂FL(F, Y) (9)

Algorithm 2 Computation of ∂ML

input Matrix U and M , data Y
output ∂ML
for i = 1 to n do

Update w ← Ui∗
Find index ind where Yi∗ 6= 0
X ←M [ind, :]
Update Di∗ ← ∂FL(wX, Yi∗[ind])
∂ML = ∂ML+ U>Di∗
D = 0

end for
return ∂ML

At first sight, this leaves us with one big computation
which cannot be parallelized in any way. However, the loss
and therefore its gradient with respect to F decompose per
user. The actual value of the loss can be computed as the
sum over this decomposition per user. We can thus compute
the rows of ∂FL(F, Y) independently for each user.

The multiplication in 9 can be split into:

U> ((∂FL)1 + (∂FL)2 + (∂FL)3 + . . .) (10)

where (∂FL)1 the matrix where the first row is filled with
the partial gradient of the first user and the rest of the entries
are zero etc.

Since the entries in the rows are sparse vectors we only
need to multiply these entries with the corresponding row
in the matrix U . We can thus compute (U>∂FL)i for each
user i and add up the results to ∂ML. Apart from decom-
posing an expensive dense sparse matrix multiplication we
also gain in parallelization of the algorithm since we can now
easily split the gradient computation onto different nodes.
In practice we also observe a massive speedup when using
this decomposition on a single machine.

Algorithm 2 uses this observation to compute the gradient
∂ML(F, Y).

Analysis.
The only interface of the algorithm to the actual rating

data is through the loss function. All it needs for building
the model is a loss value and the gradient for each iteration.
Both these quantities can be computed independently for
each user. This is important for several different reasons:

First of all, users need not to share their rating data with
their service provider. Instead, they can just exchange losses
and gradients. This may reassure privacy cautious users.
Additionally, it moves one of the costliest parts of the com-
putation off the service provider’s systems and onto those
of the users. Communication hardly seems like an issue, as
the amount of exchanged data is dominated by the number
of rated items per user.

From a similar point of view, the idea of collaborative fil-
tering as a business to business service becomes feasible. In
such a setting, an online service provider may be reluctant to
share one of his key assets, the rating data. This reluctance
currently leads to the problem that the quality of the pre-
dictions is mostly determined by the number of customers a
service provider has. Using the algorithm described by us,
service providers could keep their rating data private while
still enjoying the benefit of a way better estimation of M .

279

Finally, these properties make it trivial to parallelize the
algorithm onto a cluster of compute nodes. There, each
node would be responsible for a certain number of users and
computes the loss and the gradient thereof for these users.
This allows the algorithm to be run with loss functions that
would otherwise be prohibitively expensive.

3.3 Extensions
After presenting MMMF as well as its formulation for

structured estimation and efficient training procedures to do
so, we will now discuss extensions to this model to accom-
modate user and item offsets as well as their known features.

User and Item Offsets.
Individual users may have different standards when it

comes to rating items. For instance, some users may rarely
award a 5 while others are quite generous with it. This
behavior can be modeled using an offset term for each user.

Likewise, items have an inherent quality bias. For in-
stance, the movie ’Plan 9 from Outer Space’ will proba-
bly not garner high ratings with any movie buff while other
movies may prove universally popular. This can be taken
into account by means of an offset per item.

Both offsets can be incorporated into the prediction via
the following extension:

Fij = 〈Ui∗,M∗j〉+ ui +mj . (11)

Here u ∈ Rn and m ∈ Rm are bias vectors for items and
users alike. In practice, we simply extend the dimension-
alities of U and M by one for each bias while pinning the
corresponding coordinate of the other matrix to assume the
value of 1. In this form no algorithmic modification for the
U and M optimization is needed.

User and Item Features.
The approach as we discussed it until now does not need

features. However, they might be present in some applica-
tions and it is advisable to make use of them if so. The way
to introduce item features is by optimizing an additional
weight vector for these for each user:

Fij = 〈Ui∗,M∗j〉+
D
WU

i∗ , X
M
j∗

E
Here, WU ∈ Rn×dM is a matrix whose rows are the weight

vectors for the item features per user. The matrix XM ∈
Rm×dM consists of the feature vectors of the items as its
rows. The number of features known for the items is dM .

The very same idea can be applied to user features as
well. The intuition here is that e.g. a certain movie might
be preferred by a certain demographic group. Demographic
information may be present as user features and included
into the model using the very same procedure:

Fij = 〈Ui∗,M∗j〉+
D
WU

i∗ , X
M
j∗

E
+

D
WM

i∗ , X
U
j∗

E
(12)

The matrices WM ∈ Rm×dU and XU ∈ Rn×dU encode the
weight vector for each item and the feature vector for each
user. The number of user features is dU .

As with the offsets, the features can be integrated into the
algorithmic procedure described above without any changes.
To do so, one would extend M with the features from XM ,

U with the features from XU . These new entries are masked
from optimization and regularization such that their value
stays fixed. To learn the parameters, U is extended by WU

and M by WM . The optimization over U and M includes
these new entries. This yields the parameter vectors WU

and WM . Please note that the Frobenius norm decomposes
per entry in U and M . Thus, the newly introduced parame-
ters are regularized as if there would be a L2 norm imposed
on them.

4. EXPERIMENTS
The algorithm presented does not need explicit features.

Thus, it can be applied to domains where the items rated
stem from very different categories where a common set of
features is hard or impossible to obtain. Most commonly
used evaluation data sets focus on one item domain only,
mostly movies. Similar MMMF based systems have been
evaluated on these data sets such as Movielens, Eachmovie
and Netflix with promising results [6, 11, 14]. To the best
of our knowledge, the MMMF idea has not been evaluated
on multi domain data sets. This is probably due to the fact
that those data sets are not commonly available.

We evaluated the system on data kindly provided by wik-

ilens.org. WikiLens is a website (a wiki) where people can
rate items on a five star scale just as on other commercial
websites such as Netflix. What sets WikiLens apart is the
process in which items are selected to be rate-able in the
first place: In web shops, the items are purchasable from
the site and the rate-able items thus form the catalogue of
the service provider. At WikiLens, the items as well as their
categorization are edited in a community effort. Every user
of the site can add new items or categories thereof to the
system. Thus, the data set contains ratings on a diverse set
of items from a diverse set of categories such as “Activity”
or “Beer”. The data set is rather small by web standards: It
consists of 26, 937 ratings by 326 users on 5, 111 items from
36 categories.

To measure the rating accuracy of the system, we resorted
to the well established Root Mean Squared Error (RMSE)
measure:

RMSE(F, Y) =

s Pn
i=0

Pm
j=0 Sij(Fij − Yij)2Pn
i=0

Pm
j=0 Sij

(13)

where

Sij =

(
1 if user i rated item j

0 otherwise

Table 1 shows the results for this evaluation. All Exper-
iments where run ten times on ten independent samples of
test and training data. We used 90% of the ratings of a user
as training data and 10% as test data. We fixed d, the di-
mensionality of U and M to the value of 10. This may seem
very low, also compared to results reported on other data
sets where it was set to 30 [6] or even 100 [14]. We did some
experiments with higher values of d, and those experiments
did not show very different results. This is interesting in its
own right.

We ran all experiments with both the squared error loss
(labelled with Regression in the tables) as well as the ordi-
nal loss (Ordinal). We performed a very coarse parameter

280

search on λU and λM for the possible values 0.1, 1.0 and
10.0. For the squared loss, we performed a very simple yet
effective preprocessing of the data: From all entries of Y , we
subtracted the average rating. Note that the RMSE scores
are comparable to the others reported in Table 1:

RMSE(F̂ , Ŷ) =

s Pn
i=0

Pm
j=0 Sij((Fij − a)− (Yij − a))2Pn

i=0

Pm
j=0 Sij

=

s Pn
i=0

Pm
j=0 Sij(Fij − Yij)2Pn
i=0

Pm
j=0 Sij

= RMSE(F, Y)

Here, F̂ , Ŷ are the mean corrected variants of F, Y and a
is the mean of the non zero entries in Y .

We observe in Table 1, that the regression loss outper-
forms the ordinal loss in our experiments in all instances.
This is to be expected, as the ordinal loss does not opti-
mize for correct prediction of the ratings but for a correct
ordering of the items.

Additionally, the ordinal loss gains more from the offsets.
This is also to be expected, as the preprocessing and the
offsets have a similar yet not completely identical effect.
A small test of the ordinal loss on the preprocessed data
showed that it’s results would be far worse with this prepro-
cessing, in the order of an RMSE score of 3.

A value of 10 for λ is very commonly the one yielding
the best results. This suggests that with a more elaborate
parameter tuning around this value, the results should be
enhanced.

The absolute value of the RMSE is below average when
compared to known results on huge single-domain data sets
(the Netflix baseline is 0.96). As there are no published re-
sults of other approaches on this data set, we computed a
simple baseline to compare to: Given the train data, use its
mean as the constant prediction. This procedure yields a
RMSE score of 1.15, which is significantly worse than our
best system configuration. It is plausible that the score of
our system can be further improved by sophisticated prepro-
cessing and parameter tuning techniques which are beyond
the scope of this paper. For the purpose of this paper, the
results do show that prediction in multi-domain data sets
can be done using MMMF-style algorithms.

In many real world recommenders, the absolute value of
the predicted ratings is of less interest than the correct pre-
diction of relative preferences for a user. To measure this
ranking performance of the algorithm, we used the Normal-
ized Discounted Cumulative Gain (NDCG) as described in
[13]:

DCG(Yi∗, π)@k =

mX
j=0

2Yiπ[j] − 1

log2(j + 1)
(14)

NDCG(Yi∗, π)@k =
DCG(Yi∗, π)@k

DCG(Yi∗, πs)@k
(15)

The permutation π is computed as the argsort of the pre-
dicted values: π = argsort(Fi∗). The perfect permuta-
tion πs is the argsort of the true ratings given by the user:
πs = argsort(Yi∗). A NDCG of 1.0 indicates that the model
sorts the movies in the same order as the user. NDCG puts

Perfect permutation of ratings !!!!! !!!! !!! !! ! !

Contribution to DCG 44.72 13.65 5.05 1.86 0.56 65.84

First wrong !!! !!!! !!!!! !! ! !

Contribution to DCG 10.10 13.65 22.36 1.86 0.56 48.53

Last wrong !!!!! !!!! ! !! !!! !

Contribution to DCG 44.72 13.65 0.72 1.86 3.91 64.85

Figure 2: DCG scores for different orderings.

an emphasis on getting the first ratings right. See Figure 2
for an example of the DCG scores obtained when exchang-
ing the first and when exchanging the last element of the
ranking with the middle one.

Many recommender systems can only present a limited
amount of recommendations to their users, typically in the
order of ten. Thus, the performance on items which are
never presented to the user is neglect-able. This reasoning
leads to the introduction of the cut-off parameter k, beyond
which the actual ranking does no longer matter. In all our
experiments, we evaluated using NDCG@10.

The experiments where run in the very same fashion as
for RMSE: All Experiments where run ten times on ten in-
dependent samples of test and training data. We used 90%
of the ratings of a user as training data and 10% as test
data. We performed a very coarse parameter search on λU

and λM for the possible values 0.1, 1.0 and 10.0.
Table 2 shows the results for this evaluation. Surprisingly,

the regression loss performs better at the ranking task than
the ordinal loss. To some extend, this is due to the nature of
the offsets. They have at least the impact of a normalization
of the ratings per item and per user. Thus, the task of
minimizing the squared distance and the relative ranking
become very similar.

All experiments yield very high NDCG scores when com-
pared to those reported for other data sets which usually are
around 0.7. This is mostly due to the fact that the data set
is rather small: Picking and ordering the “right 10” items
from a catalogue of tens of thousands of items is way harder
than what we can evaluate on this data set: The average
number of ratings by a user is 82. Thus, the average eval-
uation is done on less than 10 items, as 10% of the ratings
for each user form the test set. Thus, there is no penalty
any more for having the wrong elements in the top 10 of the
ranking.

In all our experiments, the variance over ten runs on dif-
ferent data samples is very low, often smaller than 0.001.
This indicates that the method is very stable with respect
to noise in the data. Even if our method does not guar-
antee global convergence, it seems to converge to the same
local minima every time. This may or may not be the global
minimum, though.

5. CONCLUSION
In this paper, we presented several extensions to maxi-

mum margin matrix factorization. First, the usage of arbi-
trary loss functions which paves the way to structured pre-
diction. Inside this framework, we presented a novel and
efficient algorithm for the optimization of the ordinal rank-
ing loss. We extended the general MMMF framework with
item and movie offsets as well as features.

281

User-Offset Item-Offset RMSE λU λM

Regression No No 1.12± 0.00 10.0 10.0
No Yes 1.10± 0.00 10.0 10.0
Yes No 1.09± 0.00 10.0 10.0
Yes Yes 1.10± 0.00 10.0 10.0

Ordinal No No 1.63± 0.00 10.0 10.0
No Yes 1.44± 0.00 10.0 10.0
Yes No 1.42± 0.00 0.1 0.1
Yes Yes 1.40± 0.00 10.0 10.0

Table 1: The RMSE performance over ten runs and the variance for different system configurations. Lower
is better.

User-Offset Item-Offset NDCG λU λM

Regression No No 0.882± 0.000 10.0 10.0
No Yes 0.883± 0.000 10.0 10.0
Yes No 0.887± 0.000 10.0 10.0
Yes Yes 0.888± 0.000 10.0 10.0

Ordinal No No 0.879± 0.000 10.0 10.0
No Yes 0.884± 0.000 10.0 10.0
Yes No 0.880± 0.000 10.0 10.0
Yes Yes 0.882± 0.000 10.0 1.0

Table 2: The NDCG@10 accuracy over ten runs and the variance for different system configurations. Higher
is better.

To the best of our knowledge, we report the first results
of a MMMF-style algorithm on the WikiLens data set. This
data set consists of ratings on many different item categories,
which sets it apart from classical data sets such as Movielens,
Netflix and Eachmovie. Our results indicate that the intro-
duced extensions are vital for the performance on this and
most probably similar data sets. The results are promising
and suggest even better results on bigger data sets.

Analysis of the algorithm showed that it can be imple-
mented in a privacy-cautious way in the sense that the ac-
tual ratings never need to be presented to the algorithm,
only losses and gradients. This opens the door both to data
from privacy concerned users as well as collaborative filter-
ing as a service, where the owner of the rating data does not
need to share it with the provider of the collaborative filter-
ing service. Yet, all customers of the collaborative filtering
service can still benefit from each other. We will investigate
the feasibility of this application in the future.

Acknowledgements
Markus Weimer has been funded under Grant 1223 by the Ger-
man Science Foundation (DFG). Alexandros Karatzoglou was
supported by a grant of the ANR - CADI project. We grate-
fully acknowledge support by the Frankfurt Center for Scientific
Computing in running our experiments.

6. REFERENCES
[1] R. Burke. Hybrid recommender systems: Survey and

experiments. User Modeling and User-Adapted Interaction,
12(4):331–370, 2002.

[2] R. Herbrich, T. Graepel, and K. Obermayer. Large margin
rank boundaries for ordinal regression. In A. J. Smola, P. L.
Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 115–132,
Cambridge, MA, 2000. MIT Press.

[3] T. Hoffman. Latent semantic models for collaborative
filtering. ACM Transactions on Information Systems
(TOIS), 22(1):89–115, 2004.

[4] T. Joachims. Training linear SVMs in linear time. In
Proceedings of the ACM Conference on Knowledge
Discovery and Data Mining (KDD). ACM, 2006.

[5] J. Rennie and N. Srebro. Fast maximum margin matrix
factoriazation for collaborative prediction. In Proc. Intl.
Conf. Machine Learning, 2005.

[6] R. Salakhutdinov and A. Mnih. Probabilistic matrix
factorization. In Advances in Neural Information
Processing Systems 20, Cambridge, MA, 2008. MIT Press.

[7] A. Smola, S. Vishwanathan, and Q. Le. Bundle methods for
machine learning. In Advances in Neural Information
Processing Systems 20, Cambridge, MA, 2008. MIT Press.

[8] N. Srebro and T. Jaakkola. Weighted low-rank
approximations. In Proceedings of the 20th International
Conference on Machine Learning (ICML 2003), pages 720
– 727. AAAI Press, 2003.

[9] N. Srebro, J. Rennie, and T. Jaakkola. Maximum-margin
matrix factorization. In L. K. Saul, Y. Weiss, and
L. Bottou, editors, Advances in Neural Information
Processing Systems 17, Cambridge, MA, 2005. MIT Press.

[10] N. Srebro and A. Shraibman. Rank, trace-norm and
max-norm. In P. Auer and R. Meir, editors, Proc. Annual
Conf. Computational Learning Theory, number 3559 in
Lecture Notes in Artificial Intelligence, pages 545–560.
Springer-Verlag, June 2005.

[11] G. Takács, I. Pilászy, B. Németh, and D. Tikk. Major
components of the gravity recommendation system.
SIGKDD Explorations Newsletter, 9(2):80–83, 2007.

[12] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent
output variables. J. Mach. Learn. Res., 6:1453–1484, 2005.

[13] E. Voorhees. Overview of the trect 2001 question answering
track. In TREC, 2001.

[14] M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofi
rank - maximum margin matrix factorization for
collaborative ranking. In Advances in Neural Information
Processing Systems 20, Cambridge, MA, 2008. MIT Press.

282

