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ABSTRACT
Motivation Identifying significant genes among thousands of
sequences on a microarray is a central challenge for cancer research
in bioinformatics. The ultimate goal is to detect the genes that are
involved in disease outbreak and progression. A multitude of methods
have been proposed for this task of feature selection, yet the selected
gene lists differ greatly between different methods. To accomplish bio-
logically meaningful gene selection from microarray data, we have to
understand the theoretical connections and the differences between
these methods. In this article, we define a kernel-based framework for
feature selection based on the Hilbert-Schmidt Independence Crite-
rion and backward elimination, called BAHSIC. We show that several
well-known feature selectors are instances of BAHSIC, thereby cla-
rifying their relationship. Furthermore, by choosing a different kernel,
BAHSIC allows us to easily define novel feature selection algorithms.
As a further advantage, feature selection via BAHSIC works directly
on multiclass problems.
Results In a broad experimental evaluation, the members of the
BAHSIC family reach high levels of accuracy and robustness when
compared to other feature selection techniques. Experiments show
that features selected with a linear kernel provide the best classifica-
tion performance in general, but if strong non-linearities are present
in the data then nonlinear kernels can be more suitable.
Availability: Accompanying homepage is
http://www.dbs.ifi.lmu.de/∼borgward/BAHSIC
Contact: kb@dbs.ifi.lmu.de

1 INTRODUCTION
Gene selection from microarray data is clearly one of the most
popular topics in bioinformatics. To illustrate this, the database for
“Bibliography on Microarray Data Analysis” (?) has grown from
less than 100 articles in 2000 to 1690 papers in January 2007. What
are the reasons for this huge interest in feature selection?

There are two main reasons for this popularity, the first biolo-
gical, the second statistically motivated. First, by selecting genes
from a microarray that result in good separation between healthy
and diseased patients, one hopes to find the significant genes affec-
ted by the disease, or even causing it. This is a central step towards
understanding the underlying biological process.

Second, classifiers on microarray data tend to overfit due to the
low number of patients and the high number of observed genes. This
means that they achieve high accuracy levels on the training data,
but do not generalise to new data. The underlying problem is that
if sample size is much smaller than the number of genes, one can
distinguish different classes of patients based on the noise present

in these measurements, rather than on distinct biological characteri-
stics of their gene expression levels. Via feature selection, one aims
to reduce the number of genes by removing meaningless features.

Although feature selection on microarrays is popular, gene selec-
tion methods suffer from several problems. First of all, they lack
robustness. In ?, prognostic cancer gene lists selected from microar-
rays differ significantly between different methods, and even for
different subsets of the same microarray datasets. The authors
conclude that thousands of samples are needed for robust gene
selection. Given that clinical studies almost exclusively deal with
comparatively low sample sizes, this is a very pessimistic view
of clinical microarray data analysis. At the other end of the spec-
trum are recent results of sparse decoding (??), which suggest that
for a very well defined family of inverse problems, asymptotically
only n(1 + log d) observations are needed to recover n features
accurately from d dimensions.

Besides small sample size and high dimensionality, another cru-
cial problem arises from the plethora of feature selection methods
for microarray data. Each approach is endowed with its own theo-
retical analysis, and the connections between them are so far poorly
understood (?). This makes it difficult to explain why different algo-
rithms generate different prognostic gene lists on the same set of
cancer microarray data. A unifying framework for feature selec-
tion algorithms would help to understand these relations and to
clarify which feature selection algorithms are most helpful for gene
selection.

In this paper, we present such a unifying framework called
BAHSIC. BAHSIC defines a class of backward (BA) elimination
feature selection algorithms that make use of I) kernels and II) the
Hilbert-Schmidt Independence Criterion (HSIC) (?). We show that
BAHSIC includes several well-known feature selection methods,
namely Pearson’s correlation coefficient (??), t-test (?), signal-to-
noise ratio (?), Centroid (??), Shrunken Centroid (??) and ridge
regression (?).

By choosing different kernels, one may define new types of fea-
ture selection algorithm. We show that several well-known feature
selection methods merely differ in their choice of kernel. Further-
more, BAHSIC can be extended in a principled fashion to multiclass
and regression problems, in contrast to most competing methods
which are exclusively geared towards two-class problems.

In a broad experimental evaluation, we compare feature selection
methods that are instances of BAHSIC to several competing approa-
ches, with respect to both the robustness of the selected features and
the resulting classification accuracy. Our unified framework assists
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us in explaining how the kernel used by a particular feature selec-
tor determines which genes are preferred. Our experiments show
that features selected with a linear kernel provide the best clas-
sification performance in general, but if strong non-linearities are
present in the gene expression data then nonlinear kernels can be
more suitable.

2 FEATURE SELECTION AND BAHSIC
The problem of feature selection can be cast as a combinatorial opti-
misation problem. We denote by S the full set of features, which
in our case corresponds to expression levels of various genes. We
use these features to predict a particular outcome, for instance the
presence of cancer: clearly, only a subset T of features will be rele-
vant. Suppose the relevance of a feature subset to the outcome is
quantified by Q(T) and it is computed by restricting the data to the
dimensions in T. Feature selection can then be formulated as:

T0 = arg max
T⊆S

Q(T) s.t. |T| ≤ t (1)

where | · | computes the cardinality of a set and t upper bounds
the number of selected features. Two important aspects of problem
(1) are the choice of the criterion Q(T) and the selection algorithm.
We therefore begin with a description of our criterion, and later
introduce the feature selection algorithm based on this criterion.

To describe our feature selection criterion, we begin with the
simple example of linear dependence detection, which we then
generalise to the detection of more general kinds of dependence.
Consider spaces X ⊂ Rd and Y ⊂ Rl, on which we jointly sam-
ple observations (x, y) from a distribution Prxy . We may define a
covariance matrix

Cxy = Exy(xy>)− Ex(x)Ey(y>), (2)

which contains all second order dependence between the random
variables. A statistic that efficiently summarises the content of this
matrix is its Hilbert-Schmidt norm: denote by σi the singular values
of Cxy , then the square of this norm is

‖Cxy‖2HS :=
X

i

σ2
i .

This quantity is zero if and only if there exists no second order
dependence between x and y. This statistic is limited in several
respects, however, of which we mention two: first, dependence can
exist in forms other than that detectable via covariance (and even
when a second order relation exists, the full extent of the dependence
between x and y may only be apparent when nonlinear effects are
included). Second, the restriction to subsets of Rd excludes many
interesting kinds of variables, such as strings and class labels. We
wish therefore to generalise the notion of covariance to nonlinear
relationships, and to a wider range of data types.

We now define X and Y more broadly as two domains from which
we draw samples (x, y) as before: these may be real valued, vector
valued, class labels, strings (?), graphs (?), and so on (see ? for
further examples in bioinformatics). We define a (possibly nonli-
near) mapping φ(x) ∈ F from each x ∈ X to a feature space F,
such that the inner product between the features is given by a ker-
nel function k(x, x′) := 〈φ(x), φ(x′)〉: F is called a reproducing

kernel Hilbert space (RKHS).1 Likewise, let G be a second RKHS
on Y with kernel l(·, ·) and feature map ψ(y). We may now define
a cross-covariance operator between these feature maps, which is
analogous to the covariance matrix in (2): this is a linear operator
Cxy : G 7−→ F such that

Cxy = Exy[(φ(x)− µx)⊗ (ψ(y)− µy)], (3)

where⊗ is the tensor product (see ?? for more detail). The square of
the Hilbert-Schmidt norm of the cross-covariance operator (HSIC),
‖Cxy‖2HS, is then used as our feature selection criterion Q(T). HSIC
was shown in ? to be expressible in terms of kernels as

HSIC(F,G,Pr
xy

) = ‖Cxy‖2HS

= Exx′yy′ [k(x, x
′)l(y, y′)] + +Exx′ [k(x, x

′)]Eyy′ [l(y, y
′)]

− 2Exy[Ex′ [k(x, x
′)]Ey′ [l(y, y

′)]]. (4)

Given a sample Z = {(x1, y1), . . . , (xm, ym)} of size m drawn
from Prxy , an empirical estimator of HSIC was shown in ? to be

HSIC(F,G, Z) = (m− 1)−2Tr(KHLH), (5)

where K,L ∈ Rm×m are the kernel matrices for the data and the
labels respectively, and Hij = δij − m−1 centres the data and
the label features. See ? for a different interpretation of a related
criterion used in independence testing.

We now describe two theorems from ? which support our using
HSIC as a feature selection criterion. The first (?, Theorem 3) shows
that the empirical HSIC converges in probability to its population
counterpart with rate 1/

√
m. This implies that if the empirical HSIC

is large, then given sufficient samples it is very probable that the
population HSIC is also large; likewise, a small empirical HSIC
likely corresponds to a small population HSIC. Moreover, the same
features should consistently be selected to achieve high dependence
if the data is repeatedly drawn from the same distribution. The
second result (?, Theorem 4) states that when F,G RKHSs with
universal (?) kernels k, l on respective compact domains X and Y,
then HSIC(F,G,Prxy) = 0 if and only if x and y are independent.
In terms of our microarray setting, using a universal kernel such
as the Gaussian RBF kernel or the Laplace kernel, HSIC is zero if
gene expression levels and class labels are independent; clearly we
want to reach the opposite result, namely strong dependence bet-
ween expression levels and class labels. Hence we try to select genes
that maximise HSIC.

BAHSIC Having defined our feature selection criterion, we now
describe an algorithm that conducts feature selection on the basis
of this dependence measure. Using HSIC, we can perform both for-
ward and backward selection of the features. In particular, when we
use a linear kernel on both the data and labels, forward selection and
backward selection are equivalent: the objective function decompo-
ses into individual coordinates, and thus feature selection can be
done without recursion in one go.

1 A note on the nonlinear mapping: if X = Rd, then this could be as sim-
ple as a set of polynomials of order up to t in the components of x, with
kernel k(x, x′) = (〈x, x′〉 + c)t. Other kernels, like the Gaussian, corre-
spond to infinitely large feature spaces. We need never evaluate these feature
representations explicitly, however.
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In the case of more general kernels, forward selection is compu-
tationally more efficient, however backward elimination in general
yields better features, since the quality of the features is asses-
sed within the context of all other features. Hence we present the
backward elimination (BA) version of our algorithm here.

Our feature selection algorithm (BAHSIC) appends the features
from S to the end of a list S† so that the elements towards the end of
S† have higher relevance to the learning task. The feature selection
problem in (1) can be solved by simply taking the last t elements
from S†. Our algorithm produces S† recursively, eliminating the
least relevant features from S and adding them to the end of S† at
each iteration.

Algorithm 1 Feature Selection via Backward Elimination
Input: The full set of features S

Output: An ordered set of features S†

1: S† ← ∅
2: repeat
3: σ0 ← arg maxσ HSIC(σ, S), σ ∈ Ξ
4: i← arg maxi HSIC(σ0, S \ {i}), i ∈ S

5: S← S \ {i}
6: S† ← S† ∪ {i}
7: until S = ∅

Step 3 of the algorithm optimises over all possible choices of ker-
nel parameters in the set Ξ. Note that Ξ is chosen such that the
kernels are bounded. If we have no prior knowledge regarding the
nature of the nonlinearity in the data, then optimising over Ξ is
essential: it allows us to adapt to the scale of the nonlinearity present
in the (feature-reduced) data. If we have prior knowledge about the
type of nonlinearity, we can use a kernel with fixed parameters for
BAHSIC. In this case, step 3 can be omitted since there will be no
parameter to tune. For faster elimination of features, we can choose
a group of features at step 4 and delete them in one shot at step 5.

3 FEATURE SELECTORS THAT ARE INSTANCES
OF BAHSIC

In this section we will show that several feature selection criteria
are special cases of BAHSIC, and thus BAHSIC is capable of fin-
ding and exploiting dependence of a much more general nature (for
instance, dependence between data and labels with graph and string
values).

We first define the symbols used in the following sections. Let X
be the full data matrix with each row a sample and each column a
feature, x be a column of X, and xi be the entries in x. Let y be
the vector of labels with entries yi. When the labels are multidimen-
sional, we express them as a matrix Y, with each row a datum and
each column a dimension. The kth column of Y is then Y(k).

Suppose the number of data points is m. We denote the mean of
a particular feature of the data as x̄, and its standard deviation as sx.
For two-class data, let the number of the positive and negative samp-
les be m+ and m−, respectively (m = m+ + m−). In this case,
denote the mean of the samples from the positive and the negative
classes by x̄+ and x̄−, respectively, and the corresponding standard
deviations by sx+ and sx−. For multiclass data, we let mi be the
number of samples in class i, where i ∈ N∗ and m =

P
i mi.

Finally, let 1k be a column vector of all ones with length k and 0k

be a column vector of all zeros.

3.1 Pearson’s correlation
Pearson’s correlation is commonly used in microarray analysis (??),
and is defined as

rxy =

Pm
i=1(xi − x̄)(yi − ȳ)

sxsy
, (6)

for each column x of X (scores are computed separately for
each feature). The link between HSIC and Pearson’s correlation is
straightforward: we first normalise the data and the labels by sx and
sy , respectively, and apply a linear kernel in both domains. HSIC
then becomes

Tr(KHLH) = Tr(xx>Hyy>H) = ((Hx)>(Hy))2

=

 
mX

i=1

„
xi

sx
− x̄

sx

«„
yi

sy
− ȳ

sy

«!2

=

„Pm
i=1(xi − x̄)(yi − ȳ)

sxsy

«2

. (7)

The above equation is just the square of Pearson’s correlation (pc).
Using Pearson’s correlation for feature selection is then equivalent
to BAHSIC with the above normalisation and linear kernels.

3.2 Mean difference and its variants
The difference between the sample means of the positive and nega-
tive classes, (x̄+ − x̄−), is useful for selecting discriminative
features. With different normalisation of the data and labels, many
variants can be derived. For example, the centroid (lin) (?), t-score
(t) (?), moderated t-score (m-t), signal-to-noise ratio (snr), and
B-statistics (lods) (?) all belong to this subfamily.

We will start by showing that (x̄+ − x̄−)2 is a special case of
HSIC. This is straightforward if we assign 1

m+
as the labels to the

positive samples and −1
m−

to the negative samples. Applying a linear
kernel on both domains leads to the equivalence

Tr(KHLH) = Tr(xx>yy>) = (x>y)2

=

 
1

m+

m+X
i=1

xi −
1

m−

m−X
i=1

xi

!2

= (x̄+ − x̄−)2. (8)

Note that the centring matrix H disappears because the labels are
already centred (i.e. y>1m = 0, and thus HLH = L).

The t-test is defined as t =
x̄+−x̄−

s̄
, where s̄ =

„
s2

x+
m+

+
s2

x−
m−

« 1
2

.

The square of the t-test is equivalent to HSIC if the data is normali-

sed by
„

s2
x+

m+
+

s2
x−

m−

« 1
2

. The signal-to-noise ratio, moderated t-test,

and B-statistics are three variants of the t-test. They differ only in
their respective denominators, and are thus special cases of HSIC
if we normalise the data accordingly. For example, we obtain the
signal-to-noise ratio if the data are normalised by (sx+ + sx−).

3.3 Shrunken centroid
The shrunken centroid (pam) method (??) performs feature ranking
using the differences from the class centroids to the centroid of all
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the data. This is also related to HSIC if specific preprocessing of
the data and labels is performed. Here we will focus on constructing
appropriate labels, as the normalisation of the data is similar to the
previous section. For two-class problems, we use the 2-dimensional
label matrix

Y =

0@1m+
m+
−

1m+
m

, −
1m+

m

−
1m−

m
,

1m−
m−
−

1m−
m

1A
m×2

. (9)

The labels are centred (i.e. Y>1m = 02), and thus

Tr(KHLH) = Tr(xx>YY>)

= Y(1)>xx>Y(1) + Y(2)>xx>Y(2)

=

 
1

m+

m+X
i=1

xi −
1

m

mX
i=1

xi

!2

+

 
1

m−

m−X
i=1

xi −
1

m

mX
i=1

xi

!2

= (x̄+ − x̄)2 + (x̄− − x̄)2. (10)

This is in essence the information used by the shrunken centroid
method.

3.4 Multiclass
In addition to scoring features for two-class data, our method can
readily be applied to multiclass data, by constructing an appropriate
label space kernel using the class label assignments. For instance,
we can score a feature for the multiclass classification problem by
applying linear kernels to the following label feature vectors (3-class
example):

Y =

0B@
1m1
m1

1m1
m2−m

1m1
m3−m

1m2
m1−m

1m2
m2

1m2
m3−m

1m3
m1−m

1m3
m2−m

1m3
m3

1CA or (11)

Y =

0BB@
1m1√

m1
0m1 0m1

0m2
1m2√

m2
0m2

0m3 0m3
1m3√

m3

1CCA . (12)

The Y on the top is equivalent to one-versus-the-rest scoring of the
features, while that on the bottom is geared towards selecting featu-
res that recover the block structure of the kernel matrix in the data
space.

3.5 Regression
BAHSIC can also be used to select features for regression problems,
except that in this case the labels are continuous variables. Again
we can use different kernels on both the data and the labels and
apply BAHSIC. In this context, feature selection using ridge regres-
sion can also be viewed as a special case of BAHSIC. In ridge
regression (?), we predict the outputs y using the predictor Vw
by minimising the objective function R = (y −Vw)2 + λ‖w‖2,
where the second term is known as the regulariser. Our discussion
encompasses two cases: first, the linear model, in which V = X;
and second, the nonlinear case, in which each of them rows of V is
a vector of nonlinear features of a particular observation xi, and
f(xi) =

P
j wjvj(xi). Recursive feature elimination combined

as an embedded method with ridge regression removes the feature

which causes the smallest increase in R. Equivalently, after mini-
mising R, this is the feature which has the smallest absolute weight
|wi|.

The minimum of this objective function with respect to w is

R∗ = y>y − y>V(V>V + λI)−1V>y (13)

= y>y − Tr(V(V>V + λI)−1V>yy>).

Therefore recursively removing the feature which minimises the
increase in R∗ is equivalent to maximising the HSIC, when using
K = V(V>V+λI)−1V> as the kernel matrix on the data and the
linear kernel on the labels.

The final case we consider is kernel ridge regression, which dif-
fers from the above in that the space of nonlinear features of the
input may be infinite dimensional, and the regulariser becomes a
smoothness constraint on the functions from this space to the out-
put. Specifically, the inputs are mapped to a different feature space
H with kernel k̂(x, x′), in which a linear prediction is made of
the label y. Without going into further detail, we use standard
kernelisation methods (?) to obtain that the minimum objective is
R∗ = y>y − y>(K̂ + λI)−1K̂y. This is equivalent to defining
a feature space F with kernel (K̂ + λI)−1K̂ on the data, and then
selecting features by maximising HSIC.

4 ALGORITHMS UNRELATED TO BAHSIC
In addition to the feature selection algorithms that are related to
BAHSIC, we compare against three methods that are not members
of the BAHSIC family: mutual information (mi), recursive feature
elimination SVM (rfe), and L1-SVM for feature selection (l1).

Mutual Information is a filter method for feature selection drawn
from information theory. It computes the mutual information bet-
ween each feature and the labels. The features that correspond to
the highest mutual information are then selected. Variants of this
method can consider several features at a time, but the resulting den-
sity estimation problem becomes much harder for increased dimen-
sions. This method is applicable to both two-class and multiclass
datasets.

Recursive feature elimination SVM (?) is an embedded method
for feature selection. It aims to optimise the performance of a linear
SVM by eliminating the least useful features for SVM classification
in a backwards greedy fashion. Initially an SVM using all features
is trained. The least important features, estimated by the absolute
value of the trained weights, are then dropped from the model and
the SVM retrained. The process is carried out recursively until the
desired number of features is reached.

The L1-SVM (?) is also an embedded method for feature selec-
tion. Using an L1 norm as the regulariser in an SVM results in
sparse weight vectors (see ?), where the number of non-zero weights
depends on the amount of regularisation. It is not easy to specify
the exact sparsity of the solution, but in our experiments the typical
number of features selected was below 50.

5 DATASETS
We ran our experiments on 28 datasets, of which 15 are two-class
datasets and 13 are multiclass datasets. These datasets are assigned
a reference number for convenience. Two-class datasets have a refe-
rence number less than or equal to 15, and multiclass datasets have
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reference numbers of 16 and above. Only one dataset, yeast, has fea-
ture dimension less than 1000 (79 features). All other datasets have
dimensions ranging from approximately 2000 to 25000. The num-
ber of samples varies between approximately 50 and 300 samples.
A summary of the datasets and their sources is as follows:

• The six datasets studied in (?). Three deal with breast can-
cer (???) (numbered 1, 2 and 3), two with lung cancer (??) (4,
5), and one with hepatocellular carcinoma (?) (6). The B cell
lymphoma dataset (?) is not used because none of the tested
methods produce classification errors lower than 40%.

• The six datasets studied in (?). Two deal with prostate can-
cer (??) (7, 8), two with breast cancer (??) (9, 10), and two
with leukaemia (??) (16, 17).

• Five commonly used bioinformatics benchmark datasets on
colon cancer (?) (11), ovarian cancer (?) (12), leukae-
mia (?)(13), lymphoma (?)(18), and yeast (?)(19).

• Nine datasets from the NCBI GEO database. The GDS IDs
and reference numbers for this paper are GDS1962 (20),
GDS330 (21), GDS531 (14), GDS589 (22), GDS968 (23),
GDS1021 (24), GDS1027 (25), GDS1244 (26), GDS1319
(27), GDS1454 (28), and GDS1490 (15), respectively.

6 EXPERIMENTS
6.1 Classification Error and Robustness of Genes
We used stratified 10-fold cross-validation and SVMs to evaluate
the predictive performance of the top 10 features selected by each
method. For two-class datasets, a nonlinear SVM with an RBF
kernel, k(x, x′) = exp

“
− ‖x−x′‖2

2σ2

”
, was used. The regulari-

sation constant C and the kernel width σ were tuned on a grid
of {0.1, 1, 10, 102, 103} × {1, 10, 102, 103}. Classification perfor-
mance is measured as the fraction of misclassified samples. For mul-
ticlass datasets, all procedures are the same except that we used the
SVM in a one-versus-the-rest fashion. Two new BAHSIC methods
are included in the comparison, with kernels exp

“
− ‖x−x′‖

2σ2

”
(RBF) and ‖x− x′‖−1 (dis) on the data.

The classification results for binary and multiclass datasets are
reported in Table 1 and Table 2, respectively. In addition to error rate
we also report the overlap between the top 10 gene lists created in
each fold. The multiclass results are presented separately since some
older members of the BAHSIC family, and some competitors, are
not naturally extensible to multiclass datasets. From the experiments
we make the following observations:

1. The BAHSIC family obtains the lowest classification error (not
necessarily significant) in 12 out of 15 of the two-class datasets
and all 13 of the multiclass datasets.

2. The BAHSIC family obtains the greatest overlap in all but
one dataset. This suggests that genes selected by the BAHSIC
family can be more stable.

3. The BAHSIC family with nonlinear kernels obtains the lowest
classification error in 7 datasets and the greatest overlap in 7
datasets.

6.2 Performance of feature selectors across datasets
When comparing the overall performance of various gene selection
algorithms, it is of primary interest to choose a method which works

well everywhere, rather than one which sometimes works well and
sometimes performs catastrophically. It turns out that the linear ker-
nel (lin) outperforms all other methods in this regard, both for binary
and multiclass problems.

To show this, we measure how the various methods compare with
the best performing one in each dataset in Tables 1 and 2. The devia-
tion between algorithms is taken as the square of the difference in
performance. This measure is chosen because gene expression data
is relative expensive to obtain, and we want an algorithm to select
the best genes from them. If an algorithm selects genes that are
far inferior to the best possible among all algorithms (catastrophic
case), we downgrade the algorithm more heavily. Squaring the per-
formance difference achieves exactly this effect, by penalising larger
differences more heavily. In other words, we want to choose an algo-
rithm that performs homogeneously well in all datasets. To provide
a concise summary, we add these deviations over the datasets and
take the square root as the measure of goodness. These scores (cal-
led `2 distance) are listed in Tables 1 and 2. In general, the smaller
the `2 distance, the better the method. It can been seen that the linear
kernel has the smallest `2 distance on both the binary and multiclass
datasets.

6.3 Impact of Kernel on Gene Selection
In Section 3, we unified several feature selection algorithms in one
common framework. In our feature selection evaluation experiment,
we showed the linear kernel selects the genes leading to the best
classification accuracies on average. From a biological perspective,
the interesting questions to ask are: Why does the linear kernel select
the best genes on average? Why are there datasets on which it does
not perform best? Finally, which genes are selected by a linear ker-
nel based feature selector, and which by a Gaussian kernel based
selector? In this section, we conduct experimental analyses to come
up with answers to these questions. These findings have deep impli-
cations, because they help us to understand which genes will be
selected by which algorithm. We summarise these implications in
two rules of thumb at the end of the section.

6.3.1 Artificial Genes To demonstrate the effect of different ker-
nels on gene selection, and the preference of certain kernels for
certain genes, we created ten artificial genes and inserted them into
two breast cancer datasets (dataset 9 and 10). The genes were crea-
ted such that the signal-to-noise ratio was higher than those of the
real genes. In a sense, we used the original microarray data as reali-
stic noise, and we expect a feature selector to rank the artificial genes
on the top. We experimented with both nonlinearly and linearly
separable artificial genes, as shown in Figure 1. To illustrate the
differences between these two types of genes, linear separability
should arise when different phenotypic classes are clearly linked
with certain high or low levels of expression for a group of genes
(see Figure 1 a). Non-linear separability might occur when one of
the phenotypic classes consists of subtypes, such that both subtypes
show gene expression levels different from that of a healthy patient,
but one subgroup has lower expression levels and the other higher
(see Figure 1 b).

Our measure of performance on a gene ranking list given by a
kernel was the median rank of the 10 artificial genes. This provides
an estimate of the utility of the kernel for selecting the genes with
high SNRs. We deem a feature selector competent for the task if this
measure is less than 10. Table 3 lists the results of this experiment.
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(a) (b)

Fig. 1. First two dimensions of the artificial genes that are (a) linearly sepa-
rable and (b) separable only nonlinearly. In both subplots, red dots represent
data from the positive class, and blue squares data from the negative class.
Each small cluster is generated by a ten dimension normal distribution with
diagonal covariance matrix 0.25I.

We are particularly interested in the two new variants, RBF and dis,
of the BAHSIC family. From the table, we observe that

1. RBF and dis perform comparably to existing BAHSIC mem-
bers, such as pc and snr, in detecting artificial genes that are
linearly separable. Most methods rank the ten inserted genes
on the top.

2. RBF and dis perform much better in detecting artificial genes
that are separable only nonlinearly. They rank the ten artifi-
cial genes on top in at least 9 out of the 10 folds, while other
methods (except mi) fall short in ranking them correctly.

Note that, contrary to many existing methods, RBF and dis neither
assume independence of the genes nor the linearly separability of
the two classes. Hence, we expect them to detect relevant genes in
unconventional cases where genes are interacting with each other in
a nonlinear way. A natural question is whether this situation hap-
pens in practise. In the next section, we will show that, in some real
microarray data, RBF and dis are indeed useful.

6.3.2 Subtype Discrimination using Nonlinear Kernels We now
investigate why it is that nonlinear kernels (RBF and dis) provide
better genes for classification in three datasets from Table 2 (data-
sets 18 (?), 27 (GDS1319) and 28 (GDS1454)). These datasets all
represent multiclass problems, where each class corresponds to one
disease subtype. Ideally, selected genes should contain information
discriminating the classes. To visualise such information, we plot in
Figure 2 the expression value of the top-ranked gene against that of
a second gene ranked in the top 10. This second gene is chosen so
that it has minimal correlation with the first gene. We use colours
and shapes to distinguish data from different disease subtypes.

We found that genes selected using nonlinear kernels provide bet-
ter separation between two subtypes (red dots and green diamonds),
while the genes selected with the linear kernel do not separate
these subtypes well. This eventually leads to better classification
performance for the nonlinear kernels (see Table 2).

The principal characteristic of the datasets is that the blue square
class is clearly separated from the rest, while the difference between
the two subtypes (red dots and green diamonds) is less clear. The
first gene provides information that distinguishes the blue square
class, however it provides almost no information about the separa-
tion between the two subtypes. The linear kernel does not search
for information complementary to the first gene, whereas nonlinear

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Nonlinear kernels (RBF and dis) select genes that discriminate sub-
types (red dots and green diamonds) where the linear kernel fails. The two
genes in the left column are representative of those selected by the linear
kernel, while those in the right column are produced with a nonlinear kernel
for the corresponding datasets. Different colours and shapes represent data
from different classes. (a) dataset 18 using lin; (b) dataset 18 using RBF; (c)
dataset 28 using lin; (d) dataset 28 using RBF; (e) dataset 27 using lin; and
(f) dataset 27 using dis.

kernels are able to incorporate complementary information. In fact,
the second gene that distinguishes the two subtypes (red dots and
green diamonds) does not separate all classes. From this gene alone,
the blue square class is heavily mixed with other classes. However,
combining the two genes together results in much better separation
between all classes.

6.3.3 Rules of Thumb and Implication to Gene Activity To con-
clude our experiments, considering the fact that the linear kernel
performed best in our feature selection evaluation, yet also taking
into account the existence of nonlinear interaction between genes
(as demonstrated in section 6.3.2), we can derive the following two
rules of thumb for gene selection:

1. Always apply the linear kernel for general purpose gene selec-
tion.

2. Apply a Gaussian kernel if nonlinear effects are present, such
as multimodality or complementary effects of different genes.
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Table 1. Two-class datasets: classification error (%) and number of common genes (overlap) for 10-fold cross-validation using the top 10 selected features.
Each row shows the results for a dataset, and each column is a method. Each entry in the table contains two numbers separated by “|”: the first number is the
classification error and the second number is the number of overlaps. Best results are in bold. The second last row summarises the number of times a method
was the best. The last row contains the `2 distance of the error vectors between a method and the best performing method on each dataset. The last column
shows in which datasets the BAHSIC family obtains the best performance (indicated by a X).

BAHSIC family Others
Ref.# pc snr pam t m-t lods lin RBF dis rfe l1 mi

1 12.7|3 11.4|3 11.4|4 12.9|3 12.9|4 12.9|4 15.5|3 19.1|1 13.9|2 14.3|0 7.7|0 26.1|0 -|X
2 33.2|1 33.9|2 33.9|1 29.5|1 29.5|1 27.8|1 32.9|2 31.5|3 32.8|2 34.2|0 32.5|1 29.9|0 X|X
3 37.4|0 37.4|0 37.4|0 34.6|6 34.6|6 34.6|6 37.4|1 37.4|0 37.4|0 37.4|0 37.4|0 36.4|0 X|X
4 41.6|0 38.8|0 41.6|0 40.7|1 40.7|0 37.8|0 41.6|0 41.6|0 39.7|0 41.6|0 41.6|0 40.6|0 X|X
5 27.8|0 26.7|0 27.8|0 26.7|2 26.7|2 26.7|2 27.8|0 27.8|0 27.6|0 27.8|0 27.8|0 27.8|0 X|X
6 30.0|2 25.0|0 31.7|0 25.0|5 25.0|5 25.0|5 30.0|0 31.7|0 30.0|1 30.0|0 33.3|0 33.3|0 X|X
7 2.0|6 2.0|5 2.0|5 28.7|4 26.3|4 26.3|4 2.0|3 2.0|4 30.0|0 2.0|0 2.0|0 2.0|2 X|X
8 3.3|3 0.0|4 0.0|4 0.0|4 3.3|6 3.3|6 3.3|2 3.3|1 6.7|2 0.0|0 3.3|0 6.7|1 X|X
9 10.0|6 10.0|6 8.7|4 34.0|5 37.7|6 37.7|6 12.0|3 10.0|5 12.0|1 10.0|0 17.0|1 12.0|3 X|X

10 16.0|2 18.0|2 14.0|2 14.0|8 22.0|9 22.0|9 16.0|2 16.0|0 18.0|0 32.5|0 14.0|0 20.5|1 X|X
11 12.9|5 12.9|5 12.9|5 19.5|0 22.1|0 33.6|0 11.2|4 9.5|6 16.0|4 19.0|0 17.4|0 11.2|4 X|X
12 30.3|2 36.0|2 31.3|2 26.7|3 35.7|0 35.7|0 18.7|1 35.0|0 33.0|1 29.7|0 30.0|0 23.0|2 X|X
13 8.4|5 11.1|0 7.0|5 22.1|3 27.9|6 15.4|1 7.0|2 9.6|0 11.1|0 4.3|1 5.5|2 7.0|4 -|X
14 20.8|1 20.8|1 20.2|0 20.8|3 20.8|3 20.8|3 20.8|0 20.2|0 19.7|0 20.8|0 20.8|1 19.1|1 -|X
15 0.0|7 0.7|1 0.0|5 4.0|1 0.7|8 0.7|8 0.0|3 0.0|2 2.0|2 0.0|1 0.0|1 0.0|7 X|X

best 2|2 4|1 5|1 5|6 3|10 5|9 3|0 3|2 0|0 4|0 4|0 3|0
`2 16.9 20.9 17.3 43.5 50.5 50.3 13.2 22.9 35.4 26.3 19.7 23.5

(pc=Pearson’s correlation, snr=signal-to-noise ratio, pam=shrunken centroid, t=t-statistics, m-t=moderated t-statistics, lods=B-statistics,
lin=centroid, RBF=exp(− ‖x−x′‖

2σ2 ), dis=‖x− x′‖−1, rfe=svm recursive feature elimination, l1=l1 norm svm, mi=mutual information)

Table 2. Multiclass datasets: in this case columns are the datasets, and rows are the methods. The remaining conventions follow Table 1.

Ref.# 16 17 18 19 20 21 22 23 24 25 26 27 28 best `2

lin 36.7|1 0.0|3 5.0|3 10.5|6 35.0|3 37.5|6 18.6|1 40.3|3 28.1|3 26.6|6 5.6|6 27.9|7 45.1|1 6|6 32.4
RBF 33.3|3 5.1|4 1.7|3 7.2|9 33.3|0 40.0|1 22.1|0 72.5|0 39.5|0 24.7|4 5.6|6 22.1|10 21.5|3 5|5 37.9

dis 29.7|2 28.8|5 6.7|0 8.2|9 29.4|7 38.3|4 43.4|4 66.1|0 40.8|0 38.9|4 7.6|1 8.2|8 31.6|3 3|4 51.0

mi 42.0|1 11.4|3 1.7|2 7.7|8 39.4|4 38.3|3 30.3|1 57.3|2 37.6|1 40.8|2 6.5|6 22.6|3 23.3|6 1|2 37.0

X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X|X X|-

This result should come as no surprise, due to the high dimen-
sionality of microarray datasets, but we make the point clear by
a broad experimental evaluation. These experiments also imply a
desirable property of gene activity as a whole: it correlates well with
the observed outcomes. Multimodal and highly nonlinear situations
exist, where a nonlinear feature selector is needed (as can be seen
in the outcomes on datasets 18, 27 and 28), yet they occur relatively
rarely in practise.

7 DISCUSSION
In this paper, we have defined the class of BAHSIC feature selection
algorithms. We have shown that this family includes several well-
known feature selection methods, which differ only by the choice
of the preprocessing and the kernel function. Our experiments show
that the BAHSIC family of feature selection algorithms performs
well in practise, both in terms of accuracy and robustness. We have
also shown that the linear kernel (centroid feature selector) performs
best in general, and is thus a good first choice that provides good
baseline results.
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Table 3. Median rank of the ten artificial genes selected by different instances of BAHSIC over 10-fold cross-validation. The upper half of the table contains
results for the linearly separable case. The lower half contains results for the nonlinearly separable case.

BAHSIC family Others
Ref.# pc snr pam t m-t lods lin RBF dis rfe l1 mi

Linear
9 6 6 6 6 6 6 6 6 6 6 6 6

10 6 6 6 6 6 6 6 6 6 6 6 6

Nonlinear
9 1937 1869 1935 260 221 221 1934 6 6 1721 30 6

10 2043 2004 2043 2172 516 516 2041 7 6 1802 33 6

In the artificial gene experiments, we demonstrated the nonli-
near RBF and dis kernels can select better features when there are
nonlinear interactions. Furthermore we showed on real multiclass
datasets that nonlinear kernels can select better genes for discri-
minating between subtypes. This indicates that nonlinear kernels
are potentially useful for finding better prognostic markers and for
subtype discovery.

The BAHSIC family represents a step towards establishing theo-
retical links between the huge set of feature selection algorithms in
the bioinformatics literature. Only if we fully understand these theo-
retical connections can we hope to explain why different methods
select different genes, and to choose feature selection methods that
yield the most biologically meaningful results.

REFERENCES
Alizadeh, A., Eisen, M., Davis, R., et al. (2000). Distinct types of diffuse large b-cell

lymphoma identified by gene expression profiling. Nature, 403, 503–511.
Alon, U., Barkai, N., Notterman, D., Gish, K., Ybarra, S., Mack, D., and Levine, A.

(1999). Broad patterns of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci.,
96, 6745–6750.

Baker, C. (1973). Joint measures and cross-covariance operators. Transactions of the
American Mathematical Society, 186, 273–289.

Bedo, J., Sanderson, C., and Kowalczyk, A. (2006). An efficient alternative to svm
based recursive feature elimination with applications in natural language processing
and bioinformatics. In Artificial Intelligence.

Beer, D. G., Kardia, S. L., Huang, S. L., et al. (2002). Gene-expression profiles predict
survival of patients with lung adenocarcinoma. Nat. Med., 8, 816–824.

Berchuck, A., Iversen, E., and et al., J. L. (2005). Patterns of gene expression that cha-
racterize long-term survival in advanced stage serous ovarian cancers. Clin. Cancer
Res., 11, 3686–3696.

Bhattacharjee, A., Richards, W. G., Staunton, W. G., et al. (2001). Classifi-
cation of human lung carcinomas by mrna expression profiling reveals distinct
adenocarcinoma subclasses. Proc. Natl. Acad. Sci., 98, 13790–13795.

Brown, M., Grundy, W., Lin, D., Cristianini, N., Sugnet, C., Furey, T., Ares, M., and
Haussler, D. (2000). Knowledge-based analysis of microarray gene expression data
by using support vector machines. Proc. Natl. Acad. Sci., 97, 262–267.

Bullinger, L., Dohner, K., Bair, E., Frohling, S., Schlenk, R. F., Tibshirani, R., Dohner,
H., and Pollack, J. R. (2004). Use of gene-expression profiling to identify prognostic
subclasses in adult acute myeloid leukemia. New England Journal of Medicine,
350(16), 1605–1616.

Candes, E. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Info
Theory, 51(12), 4203–4215.

Dhanasekaran, S. M., Barrette, T. R., Ghosh, D., Shah, R., Varambally, S., Kurachi,
K., Pienta, K. J., Rubin, M. A., and Chinnaiyan, A. M. (2001). Delineation of
prognostic biomarkers in prostate cancer. Nature, 412(6849), 822–826.

Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to
generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci.
USA, 103(15), 5923–5928.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood an its
oracle properties. Journal of the American Statistical Association, 96(456), 1348–
1360.

Feuerverger, A. (1993). A consistent test for bivariate dependence. International
Statistical Review, 61(3), 419–433.

Fukumizu, K., Bach, F. R., and Jordan, M. I. (2004). Dimensionality reduction for
supervised learning with reproducing kernel hilbert spaces. J. Mach. Learn. Res., 5,
73–99.
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