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Abstract. We propose an independence criterion based on the eigen-
spectrum of covariance operators in reproducing kernel Hilbert spaces
(RKHSs), consisting of an empirical estimate of the Hilbert-Schmidt
norm of the cross-covariance operator (we term this a Hilbert-Schmidt In-
dependence Criterion, or HSIC). This approach has several advantages,
compared with previous kernel-based independence criteria. First, the
empirical estimate is simpler than any other kernel dependence test, and
requires no user-defined regularisation. Second, there is a clearly defined
population quantity which the empirical estimate approaches in the large
sample limit, with exponential convergence guaranteed between the two:
this ensures that independence tests based on HSIC do not suffer from
slow learning rates. Finally, we show in the context of independent com-
ponent analysis (ICA) that the performance of HSIC is competitive with
that of previously published kernel-based criteria, and of other recently
published ICA methods.

1 Introduction

Methods for detecting dependence using kernel-based approaches have recently
found application in a wide variety of areas. Examples include independent com-
ponent analysis [3, 10], gene selection [20], descriptions of gait in terms of hip and
knee trajectories [15], feature selection [9], and dependence detection in fMRI
signals [11]. The principle underlying these algorithms is that we may define
covariance and cross-covariance operators in RKHSs, and derive statistics from
these operators suited to measuring the dependence between functions in these
spaces.

In the method of Bach and Jordan [3], a regularised correlation operator
was derived from the covariance and cross-covariance operators, and its largest
singular value (the kernel canonical correlation, or KCC) was used as a statistic
to test independence. The approach of Gretton et al. [11] was to use the largest
singular value of the cross-covariance operator, which behaves identically to the
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correlation operator at independence, but is easier to define and requires no reg-
ularisation — the resulting test is called the constrained covariance (COCO).
Both these quantities fall within the framework set out by Rényi [17], namely
that for sufficiently rich function classes, the functional correlation (or, alterna-
tively, the cross-covariance) serves as an independence test, being zero only when
the random variables tested are independent. Various empirical kernel quantities
(derived from bounds on the mutual information that hold near independence)1

were also proposed based on the correlation and cross-covariance operators in
[3, 10], however their connection to the population covariance operators remains
to be established (indeed, the population quantities to which these approxima-
tions converge are not yet known). Gretton et al. [11] showed that these various
quantities are guaranteed to be zero for independent random variables only when
the associated RKHSs are universal [19].

The present study extends the concept of COCO by using the entire spec-
trum of the cross-covariance operator to determine when all its singular values
are zero, rather than looking only at the largest singular value; the idea being to
obtain a more robust indication of independence. To this end, we use the sum
of the squared singular values of the cross-covariance operator (i.e., its squared
Hilbert-Schmidt norm) to measure dependence — we call the resulting quan-
tity the Hilbert-Schmidt Independence Criterion (HSIC).2 It turns out that the
empirical estimate of HSIC is identical to the quadratic dependence measure of
Achard et al. [1], although we shall see that their derivation approaches this
criterion in a completely different way. Thus, the present work resolves the open
question in [1] regarding the link between the quadratic dependence measure
and kernel dependence measures based on RKHSs, and generalises this measure
to metric spaces (as opposed to subsets of the reals). More importantly, however,
we believe our proof assures that HSIC is indeed a dependence criterion under
all circumstances (i.e., HSIC is zero if and only if the random variables are in-
dependent), which is not necessarily guaranteed in [1]. We give a more detailed
analysis of Achard’s proof in Appendix B.

Compared with previous kernel independence measures, HSIC has several
advantages:

– The empirical estimate is much simpler — just the trace of a product of
Gram matrices — and, unlike the canonical correlation or kernel generalised
variance [3], HSIC does not require extra regularisation terms for good finite
sample behaviour.

– The empirical estimate converges to the population estimate at rate 1/
√
m,

where m is the sample size, and thus independence tests based on HSIC
do not suffer from slow learning rates [8]. In particular, as the sample size
increases, we are guaranteed to detect any existing dependence with high

1 Respectively the Kernel Generalised Variance (KGV) and the Kernel Mutual Infor-
mation (KMI).

2 The possibility of using a Hilbert-Schmidt norm was suggested by Fukumizu et al. [9],
although the idea was not pursued further in that work.
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probability. Of the alternative kernel dependence tests, this result is proved
only for the constrained covariance [11].

– The finite sample bias of the estimate is O(m−1), and is therefore negligible
compared to the finite sample fluctuations (which underly the convergence
rate in the previous point). This is currently proved for no other kernel
dependence test, including COCO.

– Experimental results on an ICA problem show that the new independence
test is superior to the previous ones, and competitive with the best existing
specialised ICA methods. In particular, kernel methods are substantially
more resistant to outliers than other specialised ICA algorithms.

We begin our discussion in Section 2, in which we define the cross-covariance
operator between RKHSs, and give its Hilbert-Schmidt (HS) norm (this being
the population HSIC). In Section 3, we given an empirical estimate of the HS
norm, and establish the link between the population and empirical HSIC by
determining the bias of the finite sample estimate. In Section 4, we demonstrate
exponential convergence between the population HSIC and empirical HSIC. As
a consequence of this fast convergence, we show in Section 5 that dependence
tests formulated using HSIC do not suffer from slow learning rates. Also in this
section, we describe an efficient approximation to the empirical HSIC based on
the incomplete Cholesky decomposition. Finally, in Section 6, we apply HSIC to
the problem of independent component analysis (ICA).

2 Cross-Covariance Operators

In this section, we provide the functional analytic background necessary in de-
scribing cross-covariance operators between RKHSs, and introduce the Hilbert-
Schmidt norm of these operators. Our presentation follows [21, 12], the main
difference being that we deal with cross-covariance operators rather than the
covariance operators.3 We also draw on [9], which uses covariance and cross-
covariance operators as a means of defining conditional covariance operators,
but does not investigate the Hilbert-Schmidt norm; and on [4], which charac-
terises the covariance and cross-covariance operators for general Hilbert spaces.

2.1 RKHS Theory

Consider a Hilbert space F of functions from X to R. Then F is a reproducing
kernel Hilbert space if for each x ∈ X , the Dirac evaluation operator δx : F → R,
which maps f ∈ F to f(x) ∈ R, is a bounded linear functional. To each point x ∈
X , there corresponds an element φ(x) ∈ F such that 〈φ(x), φ(x′)〉F = k(x, x′),
where k : X × X → R is a unique positive definite kernel. We will require in
particular that F be separable (it must have a complete orthonormal system).

3 Briefly, a cross-covariance operator maps from one space to another, whereas a
covariance operator maps from a space to itself. In the linear algebraic case,
the covariance is Cxx := Ex[xx�] − Ex[x]Ex[x�], while the cross-covariance is
Cxy := Ex,y[xy�] − Ex[x]Ey[y�].
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As pointed out in [12–Theorem 7], any continuous kernel on a separable X (e.g.
R

n) induces a separable RKHS.4 We likewise define a second separable RKHS,
G, with kernel l(·, ·) and feature map ψ, on the separable space Y.

Hilbert-Schmidt Norm. Denote by C : G → F a linear operator. Then provided
the sum converges, the Hilbert-Schmidt (HS) norm of C is defined as

‖C‖2
HS :=

∑

i,j

〈Cvi, uj〉2F , (1)

where ui and vj are orthonormal bases of F and G respectively. It is easy to see
that this generalises the Frobenius norm on matrices.

Hilbert-Schmidt Operator. A linear operator C : G → F is called a Hilbert-
Schmidt operator if its HS norm exists. The set of Hilbert-Schmidt operators
HS(G,F) : G → F is a separable Hilbert space with inner product

〈C,D〉HS :=
∑

i,j

〈Cvi, uj〉F 〈Dvi, uj〉F .

Tensor Product. Let f ∈ F and g ∈ G. Then the tensor product operator
f ⊗ g : G → F is defined as

(f ⊗ g)h := f〈g, h〉G for all h ∈ G. (2)

Moreover, by the definition of the HS norm, we can compute the HS norm of
f ⊗ g via

‖f ⊗ g‖2
HS = 〈f ⊗ g, f ⊗ g〉HS = 〈f, (f ⊗ g)g〉F

= 〈f, f〉F 〈g, g〉G = ‖f‖2
F‖g‖2

G (3)

2.2 The Cross-Covariance Operator

Mean. We assume that (X , Γ ) and (Y, Λ) are furnished with probability mea-
sures px, py respectively (Γ being the Borel sets on X , and Λ the Borel sets on
Y). We may now define the mean elements with respect to these measures as
those members of F and G respectively for which

〈µx, f〉F := Ex [〈φ(x), f〉F ] = Ex[f(x)],
〈µy , g〉G := Ey [〈ψ(y), g〉G ] = Ey[g(y)],

(4)

where φ is the feature map from X to the RKHS F , and ψ maps from Y to G.
Finally, ‖µx‖2

F can be computed by applying the expectation twice via

‖µx‖2
F = Ex,x′ [〈φ(x), φ(x′)〉F ] = Ex,x′[k(x, x′)]. (5)

4 For more detail on separable RKHSs and their properties, see [12] and references
therein.
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Here the expectation is taken over independent copies x, x′ taken from px. The
means µx, µy exist as long as their respective norms in F and G are bounded,
which is true when the kernels k and l are bounded (since then Ex,x′[k(x, x′)] <
∞ and Ey,y′[l(y, y′)] < ∞). We are now in a position to define the cross-
covariance operator.

Cross-Covariance. Following [4, 9],5 the cross-covariance operator associated
with the joint measure px,y on (X ×Y, Γ ×Λ) is a linear operator Cxy : G → F
defined as

Cxy := Ex,y [(φ(x) − µx) ⊗ (ψ(y) − µy)] = Ex,y [φ(x) ⊗ ψ(y)]
︸ ︷︷ ︸

:=C̃xy

−µx ⊗ µy︸ ︷︷ ︸
:=Mxy

. (6)

Here (6) follows from the linearity of the expectation. We will use C̃xy and Mxy

as the basis of our measure of dependence. Our next goal is to derive the Hilbert-
Schmidt norm of the above quantity; the conditions under which Cxy is a HS
operator will then follow from the existence of the norm.

2.3 Hilbert-Schmidt Independence Criterion

Definition 1 (HSIC). Given separable RKHSs F ,G and a joint measure pxy

over (X × Y, Γ × Λ), we define the Hilbert-Schmidt Independence Criterion
(HSIC) as the squared HS-norm of the associated cross-covariance operator Cxy:

HSIC(pxy,F ,G) := ‖Cxy‖2
HS. (7)

To compute it we need to express HSIC in terms of kernel functions. This is
achieved by the following lemma:

Lemma 1 (HSIC in terms of kernels).

HSIC(pxy,F ,G) = Ex,x′,y,y′ [k(x, x′)l(y, y′)] + Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)] (8)
−2Ex,y [Ex′ [k(x, x′)]Ey′ [l(y, y′)]]

Here Ex,x′,y,y′ denotes the expectation over independent pairs (x, y) and (x′, y′)
drawn from pxy. This lemma is proved in Appendix A. It follows from Lemma 8
that the HS norm of Cxy exists when the various expectations over the kernels
are bounded, which is true as long as the kernels k and l are bounded.

3 Empirical Criterion

In order to show that HSIC is a practical criterion for testing independence, and
to obtain a formal independence test on the basis of HSIC, we need to perform
three more steps. First, we need to approximate HSIC(pxy,F ,G) given a finite

5 Our operator (and that in [9]) differs from Baker’s in that Baker defines all measures
directly on the function spaces.
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number of observations. Second, we need to show that this approximation con-
verges to HSIC sufficiently quickly. Third, we need to show that HSIC is, indeed,
an indicator for the independence of random variables (subject to appropriate
choice of F and G). We address the first step in this section, and the remaining
two steps in the two sections that follow.

3.1 Estimator of HSIC

Definition 2 (Empirical HSIC). Let Z := {(x1, y1), . . . , (xm, ym)} ⊆ X × Y
be a series of m independent observations drawn from pxy. An estimator of
HSIC, written HSIC(Z,F ,G), is given by

HSIC(Z,F ,G) := (m− 1)−2trKHLH (9)

where H,K,L ∈ R
m×m, Kij := k(xi, xj), Lij := l(yi, yj) and Hij := δij −m−1.

An advantage of HSIC(Z,F ,G) is that it can be computed in O(m2) time,
whereas other kernel methods cost at least O(m3) before approximations are
made (although in practice, this advantage is somewhat academic, since good
approximations to all kernel dependence criteria can be computed in similar
time: see [3–Section 4] and Section 5.2). What we now need to show is that it is
indeed related to HSIC(pxy,F ,G):

Theorem 1 (O(m−1) Bias of Estimator). Let EZ denote the expectation
taken over m independent copies (xi, yi) drawn from pxy. Then

HSIC(pxy,F ,G) = EZ [HSIC(Z,F ,G)] +O(m−1).

This means that if the variance of HSIC(Z,F ,G) is larger than O(m−1) (and
indeed, the uniform convergence bounds we derive with respect to px,y will be
O(m−1/2)), the bias arising from the definition of HSIC(Z,F ,G) is negligible in
the overall process. The proof is in Appendix A.

4 Large Deviation Bounds

As a next step we need to show that the deviation between HSIC[Z,F ,G] and its
expectation is not too large. This section repeatedly uses a bound from [13–p.25],
which applies to U-statistics of the form we encounter in the previous section.

Theorem 2 (Deviation bound for U-statistics). A one-sample U-statistic
is defined as the random variable

u := 1
(m)r

∑

imr

g(xi1 , . . . , xir ),

where g is called the kernel of the U-statistic.6 If a ≤ g ≤ b, then for all t > 0
the following bound holds:

Pu {u− Eu[u] ≥ t} ≤ exp
(
−2t2�m/r

(b − a)2

)
.

We now state our main theorem.The proof is in Appendix A.
6 We denote (m)n := m!

(m−n)!
.
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Theorem 3 (Bound on Empirical HSIC). Assume that k and l are bounded
almost everywhere by 1, and are non-negative. Then for m > 1 and all δ > 0,
with probability at least 1 − δ, for all px,y,

|HSIC(pxy,F ,G) − HSIC(Z,F ,G)| ≤
√

log(6/δ)
α2m

+
C

m
,

where α2 > 0.24 and C are constants.

5 Independence Tests Using HSIC

In this section, we describe how HSIC can be used as an independence measure,
and as the basis for an independence test. We also describe an approximation to
HSIC which is more efficient to compute. We begin by demonstrating that the
Hilbert-Schmidt norm can be used as a measure of independence, as long as the
associated RKHSs are universal [19].

Theorem 4 (Cxy and Independence). Denote by F ,G RKHSs with universal
kernels k, l on the compact domains X and Y respectively. We assume without
loss of generality that ‖f‖∞ ≤ 1 and ‖g‖∞ ≤ 1 for all f ∈ F and g ∈ G. Then
‖Cxy‖HS = 0 if and only if x and y are independent.

Proof. According to Gretton et al. [11], the largest singular value (i.e., the spectral
norm) ‖Cxy‖S is zero if and only if x and y are independent, under the conditions
specified in the theorem. Since ‖Cxy‖S = 0 if and only if ‖Cxy‖HS = 0, it follows
that ‖Cxy‖HS = 0 if and only if x and y are independent.

5.1 Independence Tests

We now describe how to use HSIC as the basis of an independence test. Consider
a set P of probability distributions px,y. We may decompose P into two subsets:
Pi contains distributions p(i)

x,y under which x and y are independent, and Pd

contains distributions p(d)
x,y under which x and y are dependent.

We next introduce a test ∆(Z), which takes a data set Z ∼ pZ , where pZ is
the distribution corresponding to m independent draws from px,y, and returns

∆(Z) =

{
1 if Z ∼ p

(d)
Z

0 if Z ∼ p
(i)
Z

Given that the test sees only a finite sample, it cannot determine with complete
certainty from which class of distributions the data are drawn. We call ∆ an
α-test when

sup
p
(i)
x,y∈Pi

E
Z∼p

(i)
Z

[∆(Z) = 1] ≤ α.

In other words α upper bounds the probability of a Type I error. It follows from
Theorem 3 that the empirical HSIC converges to the population HSIC at speed
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1/
√
m. This means that if we define the independence test ∆(Z) as the indicator

that HSIC is larger than a term of the form C
√

log(1/α)/m, with C a suitable
constant, then ∆(Z) is an α-test with Type II error upper bounded by a term
approaching zero as 1/

√
m.

5.2 Efficient Computation

Computational cost is another factor in using HSIC as an independence cri-
terion. As in [3], we use a low rank decomposition of the Gram matrices via
an incomplete Cholesky decomposition, which permits an accurate approxima-
tion to HSIC as long as the kernel has a fast decaying spectrum. This results
in the following cost saving, which we use in our experiments. The proof is in
Appendix A.

Lemma 2 (Efficient approximation to HSIC). Let K ≈ AA� and L ≈
BB�, where A ∈ R

m×df and B ∈ R
m×dg . Then we may approximate trHKHL

in O(m(d2
f + d2

g)) time.

Finally, note that although the present measure of dependence pertains only to
the two-variable case, a test of pairwise dependence for a greater number of vari-
ables may easily be defined by summing HSIC over every pair of variables — this
quantity vanishes if and only if the random variables are pairwise independent.
We use this generalisation in the experiments of Section 6.

6 Experimental Results

We apply our estimates of statistical dependence to the problem of linear in-
stantaneous independent component analysis [14]. In this setting, we assume a
random source vector s of dimension n, where si ∈ R, such that the components
are mutually independent; ps (s) =

∏n
i=1 psi (si). We observe a vector t that cor-

responds to a linear mixing t = As of the sources s, where A is an n×n matrix
with full rank.7 We wish to recover an estimate x of the unmixed elements s
given m i.i.d. samples from pt(t), and using only the linear mixing model and
the fact that the unmixed components are independent. This problem is inde-
terminate in certain respects: for instance, the ordering and scale of the sources
cannot be recovered using independence alone.

It is clear that the various cross-covariance based kernel dependence tests,
including HSIC, can each be used to determine when the inverse V of A is found,8

by testing the pairwise independence of the components in x = Vt (bearing in
mind Theorem 4 and its implications for the various kernel dependence tests).
This requires a gradient descent procedure in which the kernel contrasts are
minimised as a function of V; see [3, 10] for details. The Amari divergence [2],

7 This assumes the number of sources is equal to the number of sensors, and the
sources are spatially distinct.

8 Up to permutation and scaling, and assuming no more than one source is Gaussian
[14].
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which is invariant to permutation and scaling, is used to compare V and A−1.
We acknowledge that the application of a general dependence function to linear
ICA is not an optimal non-parametric approach to the problem of estimating
the entries in A, as discussed in [18]. Indeed, most specialised ICA algorithms
exploit the linear mixing structure of the problem to avoid having to conduct a
general test of independence, which makes the task of recovering A easier. That
said, ICA is in general a good benchmark for dependence measures, in that it
applies to a problem with a known “ground truth”, and tests that the dependence
measures approach zero gracefully as dependent random variables are made to
approach independence (through optimisation of the unmixing matrix).

Table 1. Densities used, and their

respective kurtoses. Densities have

zero mean and unit variance.

Density Kurtosis

Student, 3 DOF ∞
Double exponential 3.00
Uniform -1.20
Student, 5 DOF 6.00
Exponential 6.00
2 double exponentials -1.70
Symmetric. 2 Gaussians, mul-
timodal

-1.85

As above, transmodal -0.75
As above, unimodal -0.50
Asymmetric. 2 Gaussians,
multimodal

-0.57

As above, transmodal -0.29
As above, unimodal -0.20
Symmetric. 4 Gaussians, mul-
timodal

-0.91

As above, transmodal -0.34
As above, unimodal -0.40
Asymmetric. 4 Gaussians,
multimodal

-0.67

As above, transmodal -0.59
As above, unimodal -0.82

As well as the kernel algorithms, we also
compare with three standard ICA methods
(FastICA [14], Jade [6], and Infomax [5]); and
two recent state of the art methods, neither of
them based on kernels: RADICAL [16], which
uses order statistics to obtain entropy esti-
mates; and characteristic function based ICA
(CFICA) [7].9 It was recommended to run
the CFICA algorithm with a good initialising
guess; we used RADICAL for this purpose. All
kernel algorithms were initialised using Jade
(except for the 16 source case, where Fast ICA
was used due to its more stable output). RAD-
ICAL is based on an exhaustive grid search
over all the Jacobi rotations, and does not re-
quire an initial guess.

Our first experiment consisted in de-
mixing data drawn independently from sev-
eral distributions chosen at random with re-
placement from Table 1, and mixed with a
random matrix having condition number be-
tween 1 and 2. In the case of the KCC and
KGV, we use the parameters recommended in
[3]: namely, κ = 2 × 10−2 and σ = 1 for m ≤ 1000, κ = 2 × 10−3 and σ = 0.5
for m > 1000 (σ being the kernel size, and κ the coefficient used to scale the
regularising terms). In the case of our dependence tests (COCO, KMI, HSIC),
we used σ = 1 for the Gaussian kernel, and σ = 3 for the Laplace kernel. After
convergence, the kernel size was halved for all methods, and the solution refined
in a “polishing” step. Results are given in Table 2.

9 We are aware that the same authors propose an alternative algorithm, “Efficient
ICA”. We did not include results from this algorithm in our experiments, since it is
unsuited to mixtures of Gaussians (which have fast decaying tails) and discontinuous
densities (such as the uniform density on a finite interval), which both occur in our
benchmark set.
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We note that HSIC with a Gaussian kernel performs on par with the best
alternatives in the final four experiments, and that HSIC with a Laplace kernel
gives joint best performance in six of the seven experiments. On the other hand,
RADICAL and the KGV perform better than HSIC in the m = 250 case. While
the Laplace kernel clearly gives superior performance, this comes at an increased
computational cost, since the eigenvalues of the associated Gram matrices de-
cay more slowly than for the Gaussian kernel, necessitating the use of a higher
rank in the incomplete Cholesky decomposition. Interestingly, the Laplace ker-
nel can improve on the Gaussian kernel even with sub-Gaussian sources, as seen
for instance in [10–Table 6.3] for the KMI and COCO.10 This is because the
slow decay of the eigenspectrum of the Laplace kernel improves the detection
of dependence encoded at higher frequencies in the probability density function,
which need not be related to the kurtosis — see [11–Section 4.2].

Table 2. Demixing of n randomly chosen i.i.d. samples of length m, where n varies

from 2 to 16. The Gaussian kernel results are denoted g, and the Laplace kernel results

l. The column Rep. gives the number of runs over which the average performance was

measured. Note that some algorithm names are truncated: Fica is Fast ICA, IMAX

is Infomax, RAD is RADICAL, CFIC is CFICA, CO is COCO, and HS is HSIC.

Performance is measured using the Amari divergence (smaller is bettter).

n m Rep. FICA Jade IMAXRAD CFIC KCC COg COl KGV KMIg KMIl HSg HSl

2 250 1000 10.5±
0.4

9.5 ±
0.4

44.4±
0.9

5.4 ±
0.2

7.2 ±
0.3

7.0 ±
0.3

7.8 ±
0.3

7.0 ±
0.3

5.3 ±
0.2

6.0 ±
0.2

5.7 ±
0.2

5.9 ±
0.2

5.8 ±
0.3

2 1000 1000 6.0 ±
0.3

5.1 ±
0.2

11.3±
0.6

2.4 ±
0.1

3.2 ±
0.1

3.3 ±
0.1

3.5 ±
0.1

2.9 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.3 ±
0.1

2.6 ±
0.1

2.4 ±
0.1

4 1000 100 5.7 ±
0.4

5.6 ±
0.4

13.3±
1.1

2.5 ±
0.1

3.3 ±
0.2

4.5 ±
0.4

4.2 ±
0.3

4.6 ±
0.6

3.1 ±
0.6

4.0 ±
0.7

3.5 ±
0.7

2.7 ±
0.1

2.5 ±
0.2

4 4000 100 3.1 ±
0.2

2.3 ±
0.1

5.9 ±
0.7

1.3 ±
0.1

1.5 ±
0.1

2.4 ±
0.5

1.9 ±
0.1

1.6 ±
0.1

1.4 ±
0.1

1.4 ±
0.05

1.2 ±
0.05

1.3 ±
0.05

1.2 ±
0.05

8 2000 50 4.1 ±
0.2

3.6 ±
0.2

9.3 ±
0.9

1.8 ±
0.1

2.4 ±
0.1

4.8 ±
0.9

3.7 ±
0.9

5.2 ±
1.3

2.6 ±
0.3

2.1 ±
0.1

1.9 ±
0.1

1.9 ±
0.1

1.8 ±
0.1

8 4000 50 3.2 ±
0.2

2.7 ±
0.1

6.4 ±
0.9

1.3 ±
0.05

1.6 ±
0.1

2.1 ±
0.2

2.0 ±
0.1

1.9 ±
0.1

1.7 ±
0.2

1.4 ±
0.1

1.3 ±
0.05

1.4 ±
0.05

1.3 ±
0.05

165000 25 2.9 ±
0.1

3.1 ±
0.3

9.4 ±
1.1

1.2 ±
0.05

1.7 ±
0.1

3.7 ±
0.6

2.4 ±
0.1

2.6 ±
0.2

1.7 ±
0.1

1.5 ±
0.1

1.5 ±
0.1

1.3 ±
0.05

1.3 ±
0.05

In our next experiment, we investigated the effect of outlier noise added to
the observations. We selected two generating distributions from Table 1, ran-
domly and with replacement. After combining m = 1000 samples from these
distributions with a randomly generated matrix having condition number be-
tween 1 and 2, we generated a varying number of outliers by adding ±5 (with
equal probability) to both signals at random locations. All kernels used were
Gaussian with size σ = 1; Laplace kernels resulted in decreased performance for
this noisy data. Results are shown in Figure 1. Note that we used κ = 0.11 for
the KGV and KCC in this plot, which is an order of magnitude above the level
recommended in [3]: this resulted in an improvement in performance (broadly

10 COCO is referred to in this table as KC.
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Fig. 1. Left: Effect of outliers on the performance of the ICA algorithms. Each point

represents an average Amari divergence over 100 independent experiments (smaller is

better). The number of corrupted observations in both signals is given on the horizontal

axis. Right: Performance of the KCC and KGV as a function of κ for two sources of size

m = 1000, where 25 outliers were added to each source following the mixing procedure.

speaking, an increase in κ causes the KGV to approach the KMI, and the KCC
to approach COCO [10]).11

An additional experiment was also carried out on the same data, to test the
sensitivity of the KCC and KGV to the choice of the regularisation constant κ.
We observe in Figure 1 that too small a κ can cause severe underperformance for
the KCC and KGV. On the other hand, κ is required to be small for good perfor-
mance at large sample sizes in Table 2. A major advantage of HSIC, COCO, and
the KMI is that these do not require any additional tuning beyond the selection
of a kernel.

In conclusion, we emphasise that ICA based on HSIC, despite using a more
general dependence test than in specialised ICA algorithms, nonetheless gives
joint best performance on all but the smallest sample size, and is much more
robust to outliers. Comparing with other kernel algorithms (which are also based
on general dependence criteria), HSIC is simpler to define, requires no regular-
isation or tuning beyond kernel selection, and has performance that meets or
exceeds the best alternative on all data sets besides the m = 250 case.
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11 The results presented here for the KCC and KGV also improve on those in [16, 3]
since they include a polishing step for the KCC and KGV, which was not carried
out in these earlier studies.
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A Proofs

A.1 Proof of Lemma 1

We expand Cxy via (6) and using (3):

‖Cxy‖2
HS = 〈C̃xy −Mxy, C̃xy −Mxy〉HS

= Ex,y,x′,y′ [〈φ(x) ⊗ ψ(y), φ(x) ⊗ ψ(y)〉HS]
−2Ex,y [〈µx ⊗ µy, φ(x) ⊗ ψ(y)〉HS] + 〈µx ⊗ µy, µx ⊗ µy〉HS

Substituting the definition of µx and µy and using that 〈φ(x), φ(x′)〉F = k(x, x′)
(and likewise for l(y, y′)) proves the claim.

A.2 Proof of Theorem 1

The idea underlying this proof is to expand trHKHL into terms depending on
pairs, triples, and quadruples (i, j), (i, j, q) and (i, j, q, r) of non-repeated terms,
for which we can apply uniform convergence bounds with U-statistics.

By definition of H we can write

trKHLH = trKL︸ ︷︷ ︸
(a)

−2m−1 1�KL1︸ ︷︷ ︸
(b)

+m−2 trKtrL︸ ︷︷ ︸
(c)

where 1 is the vector of all ones, since H = 1 − m−111� and since K,L are
symmetric. We now expand each of the terms separately and take expectations
with respect to Z.

For notational convenience we introduce the Pochhammer symbol (m)n :=
m!

(m−n)! . One may check that (m)n

mn = 1+O(m−1). We also introduce the index set
imr , which is the set of all r-tuples drawn without replacement from {1, . . . ,m}.

(a) We expand EZ [trKL] into

EZ

⎡

⎣
∑

i

KiiLii +
∑

(i,j)∈im2

KijLji

⎤

⎦ = O(m) + (m)2 Ex,y,x′,y′ [k(x, x′)l(y, y′)]

(10)
Normalising terms by 1

(m−1)2 yields the first term in (8), since m(m−1)
(m−1)2 = 1 +

O(m−1).

(b) We expand EZ [1�KL1] into

EZ

⎡

⎣
∑

i

KiiLii +
∑

(i,j)∈im2

(KiiLij +KijKjj)

⎤

⎦ + EZ

⎡

⎣
∑

(i,j,r)∈im3

KijLjr

⎤

⎦

= O(m2) + (m)3 Ex,y [Ex′ [k(x, x′)]Ey′ [l(y, y′)]]

Again, normalising terms by 2
m(m−1)2 yields the second term in (8). As with (a)

we used that m(m−1)(m−2)
m(m−1)2 = 1 +O(m−1).



76 A. Gretton et al.

(c) As before we expand EZ [trKtrL] into terms containing varying numbers of
identical indices. By the same argument we obtain

O(m3) + EZ

⎡

⎣
∑

(i,j,q,r)∈im4

KijLqr

⎤

⎦ = O(m3) + (m)4 Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)].

(11)
Normalisation by 1

m2(m−1)2 takes care of the last term in (8), which completes
the proof.

A.3 Proof of Theorem 3

As in the proof in Appendix A.2, we deal separately with each of the three terms
in (8), omitting for clarity those terms that decay as O(m−1) or faster.12 Denote
by PZ the probability with respect to m independent copies (xi, yi) drawn from
pxy. Moreover, we split t into αt+βt+(1−α−β)t where α, β > 0 and α+β < 1.
The probability of a positive deviation t has bound

PZ{HSIC(Z,F ,G) − HSIC(pxy,F ,G) ≥ t}

≤ PZ

⎧
⎨

⎩Ex,y,x′,y′ [k(x, x′)l(y, y′)] − 1
(m)2

∑

im2

Ki1i2Li1i2 ≥ αt

⎫
⎬

⎭

+PZ

⎧
⎨

⎩Ex,y[Ex′ [k(x, x′)]Ey′ [l(y, y′)]] − 1
(m)3

∑

im3

Ki1i2Li2i3 ≥ β

2
t

⎫
⎬

⎭

+PZ

⎧
⎨

⎩Ex,x′[k(x, x′)]Ey,y′ [l(y, y′)] − 1
(m)4

∑

im4

Ki1i2Li3i4 ≥ 1 − α− β

t

⎫
⎬

⎭

Using the shorthand z := (x, y) we define the kernels of the U-statistics in
the three expressions above as g(zi, zj) = KijLij , g(zi, zj , zr) = KijLjr and
g(zi, zj, zq, zr) = KijLqr. Finally, employing Theorem 2 allows us to bound the
three probabilities as

e−2mt2 α2
2 , e−2mt2 β2

3×4 , and e−2mt2 (1−α−β)2

4 ,

Setting the argument of all three exponentials equal yields α2 > 0.24: conse-
quently, the positive deviation probability is bounded from above by 3e−α2mt2 .
The bound in Theorem 2 also holds for deviations in the opposite direction, thus
the overall probability is bounded by doubling this quantity. Solving for t yields
the desired result.
12 These terms are either sample means or U-statistics scaled as m−1 or worse, and are

thus guaranteed to converge at rate m−1/2 according to reasoning analogous to that
employed below. Thus, we incorporate them in the C/m term.
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A.4 Proof of Lemma 2

Computing A and B costs O(md2
f ) and O(md2

g) time respectively. Next note
that

trH(AA�)H(BB�) = tr
(
B�(HA)

) (
B�(HA)

)�

= ‖(HA)�B‖2
HS

Here computing (HA) costs O(mdf ) time. The dominant term in the remainder
is the matrix-matrix multiplication at O(mdfdg) cost. Hence we use

H̃SIC(Z;F ,G) := (m− 1)−2‖(HA)�B‖2
HS.

B HSIC Derivation of Achard et al.

Achard et al. [1] motivate using HSIC to test independence by associating the
empirical HSIC with a particular population quantity, which they claim is zero if
and only if the random variables being tested are independent. We now examine
their proof of this assertion. The derivation begins with [1–Lemma 2.1], which
states the components xi of the random vector x are mutually independent if
and only if

Ex

[
n∏

i=1

k(xi − yi)

]
=

n∏

i=1

[Exik(xi − yi)] ∀y1, . . . , ym, (12)

as long as the kernel k has Fourier transform everywhere non-zero (here yi are
real valued offset terms). Achard et al. claim that testing the above is equivalent
to testing whether Q(x) = 0, where

Q(x) =
1
2

∫ (
Ex

[
n∏

i=1

k

(
xi

σi
− yi

)]
−

n∏

i=1

[
Exik

(
xi

σi
− yi

)])2

dy1 . . . dyn,

(13)
for scale factors σi > 0 (the empirical HSIC is then recovered by replacing the
population expectations with their empirical counterparts, and some additional
manipulations). However Q(x) = 0 tells us only that (12) holds almost surely,
whereas a test of independence requires (12) to hold pointwise. In other words,
Q(x) = 0 does not imply x are mutually independent, even though mutual
independence implies Q(x) = 0.


	Introduction
	Cross-Covariance Operators
	RKHS Theory
	The Cross-Covariance Operator
	Hilbert-Schmidt Independence Criterion

	Empirical Criterion
	Estimator of HSIC

	Large Deviation Bounds
	Independence Tests Using HSIC
	Independence Tests
	Efficient Computation

	Experimental Results
	Proofs
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Lemma 2

	HSIC Derivation of Achard et al.


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


