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Abstract. In this paper we unify divergence minimization and statisti-
cal inference by means of convex duality. In the process of doing so, we
prove that the dual of approximate maximum entropy estimation is max-
imum a posteriori estimation. Moreover, our treatment leads to stability
and convergence bounds for many statistical learning problems. Finally,
we show how an algorithm by Zhang can be used to solve this class of
optimization problems efficiently.

1 Introduction

It has become part of machine learning folklore that maximum entropy esti-
mation and maximum likelihood are convex duals to each other. This raises the
question whether maximum a posteriori estimates have similar counterparts and
whether such estimates can be obtained efficiently.

Recently Dudik et al. [9] showed that a certain form of regularized maximum
entropy density estimation corresponds to ¢; regularization in the dual problem.
This is our starting point to develop a theory of regularized divergence mini-
mization which aims to unify a collection of related approaches. By means of
convex duality we are able to give a common treatment to

— The regularized LMS minimization methods of Arsenin and Tikhonov [21],
and of Morozov [14]. There the problem of minimizing

l|lz||3 subject to [|Az —b||3 < e

is studied as a means of improving the stability of the problem Az = b.
— Ruderman and Bialek [18] study a related problem where instead of a quadratic
penalty on x the following objective function is minimize

—H(z) subject to ||Az —b||% < ¢

In other words, the problem of solving Az = b is stabilized by finding the
maximum entropy distribution which satisfies the constraint.

** Parts of this work were done when the author was visiting National ICT Australia.
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— The density estimation problem of [9] can be viewed as one of solving a
variant of the above, namely that of minimizing

—H(z) subject to || Az — b||oc < €

where the constraint encode deviations of the measured values of some mo-
ments or features and their expected values.

The problem we study can be abstractly stated as the regularized inverse problem

miniergclize f(x) subject to ||Az — bl < e.
x
where X and B are Banach spaces. We start by establishing a general framework
of duality to solve this problem using a convex analysis tool, namely Fenchel’s
duality. This theory is especially useful in the most general form of our problem,
where X and B are infinite dimensional, since in this case Lagrangian techniques
are problematic due to differentiability issues. We apply this framework to a
generalized notion of regularized divergence minimization, since a large subset
of statistical learning literature can be analyzed within this class of problems.
By studying convex duality of two important classes of divergences, namely
Csiszar and Bregman divergences, we show that maximum a posteriori estima-
tion is the convex dual of approximate maximum entropy estimation. Various
statistical inference methods, such as boosting, logistic regression, Gaussian Pro-
cesses and others become instances of our framework, by using different entropy
functions and regularization methods. Following these lines, we not only give a
common treatment to these methods, but also provide directions to develop new
inference techniques by investigating different entropy-regularization combina-
tions. For example, working in Banach spaces, we can perform different regular-
izations on subsets of basis functions, which is useful in problems like structured
learning where there are several distinctly different sets of basis functions.
From a regularization point of view, our approach provides a natural interpre-
tation to the regularization coefficient €, which corresponds to the approximation
parameter in the primal problem. Studying the concentration of empirical means,
we show that a good value of € is proportional to O(1/+/m) where m is the sample
size. Noting that ¢ is generally chosen by cross validation techniques in practice,
we believe our framework gives us an enhanced interpretation of regularized op-
timization problems. We also provide unified bounds on the performance of the
estimate wrt loss on empirical estimates as well as the loss on true statistics,
which apply to arbitrary linear classes and divergences. Finally, we show that a
single algorithm can efficiently optimize this large class of optimization problems
with good convergence rates.

Related work There is a large literature on analyzing various loss functions on ex-
ponential families as the convex dual of relative entropy minimization via equal-
ity constraints of the form Az = b. For example, Lafferty [12] analyze logistic
regression and exponential loss as a special case of Bregman divergence mini-
mization and propose a family of sequential update algorithms. Similar treat-
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ments are given in [11,8]. One common property of these studies is that they
investigate exact divergence minimization.

Previous work on approximate divergence minimization focused on mini-
mizing KL divergence such that its convex dual is penalized by ¢; and /5
norm terms, eg. [7]. [9] show that approximate KL divergence minimization wrt.
|Az — b||co < € has the convex dual of ¢; norm regularized maximum likelihood.
Recently [10] produced similar results for ¢, norm regularization.

In this paper, we improve over previous work by generalizing to a family of
divergence functions with inequality constraints in Banach spaces. Our unified
treatment of various entropy measures (including Csiszar and Amari divergences)
and various normed spaces allows us to produce the cited work as special cases
and to define more sophisticated regularizations via Banach space norms. Finally
we provide risk bounds for the estimates.

2 Fenchel Duality

We now give a formal definition of the class of inverse problems we solve. Denote
by X and B Banach spaces and let A : X — B be a bounded linear operator
between those two spaces. Here A corresponds to an “observation operator”,
e.g. mapping distributions into a set of moments, marginals, etc. Moreover, let
b € B be the target of the estimation problem. Finally, denote by f : X — R
and g : B — R convex functions and let € > 0.

Problem 1 (Regularized inverse). Our goal is to find x € X which solves
the following convex optimization problem:

minir&lize f(z) subject to ||Az —b||s < e
EAS

Example 2 (Density estimation). Assume that x is a density, [ is the neg-
ative Shannon-Boltzmann entropy, b contains the observed values of some mo-
ments or features, A is the expectation operator of those features wrt. the density
x and the Banach space B is .

We shall see in Section 3.2 that the dual to Example 3 is a maximum a posteriori
estimation problem.

In cases where B and X are finite dimensional the problem is easily solved
by calculating the corresponding Lagrangian, setting its derivative to 0 and
solveing for z. In the infinite dimensional case, more careful analysis is required
to ensure continuity and differentiability. Convex analysis provides a powerful
machinery, namely Fenchel’s conjugate duality theorem, to study this problem
by formulating the primal-dual space relations of convex optimization problems
in our general setting. We need the following definition:

Definition 3 (Convex conjugate). Denote by X a Banach space and let X*
be its dual. The convexr conjugate or the Legendre-Fenchel transformation of a
function f: X — R is f*: X* — R where f* is defined as

fr(@") = sup {(z,27) — f(z)}.
zeX
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We present Fenchel’s theorem where the primal problem is of the form f(x) +
g(Az). Problem 2 becomes an instance of the latter for suitably defined g.

Theorem 4 (Fenchel Duality [3, Th. 4.4.3]). Let g : B — R be a convex
function on B and other variables as above. Define t and d as follows:

t= inf {f(z) + g(Az)} andd = sup {—f(A"5") - g"(~a")} .
zeX z*eB*
Assume that f, g and A satisfy one of the following constraint qualifications:

a) 0 € core(dom g — Adom f) and both f and g are left side continuous (Isc)
b) Adom f Ncontg # 0

Here s € core(S) if Uy A(S —s) € X where X is a Banach space and S C X.
In this case t = d, where the dual solution d is attainable if it is finite.

We now apply Fenchel’s duality theorem to convex constraint optimization prob-
lems, such as Problem 2, since the dual problem is easier to solve in certain cases.

Lemma 5 (Fenchel duality with constraints). In addition to the assump-
tions of Theorem 5, let b € B and ¢ > 0. Define t and d as follows:

t= ingc {f(z) subject to ||Az —b||5 < €}
e

andd= sup {~f*(A"a") + (b,a") - ¢[a"]| .}

z*eB*

Suppose f is lower semi-continuous and that for B := {B € B with HBH < 1} the
following constraint qualification holds:

core(Adom f) N (b+ eint(B)) # 0. (CQ)

In this case t = d with dual attainment.

Proof Define g in Theorem 5 as the characteristic function on eB + b, i.e.

(1)

_ - 0 ifbeceB+b
9(b) = XeB+b(b) = {

oo otherwise

The convex conjugate of g is given by
g*(x*) =sup {<B, :c*> subject to b—b € eB}
b

= — (z*,b) + esup {(b,z*) subject to b € B} =€ |z*|5. — (z*,b)
b

Theorem 5 and the relation core(B) = int(B) prove the lemma. ]

The constraint qualification ( C'Q)) ensures the non-emptiness of the sub-differential.
e = 0 leads to equality constraints Az = b, for which CQ requires b to be
an element of core(Adom f). If the equality constraints are not feasible b ¢
core(A dom f), which can be the case in real problems, the solution diverges.
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Such problems may be rendered feasible by relaxing the constraints (e > 0),
which corresponds to expanding the search space by defining an € ball around b
and searching for a point in the intersection of this ball and core(Adom f). In
the convex dual problem, this relaxation is penalized with the norm of the dual
parameters scaling linearly with the relaxation parameter e.

In practice it is difficult to check whether (CQ) holds. One solution is to solve
the dual optimization problem and infer that the condition holds if the solution
does not diverge. To assure a finite solution, we restrict the function class such
that f* is Lipschitz and to perturb the regularization slightly by taking its k*"
power, resulting in a Lipschitz continuous optimization. For instance Support
Vector Machines perform this type of adjustment to ensure feasibility [4].

Lemma 6. Denote by X a Banach space, let b € X* and let k > 1. Assume that
f(Az) is convex and Lipschitz continuous in x with Lipschitz constant C. Then

inf { f(4z) — (b,2) + e lo]*} (2)

zeX

does not diverge and the norm of = is bounded by ||z|| < [([|b]/y + C) /kﬁ]ﬁ

Proof [sketch] Note that the overall Lipschitz constant of the objective function
(except for the norm) is bounded by ||b]|y. + C. The objective function cannot
increase further if the slope due to the norm is larger than what the Lipschitz
constant admits. Solving for ek ||:10||]§{1 = 6]y« + C proves the claim. ]

3 Divergence Minimization and Convex Duality

Now that we established a rather general framework of duality for regularized
inverse problems, we consider applications to problems in statistics. For the
remainder of the section z will either be a density or a conditional density over
the domain 7. For this reason we will use p instead of x to denote the variable
of the optimization problem.

Denote by ¢ : T — B feature functions and let A : X — B be the expectation
operator of the feature map with respect to p. In other words, Ap := Ey, [¢(1)].
With some abuse of notation we will use the shorthand E,[i] whenever conve-
nient. Finally denote by ) = b the observed value of the features v (t), which are
derived, e.g. viab=m"1 37" | ¥(t;) for t; € S, the sample of size m.

This setting allows us to study various statistical learning methods within
convex duality framework. It is well-known that the dual of maximum (Shannon)
entropy (commonly called MaxEnt) is maximum likelihood (ML) estimation.
One of the corollaries, which follows immediately from the more general result
in Lemma 12 is that the dual of approzrimate maximum entropy is maximum a
posteriori estimation (MAP).
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Theorem 7. Assume that f is the negative Shannon entropy, that is f(p) :=
—H(p) = [;1ogp(t)dp(t). Under the above conditions we have

min — H(p) subject to
P

= max(00) —log [ expl(vN)dt = cllo] +7

Evl =il <cand [ai=1 @

Equivalently ¢ mazimizes Pr(S|¢) Pr(¢) and Pr(¢) « exp(—¢||@]|).

In order to provide a common treatment to various statistical inference tech-
niques, as well as give insight into the development of new ones, we study two
important classes of divergence functions, Csiszar’s divergences and Bregman
divergences. Csiszar divergence, which includes Amari’s « divergences as special
cases, gives the asymmetric distance between two infinite-dimensional density
functions induced by a manifold. Bregman divergences are commonly defined
over distributions over a finite domain. The two classes of divergences intersect
at the KL divergence. To avoid technical problems we assume that the constraint
qualifications are satisfied (e.g. via Lemma 7).

3.1 Csiszar Divergences

Definition 8. Denote by h : R — R a convex lsc function and let p,q be two
distributions on T. Then the Csiszdr divergence is given by

fulap) = [ aton (28) ar (4)

Different choices for h lead to different divergence measures. For instance h(§) =
& log € yields the Kullback-Leibler divergence. Commonly, ¢ is fixed and optimiza-
tion is performed with respect to p, which we denote by f5 4(p). Since f3 4(p) is
convex and expectation is a linear operator, we can apply Lemma 6 to obtain
the convex conjugate of Csiszar’s divergence optimization:

Lemma 9 (Duality of Csiszar Divergence). Assume that the conditions of
Lemma 6 hold. Moreover let f be defined as a Csiszdr divergence. Then

min { g @B ] = 9llls < ¢f = max { =iy (6,0()) + (6.5 — ellé |- |

Moreover the solutions p and ¢ are connected by p(t) = q(t)(h*) <<1/1(t), QZ)>)

Proof The adjoint of the linear operator A is given by (Azx, ¢) = <A*¢>, x). Let-
ting A be the expectation wrt p, we have { [ p(t) > Jo () , @) dt =
q

(t)
(A*¢)(p) for A*¢ = (¢,v(.)). Next note that f*({¢ = /5 (t L U(t)))dt.

Plugging this into Lemma 6, we obtain the first clalm
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Using attainability of the solution it follows that there exist p and é which
solve the corresponding optimization problems. Equating both sides we have

| (5 ) de==r (6,900 + (. 6) = el == (6. 60 + (. 0]

Here the last equality follows from the definition of the constraints (see the
proof of Lemma 6). Taking the derivative at the solution p (due to constraint
qualification) and noticing that the derivative of the first term on the RHS, we

get b’/ (%) = <¢A>,w>. Using the relation (h')~! = (h*)" completes the proof. W

Since we are dealing with probability distributions, it is convenient to add the
constraint [ dp(t) = 1. We have the following corollary.

Corollary 10 (Csiszar divergence and probability constraints). Define
all variables as in Lemma 10. We have

ngn {fhﬂ(p) subject to HEP [¢¥] — 1/3“3 <e€ and /po(t) = 1}
= max {~fi, (0.0()) = 4g) + (6:0) = Ao — clldlls. } = ~L5(6). (5)

Here the solution is given by p(t) = q(t)(h*)’(<¢(t),¢?> — A(¢)) where A() is
the partition function which ensures that p be a probability distribution (\(¢) is
the minimizer of (5) with respect to Ay).

Proof [sketch| Define P = {p| [;dp(t) = 1} and f in Lemma 6 as f(p) =
frq(@) + x2(P). Then, for A, = oo if p ¢ P, the convex conjugate of f is

(%) = sup,{(p,p*) = fnq(p) — Ap([dp(t) — 1) = Ape + (fr,g)" (" — Ap-).
Performing the steps in the proof of Lemma 10 gives the result. |

An important and well-studied special case of this duality is the minimization
of KL divergence as we investigate in the next section. Note that new inference
techniques can be derived using other h functions, eg. Tsallis’ entropy, which is
preferable over Shannon’s entropy in fields as statistical mechanics.

3.2 MAP and Maximum Likelihood via KL Divergence

Defining h in (4) as h(€) := £1n(§) we have h*(£*) = exp(£* —1). Then Csiszar’s
divergence becomes the KL divergence. Applying Corollary 11 we have:

Lemma 11 (KL divergence with probability constraints). Define all vari-
ables as in Lemma 11. We have

ngn {KL(p|q) subject to HEP [¢] — JJHB <€ and /po(t) = 1}

= {(00) o [ attyexn((o, vy - o

B+ +el} (6)

where the unique solution is given by ﬁé(t) = q(t) exp (<QZ7),1/)(15)> - Aé).
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Proof The dual of f is f (¢*) = [;q(t)exp(z*(t) — 1)dt. Hence we have the
dual objective function

[ at®exp (0600 ~ 45 = e+ (6.9) = 44— c[l]-
T

We can solve for optimality in A4 which yields Ay = log [5 q(t) exp ((¢, ¥(t))) dt.
Substituting this into the objective function proves the claim. |

Thus, optimizing approximate KL divergence leads to exponential families. Many
well known statistical inference methods can be viewed as special cases. Let
P={plpeX, [;dp(t) =1} and ¢(t) = 1,Vt € T.

Example 12. For e =0, we get the well known duality between Maximum En-
tropy and Mazimum Likelihood estimation.

min {—H(p) subject to B, Y] = 1[1} = mgx <¢,d~1> — log/yexp(@b, Y(t)))dt + et

peEP

Example 13. For B = £, we get the density estimation problem of [9]

2161;1 {—H(p) subject to HEP [¢] — 15”00 < 6}

=max (¢,7) — log /7 exp((6. ) (1))dt — el| ]y + ™

If B is a reproducing kernel Hilbert space of spline functions we obtain the density
estimator of [16], who use an RKHS penalty on ¢.

The well-known overfitting behavior of ML can be explained by the constraint
qualification (CQ) of Section 2. While it can be shown that in exponential fam-
ilies the constraint qualifications are satisfied [22] if we consider the closure of
the marginal polytope, the solution may be on (or close to) a vertex of the
marginal polytope. This can lead to large (or possibly diverging) values of ¢.
Hence, regularization by approximate moment matching is useful to ensure that
such divergence does not occur.

Regularizing ML with ¢5 and ¢; norm terms is a common practice [7], where
the coefficient is determined by cross validation techniques. The analysis above
provides a unified treatment of the regularization methods. But more impor-
tantly, it leads to a principled way of determining the regularization coefficient
€ as discussed in Section 4.

Note that if ¢ € T is an input-output pair ¢ = (x,y) we could maximize the
entropy of either the joint probability density p(z,y) or the conditional model
p(y|z), which is what we really need to estimate y|z. If we maximize the entropy
of p(y|x) and B is a RKHS with kernel k(¢,t) := ((t), ¢ (¢')) we obtain a range
of conditional estimation methods:

— For ¢(t) = yy,(x) and y € {£1}, we obtain binary Gaussian Process classi-
fication [15].
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— For ¢(t) = (y,y?)v(z), we obtain the heteroscedastic GP regression esti-
mates of [13].
— For decomposing v (t), we obtain various graphical models and conditional
random fields as described in [1].
— For ¢(t) = yy.(x) and £ spaces, we obtain as its dual ¢; regularization
typically used in sparse estimation methods.
The obvious advantage of using convex duality in Banach spaces is that it pro-
vides a unified approach (including bounds) for different regularization/relaxation
schemes as listed above. More importantly, this generality provides flexibility for
more complex choices of regularization. For instance, we could define different
regularizations for features that possess different characteristics.

3.3 Bregman Divergence

The Bregman divergence between two distributions p and ¢ for a convex function
h acting on the space of probabilities is given by

An(p,q) = h(p) — h(q) = ((p — 9), Vh(q)) . (7)
Note Ap(p, q) is convex in p. Applying Fenchel’s duality theory, we have

Corollary 14. Duality of Bregman Divergence Assume that the conditions
of Lemma 6 hold. Moreover let f be defined as a Bregman divergence. Then

E, [M - 15“3 < 6}

= max {~h* (6 = 60, 0)) + (6,8) € 0ll5. } = —LE(6). ()
Proof Defining Hy(p) = h(p) — (p,h'(q)), Lr(p.q) = Hy(p) — h*(¢g). The
convex conjugate of H, is H;(¢) = sup,, (p, ¢ + h'(q)) — h(p) = h*(¢ — ¢,), since
h'(q) = ¢q. Since q is constant, we get the equality (up to a constant) by plugging
H; into Lemma 6. n

min {Ah(p, q) subject to
p

As in Csiszér’s divergence, the KL divergence becomes a special case of Bregman
divergence by defining h as h(p) := [; p(t) In(p(t))dt. Thus, we can achieve the
same results in Section 3.2 using Bregman divergences as well. Also, it has been
shown in various studies that Boosting which minimizes exponential loss can
be cast as a special case of Bregman divergence problem with linear equality
constraints [8,11]. An immediate result of Corollary 15, then, is to generalize
these approaches by relaxing the equality constraints wrt. various norms and
achieve regularized exp-loss optimization problems leading to various regularized
boosting approaches. Due to space limitations, we omit the details.

4 Bounds on the Dual Problem and Uniform Stability

Generalization performances of estimators achieved by optimizing various convex
functions in Reproducing Kernel Hilbert Spaces have been studied extensively.
See e.g. [19,5] and references therein. Producing similar results in the general
form of convex analysis allows us to unify previous results via simpler proofs and
tight bounds.
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4.1 Concentration of empirical means

One of the key tools in the analysis of divergence estimates is the fact that
deviations of the random variable 1) = %w(ti) are well controlled.

Theorem 15. Denote by T := {t1,...,tm} C T a set of random variables drawn
fromp. Let ¢y : T — B be a feature map into a Banach space B which is uniformly

bounded by R. Then the following bound holds

< 2R (F,p) +¢€ (9)
B

2

with probability at least 1 —exp (— eRZ‘), Here R,,(F,p) denotes the Rademacher
average wrt the function class F := {¢,(-) = (V(t), pp) where ||@]l5. < 1}

Moreover, if B is a RKHS with kernel k(t,t") the RHS of (9) can be tightened
to \/m~1E, [k(t,t) — k(t,t')] + €. The same bound for € as above applies.

See [2] for more details and [20] for earlier results on Hilbert Spaces.

Proof The first claim follows immediately from [2, Theorem 9 and 10]. The
second part is due to an improved calculation of the expected value of the LHS
of (9). We have by convexity

- 272
— t;)) — E t
— > wts) — Ep [(t)]

=1

E

P

<E, H; > (k) ~ By (1)

B B

= m%\/Ep [0t = By [6@)I°] = m™*\ /B, [k(t.1) — ke, 1)

The concentration inequality for bounding large deviations remains unchanged
wrt. the Banach space case, where the same tail bound holds. |

The usefulness of Theorem 16 arises from the fact that it allows us to determine
€ in the inverse problem. If m is small, it is sensible to choose a large value of ¢
and with increasing m our precision should improve with O(ﬁ) This gives us

a principled way of determining e based on statistical principles.

4.2 Stability with respect to changes in b

Next we study the stability of constrained optimization problems when changing
the empirical mean parameter b. Consider the convex dual problem of Lemma 6
and the objective function of its special case (7). Both problems can be summa-
rized as

L(¢,b) := f(A) — (b,d) + |||’ (10)

where € > 0 and f(A¢) is a convex function. We first show that for any ¥’,
the difference between the value of L(¢, ) obtained by minimizing L(¢, b) with
respect to ¢ and vice versa is bounded.
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Theorem 16. Denote by ¢, ¢’ the minimizers of L(-,b) and L(-,b") respectively.
Then the following chain of inequalities holds:

L(,b') = L(¢/, b)) < (V) = b,¢' = ¢) < ||V = bllg | — S| 5- (11)
and L(¢,b) — L(¢, ') < (¢, = b) <[]V = bl [|¢]| 5- (12)

Proof To show (11) we only need to prove the first inequality. The second one
follows by Holder’s theorem:

L(¢, V') = L(¢', V') =L(¢, V') — L(¢,b) + L(¢,b) — L(¢',0) + L(¢', b) — L(¢', V)
< <b - b/a¢> + <¢/7b/ - b>

We used the fact that by construction L(¢’,b) > L(¢,b). To show (12) we use
almost the same chain of inequalities, bar the first two terms. ||

In general, ||¢ — ¢'|| can be bounded using Lemma 7,

¢ — ¢l 5e <2(Clke)™T . (13)

For the special case of B being a RKHS, however, one can obtain considerably
tighter bounds directly on ||¢’ — ¢|| in terms of the deviations in b and b:

e ]

5 114

Lemma 17. Assume that B is a Hilbert space and let k = 2,¢ > 0 in (10). Let
¢ and ¢’ be the minimizers of L(-,b) and L(-,b") respectively, where L is defined
as in (10). The the following bound holds:

lo =o'l < 1o =] (14)

Proof The proof idea is similar to that of [6,19]. We construct an auxiliary
function R: B — R via

R(z) = (A*[f'(Ag) — [/(A@)] + b — b,z = &) + |z = .

Clearly R(¢') = 0 and R is a convex function in z. Taking derivatives of R(z)
one can check that its minimum is attained at ¢:

0:R(2) = A"f'(Ap) —b— A" f'(Ad') + ' + 2¢(z — ¢')

For z = ¢, this equals 0y L(¢,b) — Oy L(¢, ") which vanishes due to optimality
in L. From this, we have

0> (A*[f'(Ad) — f'(APN + b — b6 — &) +elo— ||
> —bo—¢)+elo—¢|
>—b=b|lo— ¢ +el¢— &

Here the first inequality follows from R(¢') > R(¢), the second follows from the
fact that for convex functions (¢'(a) — ¢’(b),a — b) > 0, and the third inequality
is an application of Cauchy-Schwartz. Solving for ||¢ — ¢'|| proves the claim. W
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4.3 Risk bounds

We are now in a position to combine concentration and stability results derived
in the previous two sections into risk bounds for the values of divergences.

Theorem 18. Assume that b= =" (t) and let b* := E, [¢)(t)]. Moreover,
denote by ¢, ¢* the minimizers of L(-,b) and L(-,b*) respectively. Finally assume
that ||Y(t)|| < R for allt € T. Then

01l 2R (F,p) + €] < L(¢",0%) = L(9,b) < [|¢7|| 2R (T, p) + €] (15)

where each inequality holds with probability 1 — exp (— E;T).

Proof Combination of Theorem 16 and (12) of Theorem 17. [ |

Note that this is considerably stronger than a corresponding result of [9], as it
applies to arbitrary linear classes and divergences as opposed to £, spaces and
Shannon entropy. A stronger version of the above bounds can be obtained easily
for RKHSs, where the Rademacher average is replaced by a variance bound.

If we want to bound the performance of estimate x with respect to the actual
loss L(-,b*) rather than L(-,b) we need to invoke (11). In other words, we show
that on the true statistics the loss of the estimated parameter cannot be much
larger than the loss of true parameter.

Theorem 19. With the same assumptions as Theorem 19 we have with proba-
bility at least 1 — exp (— E;T)

L($,b") = L(¢",b") < 2 ()77 (2Ra(Fs) +6). (16)

Here C is the Lipschitz constant of f(A-). If B is an RKHS we have with prob-
2

ability at least 1 — exp (—%) form > 2

L b°) — L(¢*, b*) < % [:nE,, o(t, ) — k(t, )] + €| . (17)

Proof To prove (16) we use (11) which bounds

L(¢,0%) = L(¢",0%) < [[b" = bl 5 (/4]

ge 1107 ]|5-) -

The first factor is bounded by (9) of Theorem 16. The second term is bounded via
Lemma 7. A much tighter bound is available for RKHS. Using (11) in conjunction
with (14) of Lemma (18) yields

L(6,6°) ~ Do, b%) <+ o~ b
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We establish a bound for ||b— b*H2 by a standard approach, i.e. by computing
the mean and then bounding the tail of the random variable. By construction

S ult) - B ()

i=1

B[jp- ] = B = B [lo() - BRI

Using k(t,t') = (¢(t),¢¥(t')) yields the mean term. To bound the tail we use
McDiarmid’s bound. For this, we need to check by how much ||b — b*||* changes
if we replace one term (t;) by an arbitrary (t;) for some ¢, € 7. We have

b+ L ((th) — w(ta)) — b||* = [lb— "]
<o () = w1 [|200 +67) + 5 ((8) = ¥(t:)|| < 10R*/m

for m > 2. Plugging this into McDiarmid’s bound yields that ||b — b*||* deviates
. . . 1 2
from its expectation by more than € with probability less than exp (f%). |

Theorem 20 also holds for Lff . Since the KL divergence is an example of Csiszar’s
divergence, using this bound allows us to achieve stability results for MAP esti-
mates immediately.

5 Optimization Algorithm and Convergence Properties

In the most general form, our primal problem, f(z) subject to || Axz—0b||3 < eisan
abstract program, where both the constraint space B and the domain X may be
infinite, i.e. both the primal and the dual turn out to be infinite problems. Thus,
except for special cases finding an optimal solution in polynomial time may be
impossible. It turns out that a sparse greedy approximation algorithm proposed
by Zhang [23] is an efficient way of solving this class of problems efficiently,
providing good rates of convergence (in contrast, the question of a convergence
rate remains open in [9]).

Algorithm 1 Sequential greedy approximation [23]

1: input: sample of size n, statistics b, base function class Bj,.., approximation e,
number of iterations K, and radius of the space of solutions R
2: Set ¢ = 0.
fork=1,...,K do
4:  Find (%, 5\) such that for e; € By, and A € [0, 1] the following is approximately
minimized:

w

L((1 = \)¢ + ARes, b)

5. Update ¢ — (1 —A)¢ + ARe;
6: end for

Algorithm 1 requires that we have an efficient way of updating ¢ by drawing

from a base class of parameters By . which “generates” the space of parameters
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*

B*. In other words, we require that spanB;, ., = B*. For instance we could pick
Bj .« to be the set of vertices of the unit ball in B*.

Note that Step 4 in Algorithm 1 only needs to be approximate. In other
words, we only need to find (%, 5\) such that the so-found solution is within d; of
the optimal solution, as long as d; — 0 for k& — oc.

Also note the dependency on R: one needs to modify the setting of [23] to
make it applicable to arbitrary convex sets. As long as R is chosen sufficiently

large such as to include the optimal solution the conditions of [23] apply.

Theorem 20 ([23, Theorem II.1]). Let Mg be an upper bound on L"(¢). If
the optimization is performed exactly at each step (i.e. d; =0 for all k) we have

L(¢*,b) — L($,b) < 2M/(k +2) (18)

where ¢ is the true minimizer of L(¢,b).

This has an interesting implication when considering the fact that deviations
between the optimal solution of L(¢*,b*) for the true parameter b* and the
solution achieved via L(¢,b) are O(1/4/m), as follows from Section 4.3. It is
essentially pointless to find a better solution than within O(1/+/m) for a sample
of size m. Hence we have the following corollary:

Corollary 21. Zhang’s algorithm only needs O(\/m) steps for a set of observa-
tions of size m to obtain almost optimal performance.

When the dual is a finite program, it is possible to achieve linear convergence
rates (where the difference in Equation 18 goes exponentially fast to 0 in k)
[17]. The obvious special case when the dual is a finite dimensional optimization
problem is when the index set I over the statistics is finite.

Consider X itself is a finite dimensional problem, for example, when we want
to estimate the conditional density p(y|z) of a classification task wrt. inequality
constraints in a Banach space. In that case, our primal is a semi-infinite program
(SIP), i.e. optimization over a finite dimensional vector space wrt infinite number
of constraints. Then, using a Helly-type theorem, one can show that the SIP can
be reduced to a finite program (i.e. with finite number of constraints) and we
immediately get a finite dual program. This is a generalization of a family of
results commonly referred to as representer theorems.

6 Conclusion

Our generalized framework of convex duality allowed us to unify a large class
of existing inference algorithms in a common framework, to provide statistical
bounds for the estimates, and to provide a practical algorithm.

Note that in the present paper we barely scratched the surface of alternative
divergence measures, such as Tsallis or Sharma-Mittal entropy. Also, we did not
discuss in detail what becomes of structured estimation methods when applied in
conjunction with Zhang’s algorithm. Likewise, the connection between Boosting
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and an approximate solution of inverse problems has not been explored yet.
Finally, it may be possible to minimize the divergence directly in transductive
settings. We expect this set of problems to be a fertile ground for future research.
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