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Abstract

As a fundamental problem in pattern recognition, graph
matching has found a variety of applications in the field of
computer vision. In graph matching, patterns are modeled
as graphs and pattern recognition amounts to finding a cor-
respondence between the nodes of different graphs. There
are many ways in which the problem has been formulated,
but most can be cast in general as a quadratic assignment
problem, where a linear term in the objective function en-
codes node compatibility functions and a quadratic term
encodes edge compatibility functions. The main research
focus in this theme is about designing efficient algorithms
for solving approximately the quadratic assignment prob-
lem, since it is NP-hard.

In this paper, we turn our attention to the complementary
problem: how to estimate compatibility functions such that
the solution of the resulting graph matching problem best
matches the expected solution that a human would manually
provide. We present a method for learning graph match-
ing: the training examples are pairs of graphs and the “la-
bels” are matchings between pairs of graphs. We present
experimental results with real image data which give evi-
dence that learning can improve the performance of stan-
dard graph matching algorithms. In particular, it turns out
that linear assignment with such a learning scheme may
improve over state-of-the-art quadratic assignment relax-
ations. This finding suggests that for a range of problems
where quadratic assignment was thought to be essential for
securing good results, linear assignment, which is far more
efficient, could be just sufficient if learning is performed.
This enables speed-ups of graph matching by up to 4 orders
of magnitude while retaining state-of-the-art accuracy.

1. Introduction
Graphs are commonly used as abstract representations for
complex scenes, and many computer vision problems can
be formulated as an attributed graph matching problem,
where the nodes of the graphs correspond to local features
of the image and edges correspond to relational aspects
between features (both nodes and edges can be attributed,
i.e. they can encode feature vectors). Graph matching then
consists in finding a correspondence between nodes of the
two graphs such that they “look most similar” when the
vertices are labeled according to such a correspondence.
Typically, the problem is mathematically formulated as a

quadratic assignment problem, which consists in finding the
assignment that maximizes an objective function encoding
local compatibilities (a linear term) and structural compat-
ibilities (a quadratic term). The main body of research in
graph matching has then been focused on devising more ac-
curate and/or faster algorithms to solve the problem approx-
imately (since it is NP-hard). The compatibility functions
used in graph matching are typically handcrafted.

An interesting question arises in this context. If we are
given two attributed graphs, G and G′, should the opti-
mal match be uniquely determined? For example, assume
first that G and G′ come from two images acquired with a
surveillance camera in an airport’s lounge. Now, assume the
same G and G′ instead come from two images in a photog-
rapher’s image database. Should the optimal match be the
same in both situations? If the algorithm takes into account
exclusively the graphs to be matched, the optimal solutions
will be the same1 since the graph pair is the same in both
cases. This is how graph matching is approached today.

In this paper we address what we believe to be a limita-
tion of this approach. We argue that, if we know the “condi-
tions” under which a pair of graphs has been extracted, then
we should take into account how graphs arising in those
conditions are typically matched. However, we do not take
the information on the “conditions” explicitly into account,
since this is obviously not practical. Instead, we approach
the problem from a purely statistical inference perspective.
First we extract graphs from a number of images acquired
in the same conditions as those for which we want to solve,
whatever the word “conditions” mean (e.g. from the surveil-
lance camera or the photographer’s database). We then
manually provide what we understand to be the optimal
matches between pairs of the resulting graphs. This infor-
mation is then used in a learning algorithm which learns
a map from the space of pairs of graphs to the space of
matches. In terms of the quadratic assignment problem, this
learning algorithm amounts to (in a loose language) adjust-
ing the node and edge compatibility functions in a way that
the expected optimal match in a test pair of graphs agrees
with the expected match they would have had they been in
the training set. In this formulation, the learning problem
consists of a quadratic program which is readily solvable
by means of a column generation procedure.

We provide experimental evidence that applying learn-
ing to standard graph matching algorithms significantly im-

1Assuming a single optimal solution and that the algorithm finds it.



proves their performance. In fact, we show that learning
improves on non-learning results so dramatically that lin-
ear assignment with learning can perform similarly or better
than state-of-the-art quadratic assignment relaxation algo-
rithms without learning. This suggests that a range of prob-
lems for which quadratic assignment (NP-hard) was thought
to be essential in order to secure good matching results may
be accurately solved with a much simpler (worst case cu-
bic time) linear assignment algorithm under the proposed
learning framework.

1.1. Related Literature
A variety of approaches has been proposed to solve the at-
tributed graph matching problem. An incomplete list in-
cludes spectral methods [13, 18], semidefinite programming
[17], probabilistic methods [10, 5, 7] and the well-known
graduated assignment method [9].

The above literature strictly focuses on trying better al-
gorithms for solving the graph matching problem, but does
not address the issue of how to determine the compatibility
functions in a principled way.

In [16] the authors learn compatibility functions for the
relaxation labeling process; this is however a different prob-
lem than graph matching, and the “compatibility functions”
have a different meaning. In terms of methodology, possi-
bly the paper most closely related to ours is [12], which uses
structured estimation tools in a quadratic assignment setting
for word alignment. A recent paper of interest shows that
very significant improvements on the performance of graph
matching can be obtained by an appropriate normalization
of the compatibility functions [8]; however, no learning is
involved.

2. The Graph Matching Problem
The notation used in this paper is summarized in table 1. In
the following we denote a graph by G. We will often refer
to a pair of graphs, and the second graph in the pair will
be denoted by G′. We study the general case of attributed
graph matching, and attributes of vertex i and edge ij in G
are denoted by Gi and Gij respectively. Standard graphs
are obtained if the node attributes are empty and the edge
attributes Gij ∈ {0, 1} are binary denoting the absence or
presence of an edge, in which case we get the so-called ex-
act graph matching problem.

Define a matching matrix y by yii′ ∈ {0, 1} such that
yii′ = 1 if node i in G maps to node i′ in G′ (i 7→ i′) and
yii′ = 0 otherwise. Define by cii′ the value of the com-
patibility function for the unary assignment i 7→ i′ and by
dii′jj′ the value of the compatibility function for the pair-
wise assignment ij 7→ i′j′. Then, a generic formulation of
the graph matching problem consists of finding the optimal
matching matrix y∗ given by the solution of the following
(NP-hard) quadratic assignment problem [3]

Table 1. Definitions and Notation

G - generic graph (similarly, G′);
Gi - attribute of node i in G (similarly, G′i′ for G′);
Gij - attribute of edge ij in G (similarly, G′i′j′ for G′);
G - space of graphs (G× G - space of pairs of graphs);
x - generic observation: graph pair (G,G′); x ∈ X, space
of observations;
y - generic label: matching matrix; y ∈ Y, space of labels;
n - index for training instance;N - no. of training instances;
xn - nth training observation: graph pair (Gn, G′n);
yn - nth training label: matching matrix;
g - predictor function; g∗ - optimal predictor function;
f - discriminant function;
∆ - loss function;
Φ, φ1, φ2 - joint, node and edge feature maps respectively;
Sn - constraint set for training instance n;
y∗ - solution of the quadratic assignment problem;
ŷ - most violated constraint in column generation;
yii′ - ith row and jth column element of y
cii′ - value of compatibility function for map i 7→ i′

dii′jj′ - value of compatibility function for map ij 7→ i′j′

αny - dual variable
ε - tolerance for column generation;
w1 - node parameter vector; w2 - edge parameter vector;
w := [w1 w2] - joint parameter vector; w ∈W;
ξn - slack variable for training instance n;
Ω - regularization function; C - regularization parameter;
δ - convergence threshold in bistochastic normalization;

y∗ = argmax
y

∑
ii′

cii′yii′ +
∑
ii′jj′

dii′jj′yii′yjj′

 , (1)

typically subject to either the injectivity constraint (one-to-
one, that is

∑
i yii′ ≤ 1 for all i′,

∑
i′ yii′ ≤ 1 for all i)

or simply the constraint that the map should be a function
(many-to-one, that is

∑
i′ yii′ = 1 for all i). If dii′jj′ = 0

for all ii′jj′ then (1) becomes a linear assignment problem,
exactly solvable in worst case cubic time [15]. Although
the compatibility functions c and d obviously depend on the
attributes {Gi, G′i′} and {Gij , G′i′j′}, the functional form
of this dependency is typically assumed to be fixed in graph
matching. This is precisely the restriction we are going to
relax in this paper: both the functions c and d will be pa-
rameterized by vectors whose coefficients will be learned
within a convex optimization framework. In a way, instead
of proposing yet another algorithm for determining how to
approximate the solution for (1), we are here aiming at find-
ing a way to determine what should be maximized in (1),
since different c and d will produce different criteria to be
maximized. In a way, this could be seen as directly “chang-
ing the question” in graph matching, instead of trying a
“better answer” to the same question.



3. Learning Graph Matching
3.1. General Problem Setting
We approach the problem of learning the compatibility
functions as a supervised learning problem [19]. The train-
ing set comprises N observations x from an input set X,
N corresponding labels y from an output set Y, and can
be represented by {(x1; y1), . . . , (xN ; yN )}. Critical in our
setting is the fact that the observations and labels are struc-
tured objects. In typical supervised learning scenarios, ob-
servations are vectors and labels are elements from some
discrete set of small cardinality, for example yn ∈ {−1, 1}
in the case of binary classification. However, in our case
an observation xn is a pair of graphs, i.e. xn = (Gn, G′n),
and the label yn is a match between graphs, represented by
a matching matrix as defined in section 2. We will see that
this peculiar aspect of our problem will give rise to a non-
trivial learning problem which will demand the employment
of elaborate optimization techniques in order to be solved.

If X = G × G is the space of pairs of graphs, Y is the
space of matching matrices and W the space of parameters
of our model, then learning graph matching amounts to es-
timating a function g : G × G ×W 7→ Y which minimizes
the prediction loss on the test set. Since the test set here
is assumed not to be available at training time, we use the
standard approach of minimizing the empirical risk (aver-
age loss in the training set) plus a regularization term in or-
der to avoid overfitting. The optimal predictor g∗ will then
be the one which minimizes an expression of the type

C · 1
N

N∑
i=1

∆(g(Gn, G′n;w), yn)︸ ︷︷ ︸
empirical risk

+ Ω(g)︸︷︷︸
regularization term

, (2)

where ∆(g(Gn, G′n;w), yn) is the loss incurred by predic-
tor g when predicting, for training input (Gn, G′n), the out-
put g(Gn, G′n;w) instead of the training output yn. The
function Ω(g) penalizes “complex” functions g and C is a
parameter that trades off data fitting against generalization
ability, and is in practice determined using cross-validation.
In order to completely specify such an optimization prob-
lem, we need to define the class of predictors g(G,G′;w)
whose parametersw we will optimize over, the loss function
∆ and the regularization term which penalizes “complex”
functions g. In the following we focus on setting up the
optimization problem by addressing each of these points.

3.2. The Model
We start by specifying aw-parameterized class of predictors
g(G,G′;w). We use the standard approach of discriminant
functions, which consists of picking as our optimal estimate
the one for which the discriminant function f(G,G′, y;w)
is maximal, i.e. g(G,G′;w) = argmaxy f(G,G′, y;w).

We assume linear discriminant functions f(G,G′, y;w) =
〈w,Φ(G,G′, y)〉, so that our predictor has the form

g(G,G′, w) = argmax
y∈Y

〈w,Φ(G,G′, y)〉 . (3)

Further specification of g(G,G′;w) requires determining
the joint feature map Φ(G,G′, y), which has to encode the
properties of both graphs as well as the properties of a match
y between these graphs. The key observation here is that
we can relate the quadratic assignment formulation of graph
matching, given by (1), with the predictor given by (3), and
interpret the solution of the graph matching problem as be-
ing the estimate of g, i.e. y∗ = g(G,G′;w). This allows us
to interpret the discriminant function in (3) as the objective
function to be maximized in (1):

〈Φ(G,G′, y), w〉 =
∑
ii′

cii′yii′ +
∑
ii′jj′

dii′jj′yii′yjj′ , (4)

which clearly reveals that the graphs and the parameters
must be encoded in the compatibility functions. The last
step before obtaining Φ consists of choosing a parameteri-
zation for the compatibility functions. We assume a simple
linear parameterization,

cii′ = 〈φ1(Gi, G′i′), w1〉 (5a)

dii′jj′ =
〈
φ2(Gij , G′i′j′), w2

〉
(5b)

i.e. the compatibility functions are linearly dependent on the
parameters and on new feature maps φ1 and φ2 that only
involve the graphs (section 4 specifies the feature maps φ1

and φ2). As already defined,Gi is the attribute of node i and
Gij is the attribute of edge ij (similarly for G′). However,
we stress here that these are not necessarily local attributes,
but are arbitrary features simply indexed by the nodes and
edges. For instance, we will see in section 4 an example
where Gi encodes the graph structure of G as “seen” from
node i, or from the “perspective” of node i.

Note that traditional graph matching arises as a particular
case of equations (5): if w1 and w2 are constants, then cii′
and dii′jj′ depend only on the features of the graphs.

By defining w := [w1 w2], we then arrive at the final
form for Φ(G,G′, y) from (4) and (5):

Φ(G,G′, y) =

=

[∑
ii′

yii′φ1(Gi, G′i′),
∑
ii′jj′

yii′yjj′φ2(Gij , G′i′j′)

]
. (6)

Naturally, the final specification of the predictor g depends
on the choices of φ1 and φ2. In our experiments we use
SIFT features and Shape Context features for constructing
φ1 and a simple edge-match criterion for constructing φ2

(details follow in section 4).
Next we define the loss ∆(y, yn) incurred by estimating

the matching matrix y instead of the correct one, yn. This is



simply defined as the fraction of mismatches between ma-
trices y and yn, i.e.

∆(y, yn) = 1− 〈y, y
n〉

〈yn, yn〉
. (7)

where here we used 〈y, yn〉 :=
∑
ii′ yii′y

n
ii′ . Finally, we

specify a quadratic regularizer Ω(g) = 1
2 ‖w‖

2.

3.3. The Optimization Problem
Here we combine the elements discussed in section 3.2 in
order to formally set up a mathematical optimization prob-
lem that corresponds to the learning procedure. The ex-
pression that arises from (2) by incorporating the specifics
discussed in section 3.2 still consists in a very difficult (in
particular non-convex) optimization problem. Although the
regularization term is convex in the parameters w, the em-
pirical risk, i.e. the first term in (2), is not: it depends in a
very complicated way on w as can be seen from the nonlin-
ear dependency of g on w (3).

One approach to render the problem of minimizing (2)
more tractable is to replace the empirical risk by a con-
vex upper bound on the empirical risk, as shown in [19].
By minimizing the convex upper bound, we will then also
decrease the empirical risk (by the definition of an up-
per bound). It is easy to show that the convex (in par-
ticular, linear) function 1

N

∑
n ξn is an upper bound for

1
N

∑
n ∆(g(Gn, G′n), yn) for the solution of (2) with ap-

propriately chosen constraints:

minimize
w,ξ

C

N

N∑
n=1

ξn +
1
2
‖w‖2 (8a)

subject to
〈w,Ψn(y)〉 ≥ ∆(y, yn)− ξn
for all n and y ∈ Y. (8b)

where Ψn(y) := Φ(Gn, G′n, yn) − Φ(Gn, G′n, y). This
is because at the optimal solution we have ξ∗n =
max{0,maxy{∆(y, yn)−〈w,Ψn(y)〉}}, which always up-
per bounds ∆(y, yn) for y such that 〈w,Ψn(y)〉 ≤ 0. It then
follows that ξn ≥ ∆(g(Gn, G′n), yn), and immediately we
have 1

N

∑
n ξn ≥

1
N

∑
n ∆(g(Gn, G′n, yn)).

The constraints (8b) mean that the margin
f(Gn, G′n, yn;w) − f(Gn, G′n, y;w), i.e. the gap
between the discriminant functions for yn and y should
exceed the loss induced by estimating y instead of the
training matching matrix yn. This is highly intuitive since
it reflects the fact that we want to safeguard ourselves most
against mis-predictions y which incur a large loss (i.e. the
smaller is the loss, the less we should care about making
a mis-prediction – so we can enforce a smaller margin).
The presence of ξn in the constraints and in the objective
function means that we allow the hard inequality (without
ξn) to be violated, but we penalize violations for a given n
by adding to the objective function the cost CN ξn.

Instead of solving the primal optimization problem
given in (8), we actually solve its dual for reasons
to be soon made clear. Denote by Kny,mz :=
〈Φ(Gn, G′n, y),Φ(Gm, G′m, z)〉. Then the dual problem
of (8) can be derived as

minimize
α

1
2

∑
n,y,m,z

αnyαmzKny,mz −
∑
n,y

∆(y, yn)αny

s.t.
∑
y

αny ≤
C

N
and αny ≥ 0 for all y ∈ Y, n (9)

where the primal and dual variables at optimality can be
shown to be related by

w =
∑
n,y

αny(Φ(Gn, G′n, yn)− Φ(Gn, G′n, y)), (10)

i.e. we can recover the solution in the primal from the solu-
tion in the dual.

We will see in what follows that there is an efficient way
of approximating the solution in the dual (9) by a column
generation procedure, while the direct solution of the primal
(8) is not feasible.

3.4. The Algorithm
Note that the number of constraints in the primal (8) and
the dual (9) is given by the number of possible matching
matrices |Y| times the number of training instances N . In
graph matching the number of possible matches between
two graphs grows factorially with their size. In this case it
is infeasible to solve (9) exactly.

There is however a way out of this problem by using an
optimization technique known as column generation [15].
Instead of solving (9) immediately, one computes the most
violated constraints in (8) iteratively for the current solution
of (9) and adds those constraints to the optimization prob-
lem. In order to do so, we need to solve

argmax
y

[〈w,Φ(Gn, G′n, y)〉+ ∆(y, yn)] , (11)

as this is the term for which the constraint (8b) is tightest.
The resulting algorithm (analogous to the column genera-
tion scheme described in [19]) is given in table 2. Column
generation has good convergence properties, and approxi-
mates the optimal solution to arbitrary precision in a poly-
nomial number of iterations [19].

Let’s investigate the complexity of solving (11). Using
the joint feature map Φ as in (6) and the loss as in (7), the
objective function in (11) becomes

〈Φ(G,G′, y), w〉+ ∆(y, yn) = (12)

=
∑
ii′

yii′ c̄ii′ +
∑
ii′jj′

yii′yjj′dii′jj′ + constant,

where c̄ii′ = 〈φ1(Gi, G′i′), w1〉 − ynii′/ ‖yn‖
2 and dii′jj′ is

defined as in (5b).



Table 2. Column Generation
Define:
Ψn(y) := Φ(Gn, G′n, yn)− Φ(Gn, G′n, y)
Hn(y) := 〈w,Φ(Gn, G′n, y)〉+ ∆(y, yn)
Input: training graph pairs {Gn},{G′n}, training match-
ing matrices {yn}, sample size N , tolerance ε
Initialize Sn = ∅ for all n, and w = 0.
repeat

for n = 1 to N do
w =

∑
n

∑
y∈Sn

αnyΨn(y)
ŷ = argmaxy∈YH

n(y)
ξn = max(0,maxy∈Sn

Hn(y))
if 〈w,Φ(Gn, G′n, ŷ)〉+ ∆(y, yn) > ξn + ε then

Increase constraint set Sn ← Sn ∪ ŷ
Optimize (9) using only αny where y ∈ Sn.

end if
end for

until no Sn has changed in this iteration

The maximization of (12), which needs to be carried out at
training time, is a quadratic assignment problem just as the
problem to be solved at test time is. In the particular case
where dii′jj′ = 0 throughout, both the problems at training
and at test time are linear assignment problems, which can
be solved efficiently in worst case cubic time.

In our experiments, we solve the linear assignment prob-
lem with the efficient solver from [11]. For quadratic as-
signment, we developed a C implementation of the well-
known Graduated Assignment algorithm [9]. However it
should be stressed that the learning scheme discussed here
is completely independent of which algorithm we use for
solving either linear or quadratic assignment.

4. Features for the Compatibility Functions
The joint feature map Φ(G,G′, y) has been derived in its
full generality (6), but in order to have a working model
we need to choose a specific form for φ1(Gi, G′i′) and
φ2(Gij , G′i′j′), as mentioned in section 3. We first discuss
φ1(Gi, G′i′) and then proceed to φ2(Gij , G′i′j′). For con-
creteness, here we only describe options actually used in
our experiments.

4.1. Node Features

We construct φ1(Gi, G′i′) by using a standard coordinate-
wise exponential decay given by φ1(Gi, G′i′) =
(. . . , exp(−|Gi(r) − G′i′(r)|2), . . . ). Here Gi(r)
and G′i′(r) denote the rth coordinates of the cor-
responding attribute vectors. Note that in standard
graph matching without learning we typically have
cii′ = exp(−‖Gi −G′i′‖

2), which can be seen as the
particular case of (5a) for both φ1 and w1 flat, given
by φ1(Gi, G′i′) = (. . . , exp(−‖Gi −G′i′‖

2), . . . ) and
w1 = (. . . , 1/R, . . . ), where R is the dimension of φ1 and

w1 [8]. Here instead we have cii′ = 〈φ1(Gi, G′i′), w1〉,
where w1 is learned from training data. In this way, by
tuning the rth coordinate of w1 accordingly, the learning
process finds how relevant is the rth feature of φ1. In our
experiments to be described in the next section, we use
two types of node features (i.e. Gi, G′i′ ): the well-known
SIFT features [14] and Shape Context features [4]. SIFT is
a 128-dimensional rotation and scale-invariant descriptor
which has also some invariance with respect to viewpoint
and illumination changes and has been widely used in
computer vision [14]. Our Shape Context descriptor is
60-dimensional, as in [4], and roughly encodes how each
node “sees” the other nodes. It is an instance of what
we called in section 3 a feature that captures the node
“perspective” with respect to the graph. See [4] for details.

4.2. Edge Features

For edge features Gij (G′i′j′ ), we use standard graphs,
i.e.Gij (G′i′j′ ) is 1 if there is an edge between i and j (i′ and
j′) and 0 otherwise. We then set φ2(Gij , G′i′j′) = GijG

′
i′j′ .

5. Experiments
Graph matching has applications in problems where con-
sistent correspondence between sets of features is required,
such as object recognition, shape matching, wide baseline
stereo, 2D and 3D registration. Examples of features may
be points, lines, descriptors of interest points, etc. Here we
select a few applications and present some experimental re-
sults of learning versus non-learning.

5.1. Matching Frames of the ‘house’ Sequence

Here we performed experiments with the CMU ‘house’
dataset [1]. This dataset contains 111 frames of a video
sequence of a toy house for which labeling of the same 30
landmark points is available across the whole sequence [6].
We can easily deal with outliers by augmenting the smaller
graph with dummy nodes, in the same way as described in
[4]. The sequence is such that the first and last frames are
separated by a very wide baseline. For each image in the
sequence, we compute from its landmark points the Shape
Context features and define them as being the unary at-
tributesGi. In order to generate the underlying graph topol-
ogy, we create a Delaunay triangulation of the points and set
Gij according to it (i.e. 1 or 0 depending if there is an edge
or not). We then compare linear assignment and graduated
assignment both with and without learning, which gives us
four algorithmic settings. In addition, we compare these set-
tings against a state-of-the-art setting, graduated assignment
with bistochastic normalization, as introduced in [8]. We do
so for three different values of the convergence threshold δ
(which trades off accuracy versus speed–see [8]). This gives
in total seven settings, which correspond to the seven bars
per training size/test size split in Figure 1.



The experimental setting for Figure 1 is the following. For
each of the training/test splits (x axis), the train set contains
all images whose order in the sequence is divisible by k
(where k ∈ {25, 15, 10, 5, 3, 2}), the rest is used for test.
With six values of k, we have six splits of the dataset. We
also swap these train and test sets to check performance for
the cases where we have plenty of training instances. That
means we have six other splits where the test set contains all
images whose order in the sequence is divisible by k (where
k ∈ {2, 3, 5, 10, 15, 25}) and the rest is for training. Thus,
we have in total 12 splits of the dataset.

Note that as we move to the right in the figure the training
set size is increasing. This partly explains why the gaps be-
tween learning and non-learning versions of the algorithms
increase. The other explanation is due to the increasing dif-
ficulty in the matching task: in the right of the figure the
baseline between frames is wider. Note in particular that as
we get to the right of the figure the non-learning algorithms
get worse (due to the matching task becoming harder) while
the learning algorithms get better (i.e. if sufficient training
data is provided the accuracy improves regardless of the
increase in the baseline). Note that the sizes of the error
bars increase as well, but this is due to the shrinking of
the test set, which produces higher variance in testing ac-
curacy. Note in particular that from the middle to the right
in the figure the accuracy of linear assignment with learn-
ing becomes at least as good as that for the state-of-the-art
quadratic assignment relaxation given by graduated assign-
ment with bistochastic normalization [8].2 This is a signif-
icant result, given the large processing time differences be-
tween running a linear assignment algorithm and graduated
assignment with bistochastic normalization (see Table 3 and
Figure 2, which indicate a gap of up to 4 orders of magni-
tude in processing times). Even if faster quadratic assign-
ment relaxations are used (such as SMAC from [8]), the gap
is roughly unchanged since most of the time is taken by the
bistochastic normalization procedure, not by the matching
algorithm per se (see table 3). It is possible to speed-up the
bistochastic normalization procedure by using a larger con-
vergence monitoring threshold δ [8], but as Figure 1 shows
the price to be paid is a significant increase in error rate (see
bars for δ = 0.0001, δ = 0.1 and δ = 100: δ is the L1

norm between consecutive compatibility matrices d in the
bistochastic normalization procedure, where c is encoded
in d as dii′ii′ ← cii′ ). Figure 3 shows the weight vector
learned for a particular split of Figure 1. Figure 4 shows
matches between the first and last frames in the sequence
for linear assignment without and with learning.

2Although this is partly due to the use of context features, which create
unary compatibilities that are correlated with the structure of the graph, this
is not sufficient, as can be seen from the poor accuracy of linear assignment
without learning.

Figure 1. Mismatch percentages of all algorithms in the ‘house’
dataset. The baseline between frames increases as we move to the
right in the plot. The increasing sizes of error bars simply reflect
the decreasing test set sizes. For wide baseline matching (right in
the figure), learning is essential for good results.

Figure 2. Trade-off between processing time and accuracy for a
particular split from Figure 1 (74/37). Note that although the best
version of bistochastic GA normalization (light green) has simi-
lar accuracy than LA learning (red), there is a gap of 4 orders of
magnitude in processing times.

Figure 3. Weight vector w1 for the 74/37 split from Figure 1 (LA
learning). The uneven distribution reflects the fact that the learn-
ing algorithm tunes different components of the Shape Context
descriptor so as to produce matches that best mimic those from
human labeling. Standard graph matching with no learning corre-
sponds to a flat distribution.



Table 3. Average processing times to match two 30-node graphs
in a dual core Pentium 4, 3GHz, 1Gb RAM, with C implementa-
tions. Legend: la-linear assignment; ga-graduated assignment; bn-
bistochastic GA normalization with threshold as shown; lal-linear
assignment learning; gal-graduated assignment learning.

la ga bn100 bn0.1 bn0.0001 lal gal
0.0068s 0.4s 0.49s 3.5s 45.6s 0.0068s 0.4s

Figure 4. Wide baseline matching using only linear assignment.
Left: match without learning (7/30 correct matches). Right: match
with learning (19/30 correct matches).

5.2. Matching Frames of the ‘hotel’ Sequence

Although all image pairs in training are different from those
in the test set, the experiment described in section 5.1 still
involves only images in a single image sequence. In or-
der to evaluate how learning can generalize from one to an-
other image sequence, we have manually labeled data for
a second image sequence. This way, we trained on pairs
of the ‘house’ image sequence and tested on pairs of the
‘hotel’ image sequence [2]. In order to illustrate the fact
that the size of the error bars only depends on the size of
the test set and also the fact that the non-learning versions
of the algorithms have the same accuracy if the test set is
the same, we used a fixed test set by sampling the ‘hotel’
sequence at every 7 frames. This resulted in 105 image
pairs for testing. The results are shown in Figure 5. We
can see that the accuracy of all non-learning methods is con-
stant, since the training set size only affects learning. As the
training set size increases, the learning versions of the algo-
rithms get progressively better. Eventually, linear assign-
ment with learning surpasses bistochastic GA normaliza-
tion. GA learning again outperforms all other algorithmic
settings. Note also that the bistochastic GA normalization
used in this plot is the one with highest accuracy among
the three versions from section 5.1, i.e. the errors for the
other 2 cases would be larger. (Recall the gap of 4 orders
of magnitude between processing times for the algorithm
that produces the red bar and the one that produces the light
green bar in Figure 5) The fact that GA no-learning under-
performs LA no-learning seems intriguing, but may be due
to the fact that if learning is not performed the relative im-
portance of the linear and quadratic terms is not properly
calibrated.

5.3. Matching Images of Humans

In this experiment, the dataset contains images of humans
performing simple actions: walking or running in different
directions. The feature vector is the SIFT, and each graph

Figure 5. Mismatch proportions for increasing training set size and
fixed test set. Training is done in pairs of the ‘house’ sequence and
test in pairs of the ’hotel’ sequence.

Table 4. The error rates of LA vs LA-learning on ‘Humans’
dataset. Paired t-test shows p = 0.0058 (very significant).

mean std. error
LA 32.41% 2.57%
LA learning 13.88% 2.77%

Figure 6. Examples of images from the ‘Humans’ dataset.

Figure 7. Left: match without learning. Right: match with learn-
ing. Note that without learning ear and hair are swapped, hand
matches elbow, elbow matches belly and belly matches hand. With
learning, there are no mistakes.

has 12 nodes, corresponding to 12 points that showed up
consistently when running the SIFT algorithm.

We split the data into training set and test set accord-
ing to their “modes”: moving from the left as training set
(12 images – 66 training graph pairs) and moving from the
right as test set (4 images — 6 test graph pairs). Figure 6
shows some instances of the training set. A random pair
of graphs is selected from the training set as the validation
set (used to tune the regularization parameter C). Every re-
maining pair of graphs is used as a training instance. We
compare the statistics of the error rates of the test exam-
ples on Table 4. In this particular experiment we focus on
linear assignment only since the humans are very flexible
and stringent structural constraints have high variation, thus
making the structural information very noisy. The results
indicate that learning, again, significantly outperforms non-
learning. One matching example is shown in Figure 7.



6. Conclusions and Discussion

We have shown how the compatibility functions for the
graph matching problem can be estimated from labeled
training examples, where a training input is a pair of graphs
and a training output is a matching matrix. We use large-
margin structured estimation techniques with column gen-
eration in order to solve the learning problem efficiently
despite the huge number of constraints in the optimization
problem. We present experimental results in three different
settings, in all of which the solutions for the graph matching
problem have been improved by means of learning.

A major finding in this work has been the realization
that linear assignment with learning may perform similarly
or better than state-of-the-art quadratic assignment relax-
ation algorithms (without learning). This clearly suggests
a direct possibility of “transporting” computational burden
from the online matching task to the off-line learning pro-
cedure. This enables one to solve large matching problems
quickly using a fast linear assignment solver without jeop-
ardizing accuracy. It is however important that context is
somehow encoded into the unary features. More research
into this topic is necessary in order to see how far we can
go with linear assignment only.

In brief, the main conclusions from this paper are that,
by using learning, (i) the speed of graph matching can be
significantly boosted while retaining state-of-the-art accu-
racy (in case linear assignment is used) or (ii) the accuracy
of graph matching can be significantly improved without
decreasing the speed (in case quadratic assignment is used).

In our experiments we have only scratched the surface of
potential applications for learning graph matching. For ex-
ample, we can learn compatibility functions for cases where
the graphs are very different. Imagine we want to match
images of real people with images of cartooned people.
The features will likely be very different, so standard graph
matching is hopeless. However by doing learning we can
find the appropriate feature calibration such that the match-
ing loss is small. Similarly, we may match color against
gray-level images, high-resolution against low-resolution
images, images from cameras with completely different
specification and calibration, etc. All we need are some
training examples of matches in similar conditions. Even
different types of features can be used in each of the graphs,
the only thing needed being sensible constructions of φ1

and φ2 (different features may have different dimensional-
ities for instance, so the straightforward constructions used
in section 4 should be adapted accordingly).

To summarize, by learning a matching criterion from
previously labeled data (obtained under conditions similar
to those in which we want the algorithm to be used), we are
able to implicitly account for the peculiarities of the situa-
tion, and customize the graph matching algorithm accord-
ingly.
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