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In this chapter we present a new algorithm suitable for matching discrete objects
such as strings and trees in linear time, thus obviating dynamic programming with
quadratic time complexity.

This algorithm can be extended in various ways to provide linear time prediction
cost in the length of the sequence to be classified. We demonstrate extensions in the
case of position dependent weights, sliding window classifiers for a long sequence,
and efficient algorithms for dealing with weights given in the form of dictionaries.
This improvement on the currently available algorithms makes string kernels a
viable alternative for the practitioner.

1.1 Introduction

Many problems in machine learning require a data classification algorithm to
work with a set of discrete objects. Common examples include biological sequence
analysis where data is represented as strings (Durbin et al., 1998) and Natural
Language Processing (NLP) where the data is given in the form of a string combined
with a parse tree (Collins and Duffy, 2001) or an annotated sequence (Altun et al.,
2003).

In order to apply kernel methods one defines a measure of similarity between



2004/08/23 16:52

2 Fast Kernels for String and Tree Matching

discrete structures via a feature map φ : X → F. Here X is the set of discrete
structures (eg. the set of all parse trees of a language) and F is a Hilbert space.
Since φ(x) ∈ F we can define a kernel by evaluating the scalar products

k(x, x′) = 〈φ(x), φ(x′)〉 (1.1)

where x, x′ ∈ X. The success of a kernel method employing k depends both on the
faithful representation of discrete data and an efficient means of computing k.

Recent research effort has focussed on defining meaningful kernels on strings.
Many ideas based on use of substrings (Herbrich, 2002), gapped substrings (Lodhi
et al., 2002), k-length substrings (Leslie et al., 2002a) and mismatch penalties (Leslie
et al., 2002b) have been proposed. This chapter presents a means of computing
substring kernels on strings (Herbrich, 2002Leslie et al., 2002aJoachims, 2002)
and trees in linear time in the size of the arguments, independent of the weights
associated with any of the matching subwords. We also present a linear time
algorithm for prediction which is independent of the number of support vectors.
This is a significant improvement, since the so-far fastest methods rely on dynamic
programming which incurs a quadratic cost in the length of the argument (Herbrich,
2002) or are additionally linear in the length of the matching substring (Leslie et al.,
2002b). Further extensions to finite state machines, formal languages, automata,
etc. can be found in (Vishwanathan, 2002Smola and Vishwanathan, 2003Cortes
et al., 2002). Other means of generating kernels via the underlying correlation
structure can be found in (Smola and Hofmann, 2003Takimoto and Warmuth,
1999).

In a nutshell our idea works as follows: assume we have a kernel k(x, x′) :=∑
i∈I φi(x)φi(x′), where the index set I may be large, yet the number of nonzero

entries is small in comparison to |I| or the terms φi(x) have special structure. Then
an efficient way of computing k is to sort the set of nonzero entries of φ(x) and
φ(x′) beforehand and count only matching nonzeros.Sparse vectors

This is similar to the dot-product of sparse vectors in numerical analysis. As long
as the sorting is done in an intelligent manner, the cost of computing k is linear in
the sum of nonzeros entries combined. In order to use this idea for matching strings
(which have a quadratically increasing number of substrings) and trees (which can
be transformed into strings) efficient sorting is realized by the compression of the
set of all substrings into a suffix tree. Moreover, dictionary keeping allows us to
use (almost) arbitrary weightings for each of the substrings and still compute the
kernels in linear time.

Our results improve on the algorithm proposed by Leslie et al. (2002b) in the
case of exact matches, as the algorithm is now independent of the length of
the matches and furthermore we have complete freedom in choosing the weight
parameters. For inexact matches, unfortunately, such modifications are (still) not
possible and we suggest the online-construction of Leslie et al. (2002b) for an
efficient implementation.



2004/08/23 16:52

1.2 Kernels 3

Outline of the Chapter In section 1.2 we give the basic definition for the
string and tree kernels used in this chapter. Section 1.3 contains the main result of
the paper, namely how suffix trees can be used compute string kernels efficiently.
The following two sections deal with the issue of computing weights efficiently and
how to use the newly established algorithms for prediction purposes while keeping
the linear-time property. Experimental results in Section 1.6 and a discussion
(Section 1.7) conclude.

1.2 Kernels

1.2.1 String Kernels

We begin by introducing some notation. Let A be a finite set which we call the
alphabet, e.g. A = {A,C,G,T}. The elements of A are characters. Let $ be a
sentinel character such that $ /∈ A. Any x ∈ Ak for k = 0, 1, 2 . . . is called a string.
The empty string is denoted by ε and A∗ represents the set of all non empty strings
— the Kleene closure (Hopcroft and Ullman, 1979) — defined over the alphabet A.

In the following we will use s, t, u, v, w, x, y, z ∈ A∗ to denote strings and
a, b, c ∈ A to denote characters. |x| denotes the length of x, uv ∈ A∗ the
concatenation of two strings u and v, au ∈ A∗ the concatenation of a character
and a string. We use x[i : j] with 1 ≤ i ≤ j ≤ |x| to denote the substring of x

between locations i and j (both inclusive). If x = uvw for some (possibly empty)
u, v, w, then u is called a prefix of x while v is called a substring (also denoted
by v v x) and w is called a suffix of x. Finally, numy(x) denotes the number of
occurrences of y in x (that is the number of times y occurs as a substring of x).
The type of kernels we will be studying are defined byString kernel

definition
k(x, x′) :=

∑
svx,s′vx′

wsδs,s′ =
∑

s∈A∗

nums(x) nums(x′)ws. (1.2)

That is, we count the number of occurrences of every substring s in both x and
x′ and weight it by ws, where the latter may be a weight chosen a priori or after
seeing data, e.g., inverse document frequency counting (Leopold and Kindermann,
2002). This includes a large number of special cases:

Setting ws = 0 for all |s| > 1 yields the bag-of-characters kernel, counting simply
single characters (Joachims, 2002).

The bag-of-words kernel is generated by requiring s to be bounded by whitespace,
i.e. ws 6= 0 if and only if s is bounded by a whitespace character on either side
(Joachims, 2002).

Setting ws = 0 for all |s| > n yields limited range correlations of length n that is
we only consider the contributions due to substrings of length n or less.

The k-spectrum kernel takes into account substrings of length k (Leslie et al.,
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2002a). It is achieved by setting ws = 0 for all |s| 6= k.

TFIDF weights (Salton, 1989) are achieved by first creating a (compressed) list of
all s including frequencies of occurrence, and subsequently rescaling ws accordingly.

All these kernels can be computed efficiently via the construction of suffix-trees, as
we will see in the following sections.

However, before we go about computing k(x, x′) let us turn to trees. The latter
are important for two reasons: first since the suffix tree representation of a string
will be used to compute kernels efficiently, and secondly, since we may wish to
compute kernels on trees, which will be carried out by reducing trees to strings and
then applying a string kernel.

1.2.2 Tree Kernels

A tree is defined as a simple, directed, connected graph with no cycles. A rooted tree
has a single special node called the root. An internal node has one or more child
nodes and is called the parent of its children. The root is a node with no parent.
A node with no children is referred to as a leaf. A sequence of nodes n1, n2, . . . , nk,
such that ni is the parent of ni+1 for i = 1, 2, . . . , k − 1 is called a path. Given two
nodes a and d, if there is a path from node a to d then a is called an ancestor of d

and d is called a descendent of a. We define a subtree as a node in the tree together
with all its descendents. A subtree rooted at node n is denoted as Tn and t |= T is
used to indicate that t is a subtree of T . An ordered tree is a rooted tree in which
the order of the subtrees (hanging from every node) is significant. From this point
on all trees (and subtrees) we consider are ordered trees. If a set of nodes in the tree
along with the corresponding edges forms a tree then we define it to be a subset
tree.

If every node n of the tree contains a label, denoted by label(n), then the tree is
called an labeled tree. If only the leaf nodes contain labels then the tree is called an
leaf-labeled tree. Kernels on trees can be defined by defining kernels on matching
subset trees as proposed by Collins and Duffy (2001) or (more restrictively) by
defining kernels on matching subtrees. In the latter case we haveTree kernel

definition
k(T, T ′) =

∑
t|=T,t′|=T ′

wtδt,t′ . (1.3)

where δt,t′ = 1 iff the ordered subtrees t and t′ are isomorphic and have the same
order of child nodes at every level. We can compute our (more restrictive) tree
kernels in linear time but if we consider subset tree as in Collins and Duffy (2001)
quadratic-time algorithms are required.

If a tree T̃ can be obtained from a tree T by swapping the order of child
nodes then they are said to be equivalent. Alternatively, equivalent trees are
obtained by permuting the order of the leaf nodes without disturbing any parent
child relationship in the tree (see Figure 1.1). The tree kernel as defined in
(1.3) does not take this equivalence into account. While this may be desirable in
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Figure 1.1 Two equivalent trees, which can be transformed into each other by
swapping the children of the root node.

many applications (where ordered trees are naturally used), there are domains, for
instance phylogenetic trees in bioinformatics, where it is desirable to reduce trees
to a canonical form before computing kernels. We achieve that by implicitly sorting
(or ordering) the trees.

1.2.3 Ordering Trees

To order trees we assume that a lexicographic order is associated with the labels if
they exist. Furthermore, we assume that the additional symbols ‘[′, ‘]′ satisfy ‘[′< ‘]′,
and that ‘]′, ‘[′< label(n) for all labels. We will use these symbols to define tags
for each node as follows:

For an unlabeled leaf n define tag(n) := [].

For a labeled leaf n define tag(n) := [ label(n)].

For an unlabeled node n with children n1, . . . , nc define a lexicographically sorted
permutation π of the child nodes such that tag(nπ(i)) ≤ tag(nπ(j)) if π(i) < π(j)
and define

tag(n) = [ tag(nπ(1)) tag(nπ(2)) . . . tag(nπ(c))].

Tree to string
conversion For a labeled node perform the same operations as above and set

tag(n) = [ label(n) tag(nπ(1)) tag(nπ(2)) . . . tag(nπ(c))].

For instance, the root nodes of both trees depicted in Figure 1.1 would be encoded
as [[[][]][]]. We now prove that the tag of the root node, indeed, is a unique identifier
and that it can be constructed in log linear time.

Theorem 1.1

Denote by T a binary tree with l nodes and let λ be the maximum length of a label.
Then the following properties hold for the tag of the root node:

1. tag(root) can be computed in (λ + 2)(l log2 l) time and linear storage in l.



2004/08/23 16:52

6 Fast Kernels for String and Tree Matching

2. Every substring s of tag(root) starting with ′[′ and ending with a balanced ′]′

has a one-to-one mapping with a subtree Tn of T where s is the tag on node n.

3. If trees T and T̃ are equivalent then their tag(root) is the same. Furthermore
tag(root) allows the reconstruction of a unique element of the equivalence class.

Proof Claim 1 We use induction. The tag of a leaf can be constructed in constant
time by storing [, ], and a pointer to the label of the leaf (if it exists), that is
in 3 operations. Next assume that we are at node n, with children n1, n2. Let
Tn contain ln nodes and Tn1 and Tn2 contain l1, l2 nodes respectively. By our
induction assumption we can construct the tag for n1 and n2 in (λ+2)(l1 log2 l1) and
(λ + 2)(l2 log2 l2) time respectively. Comparing the tags of n1 and n2 costs at most
(λ + 2)min(l1, l2) operations and the tag itself can be constructed in constant time
and linear space by manipulating pointers. Without loss of generality we assume
that l1 ≤ l2. Thus, the time required to construct tag(n) (normalized by λ + 2) is

l1(log2 l1 + 1) + l2 log2(l2) = l1 log2(2l1) + l2 log2(l2) ≤ ln log2(ln). (1.4)

Claim 2 Without loss of generality we consider a labeled tree and use induction
to show that every subtree of T is associated with a balanced substring of tag(root).
For a leaf node n we assign tag(n) = [label(n)] and it is clear that it corresponds
to a balanced substring of tag(root). Suppose we are at an internal node n with
two child nodes n1 and n2. Furthermore assume that the subtrees Tn1 and Tn2

correspond to balanced substrings tag(n1) and tag(n2) respectively. Since we assign
tag(n) = [label(n) tag(n1) tag(n2)] it is clear that the substring corresponding to
Tn is balanced.

Conversely, by our recursive definition, every balanced substring of tag(root)
must be of the form [ label(n) tag(n1) tag(n2)] for some node n with children
n1 and n2. But this precisely corresponds to the tag on node n and hence to the
subtree Tn. This proves claim 2.

Another way of visualizing our ordering is by imagining that we perform a DFS
(depth first search) on the tree T and emit a ′[′ followed by label(n), when we visit
a node n for the first time and a ′]′ when we leave a node for the last time. It is clear
that a balanced substring s of tag(root) is emitted only when the corresponding
DFS on Tn is completed.

Claim 3 Since leaf nodes do not have children their tag is clearly invariant under
permutation. For an internal node we perform lexicographic sorting on the tags of
its children. This sorting maps all the trees of the equivalence class into a canonical
representative. We then define the tag(root) of this tree as the string corresponding
to our given tree. This directly proves the first part of our claim.

Concerning the reconstruction, we proceed as follows: each tag of a subtree starts
with ‘[′ and ends in a balanced ‘]′, hence we can strip the first [] pair from the tag,
take whatever is left outside brackets as the label of the root node, and repeat the
procedure with the balanced [. . .] entries for the children of the root node. This will
construct a tree with the same tag as tag(root), thus proving our claim.
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Figure 1.2 Suffix Tree of ababc. The leaf containing $ hanging off the root node
has been omitted for readability.

An extension to trees with d nodes is straightforward (the cost increases to d log2 d

of the original cost due to additional comparisons required in the sorting of the
leaves), yet the proof, in particular (1.4) becomes more technical without providing
additional insight, hence we omit this generalization for brevity.

The above tree to string conversion algorithm along with Claim 2 of Theorem 1.1
yields the following straightforward corollary, whose proof is left as a simple exercise
for the reader.

Corollary 1.2

Given trees T, T ′ the subtree matching kernel defined in (1.3) can be computed
via string kernels, if we use the strings tag(T ) and tag(T ′) and require that only
balanced substrings s of the form [. . .] have nonzero weight ws.

This reduces the problem of tree kernels to string kernels and all we need to show
in the following is how the latter can be computed efficiently. For this purpose we
need to introduce suffix trees.

1.3 Suffix Trees and Matching Statistics

1.3.1 Definition

The suffix tree is a compacted trie (Knuth, 1998) that stores all suffixes of a given
text string (Weiner, 1973). We denote the suffix tree of the string x by S(x).
Moreover, let nodes(S(x)) be the set of all nodes of S(x) and let root(S(x)) be the
root of S(x). If w denotes the path from the root to a node we label the node as
w. For a node w, Tw denotes the subtree tree rooted at the node, lvs(w) denotes
the number of leaves in Tw and parent(w) denotes it parent node.

We denote by words(S(x)) the set of all non-empty strings w such that wu ∈
nodes(S(x)) for some (possibly empty) string u, which means that words(S(x))
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is the set of all possible substrings of x (Giegerich and Kurtz, 1997). For every
t ∈ words(S(x)) we define ceil(t) as the node w such that w = tu and u is
the shortest (possibly empty) substring such that w ∈ nodes(S(x)). That is, it is
the immediate next node on the path leading up to t in S(x). Finally, for every
t ∈ words(S(x)) we define floor(t) as the node w such that t = wu and u is the
shortest non-empty substring such that w ∈ nodes(S(x)). That is, it is the last
node encountered on the path leading up to t in S(x). For an internal node w it
is clear that ceil(w) = w and floor(w) is the parent of w. Given a string t and
a suffix tree S(x), we can decide if t ∈ words(S(x)) in O(|t|) time by just walking
down the corresponding edges of S(x) (Weiner, 1973).

If the sentinel character $ is added to the string x then it can be shown that
for any t ∈ words(S(x)), lvs(ceil(t)) gives us the number of occurrence of t in x

(Giegerich and Kurtz, 1997). The idea works as follows: all suffixes of x starting
with t have to pass through ceil(t), hence we simply have to count the occurrences
of the sentinel character, which can be found only in the leaves. Note that a simple
DFS on S(x) will enable us to calculate lvs(w) for each node w of S(x) in O(|x|)
time and space.

Let aw be a node in S(x), and v be the longest suffix of w such that v ∈
nodes(S(x)). An unlabeled edge aw → v is called a suffix link in S(x). A suffix
link of the form aw → w is called atomic. It can be shown that all the suffix links
in a suffix tree are atomic (Giegerich and Kurtz, 1997, Proposition 2.9). We add
suffix links to S(x), to allow us to perform efficient string matching: suppose we
found that aw is a substring of x by parsing the suffix tree S(x). It is clear that
w is also a substring of x. If we want to locate the node corresponding to w, it
would be wasteful to parse the tree again. Suffix links can help us locate this node
in constant time. The suffix tree building algorithms (for instance Ukkonen (1995))
make use of this property of suffix links and construct the suffix tree and all its
suffix links in linear time.

Note that suffix links are just a special case of so-called failure functions from
automata theory: there they allow one to backtrack gracefully and re-use some of
the information obtained in checking whether a string is accepted by an automaton
(Hopcroft and Ullman, 1979Cortes et al., 2002).

1.3.2 Matching Statistics

Given strings x, y with |x| = n and |y| = m, the matching statistics of x with
respect to y are given by vectors v, c and c′ with vi ∈ N and ci, c

′
i ∈ nodes(S(y))

for i = 1, 2, . . . , n. We define vi as the length of the longest substring of y matching a
prefix of x[i : n], vi := i+vi−1, while ci is the node corresponding to ceil(x[i : vi])
and c′i is the node corresponding to floor(x[i : vi]) in S(y). For an example see
Table 1.1.

For a given x one can construct the matching statistics corresponding to y in
linear time. The key observation is that vi+1 ≥ vi−1, since if x[i : vi] is a substring
of y then definitely x[i + 1 : vi] is also a substring of y. Besides this, the matching
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String b c b a b

vi 2 1 3 2 1

x[i : vi] bc c bab ab b

ci bc$ c$ babc$ ab b

c′
i b root b root root

Table 1.1 Matching statistic of bcbab with respect to S(ababc) are shown here
along with the matching substrings.

substring in y that we find, must have x[i + 1 : vi] as a prefix. The Matching
Statistics algorithm of Chang and Lawler (1994) exploits this observation and uses
it to cleverly walk down the suffix links of S(y) in order to compute the matching
statistics in O(|x|) time.

More specifically, given c′i the algorithm finds the intermediate node p′i+1 :=
floor(x[i + 1 : vi]) by first walking down the suffix link of c′i and then walking
down the edges corresponding to the remaining portion of x[i + 1 : vi] until it
reaches p′i+1. Now ci+1, c′i+1 and vi+1 can be found easily by walking from p′i+1

along the edges of S(y) that match x[vi + 1 : n], until we can go no further. The
value of v1 is found by simply walking down S(y) to find the longest prefix of x

which matches a substring of y.

1.3.3 Matching Substrings

Using the matching statistics we can read off the number of matching substrings
in x and y. The useful observation here is that the only substrings which occur in
both x and y are those which are prefixes of x[i : vi]. The number of occurrences of
a substring in y can be found by lvs(ceil(w)), as discussed in Section 1.3.1. The
two lemmas below formalize this.

Lemma 1.3

w is a substring of x iff there is an i such that w is a prefix of x[i : n]. The number
of occurrences of w in x can be calculated by finding all such i.

Proof Let w be a substring of x. For each occurrence of w in x we can write
w = x[i : j] for some unique indices i and j. Clearly x[i : j] is a prefix of x[i : n].
Conversely, for every index i, every prefix of x[i : n] is a substring of x.

Lemma 1.4

The set of matching substrings of x and y is the set of all prefixes of x[i : vi].

Proof Let w be a substring of both x and y. By above lemma there is an i such
that w is a prefix of x[i : n]. Since vi is the length of the maximal prefix of x[i : n]
which is a substring in y, it follows that vi ≥ |w|. Hence w must be a prefix of
x[i : vi].
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Conversely, at any position i the longest prefix of x[i : n] which matches some
substring of y is x[i : vi]. Hence it follows that every prefix of x[i : vi] is a substring
of both x and y.

1.3.4 Efficient Kernel Computation

From the previous discussion we know how to determine the set of all longest
prefixes x[i : vi] of x[i : n] in y in linear time. The following theorem uses this
information to compute kernels efficiently.

Theorem 1.5

Let x and y be strings such that v, c and c′ be the matching statistics of x with
respect to y. Assume that

W (y, t) =
∑

p∈prefix(v)

wup − wu where u = floor(t) in S(y) and t = uv. (1.5)

can be computed in constant time for any t. Then k(x, y) defined in (1.2) can be
computed in O(|x|+ |y|) time asFast kernel

computation

k(x, y) =
|x|∑
i=1

[val(c′i) + lvs(ci) ·W (y, x[i : vi])] (1.6)

where val(t) := val(parent(t)) + lvs(t) ·W (y, t) and val(root) := 0.

Proof We first show that (1.6) can indeed be computed in linear time. We know
that for S(y) the number of leaves per node can be computed in O(|y|) time by
performing a DFS. Also, v, c and c′ can be computed in O(|x|) time by a invocation
of the matching statistics algorithm. By assumption on W (y, t) and by exploiting
the recursive nature of val(t) we can pre-compute W (y, w) for all w ∈ nodes(S(y))
by using simple top down procedure in O(|y|) time.

Now we may compute each term in constant time by a simple lookup for val(c′i)
and lvs(ci) and by computing W (y, x[i : vi]) in constant time. Since we have |x|
terms, the whole procedure takes O(|x|) time, which proves the O(|x| + |y|) time
complexity.

Now we prove that (1.6) really computes the kernel. We know from Lemma 1.4
that the sum in (1.2) can be decomposed into the sum over matches between y and
each of the prefixes of x[i : vi] (this takes care of all the substrings in x matching
with y). This reduces the problem to showing that each term in the sum of (1.6)
corresponds to the contribution of all prefixes of x[i : vi].

The key observation here is that all substrings of y which share the same ceil

node occur the same number of times in y. This allows us to bracket the contribution
due to each of the prefixes of x[i : vi] efficiently. Consider our previous example
with x = bcbab and y = ababc. To compute val(bab) we need to consider the
contributions due to bab, ba as well as b. Looking at S(y) immediately tells us that
b occurs twice in y (because lvs(ceil(b)) = 2) and hence its contribution must be
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counted twice, while ba and bab occur only once in y and hence their contributions
must be counted only once.

Because of its recursive definition and by exploiting the above observation it is
clear that val(w) for each w ∈ nodes(S(y)) computes the contribution to the kernel
due to w and all its prefixes. Given an arbitrary substring t such that u = floor(t)
and t = uv there are two components of t which contribute to the kernel. One is
the contribution due to u and all the prefixes and the other is the contribution due
to all strings of the form us where s ∈ prefix(v). Since each such substring occurs
exactly lvs(ceil(t)) times in y we can perform efficient bracketing and use W (y, t)
to compute the kernel.

Clearly once S(y) and the annotations of S(y) have been computed, evaluating
another k(x, y) costs only O(|x|) rather than O(|x| + |y|) time. This suggests that
for prediction we can gain extra efficiency by pre-computing a large part of the
kernel expansion. This idea is made more explicit in Section 1.5.1. Before we do so,
however, we need to address the issue under which conditions W (y, t) can really be
computed in constant time.

1.4 Weights and Kernels

1.4.1 Length Dependent Weights

If the weights ws depend only on |s| we have ws = w|s|. Define ωj :=
∑j

i=1 wi and
compute its values beforehand up to ωJ where J ≥ |x| for all x. Then the sum in
W (y, t) telescopes and it follows that

W (y, t) =

 |t|∑
j=| floor(t)|

wj

− w| floor(t)| =
|t|∑

j=1

wj −
| floor(t)|∑

j=1

wj = ω|t| − ω| floor(t)|

(1.7)
which can be computed in constant time by looking up the pre-computed values.
Examples of such weighting schemes include decay factors wi = λ−i, or indicator
functions wi = 1, bounded range interactions wi = 1 if i ≤ n and wi = 0
otherwise, and character counts wi = δ1i (Joachims, 2002). Denote by τ := |t|
and γ := | floor(t)| the string boundaries. In this case we can compute W (y, t) as
follows

W (y, t) =
(λ−γ − λ−τ )

λ− 1
Exponential decay (1.8)

W (y, t) = τ − γ Constant weight (1.9)

W (y, t) = max(0,min(τ, n)− γ) Bounded range (1.10)

W (y, t) =

{
1 if γ = 0

0 otherwise
Bag of characters (1.11)
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1.4.2 Position Dependent Weights

Next we study the case where the weights ws depend on |s| and the position of s

relative to the beginning of the strings x, y. That is, ws = w|s|φ(|ux|+1)φ(|uy|+1),
where x = uxsvx and y = uysvy.

Note that all words of y beginning at the same position i, share the same weight,
namely φ(i). They also share the same terminal leaf in S(y) (recall that there is
exactly one leaf per suffix). Hence it is sufficient to enumerate the leaves and weigh
them based on the starting position of the suffix they correspond to. Recall that in
section 1.3.1 we defined lvs(w) as the number of leaves in Tw. If we assume a unit
weight placed on each of the leaves then lvs(w) can be thought of as the sum of
the weights of the leaves in Tw. In the case of position dependent weights each leaf
contains a possibly different weight. Hence we generalize the above notion to define
lvs(w) as the sum of the weights of the leaves in Tw. Furthermore, to compute the
kernel, (1.6) needs to be rewritten as follows:

k(x, y) =
|x|∑
i=1

φ(i) [val(c′i) + lvs(ci) ·W (y, x[i : vi])] (1.12)

where val(ci) is as defined in theorem 1.5.

1.4.3 Dictionary Weights

Next assume that we have a set of strings D = {x1, x2, . . . , xk} with corresponding
weights wxi and that all other string-weights vanish, i.e. wd = 0 for d 6∈ D. Such
a method was recently put to good practical use by Ben-Hur and Brutlag (2003),
who use a set of motifs as the features used in classification of remote homologies.

We now provide a fast version of the motif-kernel algorithm, which does not
depend on the number of matching motifs or the number of support vectors any
more, unlike (Ben-Hur and Brutlag, 2003, Figure 2), however with the assumption
that the motifs do not contain any wildcards.

For the dictionary D we define |D| =
∑k

i=1 |xi|. The suffix tree of D is denoted
by S(D) and is defined as the compacted trie obtained by inserting all the suffixes
of all xi ∈ D. By a clever modification of the construction algorithm of McCreight
(1976) we can construct S(D) in O(|D|) time (Amir et al., 1994). Given a new string
xk+1 we can insert it into S(D) in O(|xk+1|) time. The suffix tree S(D) contains
a node corresponding to each of the strings in D. If none of the strings in D are
substrings of each other then S(D) contains a unique leaf node corresponding to
each xi. To ensure that none of the strings in D are substrings of each other we
might need to append a new symbol $i to each string xi in the dictionary.

Given a text and a static or dynamic dictionary of patterns the problem of
reporting all occurrence of any pattern of the dictionary in the text has been well
studied (Aho and Corasick, 1975Amir et al., 1994). Here we concentrate on the
static dictionary matching problem and sketch an algorithm which is close in spirit
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to our string kernel algorithm.
The basic idea of our algorithm is as follows: Given strings x and y we first

construct S({x, y}). We then show that to compute the kernel k(x, y) it is sufficient
to annotate the nodes of this joint suffix tree. We then show how the annotation
can be performed by (conceptually) constructing the suffix tree S({x, y}

⋃
D).

We first prove the following technical lemma:

Lemma 1.6

Let x and y be strings such that v, c and c′ be the matching statistics of x with
respect to y. The suffix tree S({x, y}) contains a node corresponding to x[i : vi] for
i = 1 . . . |x|.

Proof By definition of matching statistics, x[i : vi] occurs as a substring of y

while x[i : vi + 1] does not. This implies that in S({x, y}) we can share the path
corresponding to x[i : vi] but to represent the string x[i : vi +1] and its superstrings
we will need to introduce a node.

Let w ∈ nodes(S({x, y})), we define lvsx(w) and lvsy(w) as the number of times
w occurs as a substring of x and y respectively. The following lemma provides an
alternate view of our string kernel by characterizing it in terms of the nodes of
S({x, y}).

Lemma 1.7

Given the strings x and y the string kernel defined in (1.2) can be computed as

k(x, y) =
∑

t∈nodes(S({x,y}))

lvsx(t) · lvsy(t) ·W ({x, y}, t) (1.13)

where W ({x, y}, t) is defined as in Theorem 1.5

Proof We sketch the outline of the proof. We first observe that all strings which
share a common ceil (say t) in S({x, y}) occur lvsx(t), lvsy(t) number of times
in x and y respectively. From the previous lemma we know that x[i : vi] occurs as a
node in this joint suffix tree. These two observations allow us to bracket the terms
efficiently to compute the kernel.

In order to compute the kernel k(x, y) all that remains is to compute W ({x, y}, t)
efficiently for all nodes t ∈ nodes(S({x, y})). Let t be a node in S({x, y}) and w be
its parent. In order to compute W ({x, y}, t) we just need to sum up the weights of
all strings from the dictionary D which end on the edge connecting w to t. This can
be easily computed by keeping track of the weights on the path leading from string
w to string t in the suffix tree S(D). In fact this computation can be performed in
constant time if we annotate each node in S(D) with the sum of the weights on the
path from the root to the node.

A conceptually easy way to think of the above procedure is as follows: Assume
that we construct S({x, y}

⋃
D) (this can be done in O(|x| + |y|) time if S(D) is

already given (Amir et al., 1994)). Each t ∈ nodes(S({x, y})) is also a node in
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S({x, y}
⋃

D). For each such node t let w be its parent in S({x, y}). We compute
the weights on the path from w to t in S({x, y}

⋃
D). As before, this computation

can be performed in constant time by annotating the nodes of S(D) beforehand.

Wildcards Mismatches can be taken into account if we allow for a rather simple
modification of the above algorithm (albeit at a somewhat higher runtime): treat
wildcards as an additional (special) symbol and build the suffix tree based on the
set of dictionary terms. When computing the matching statistics algorithm and
parsing the suffix tree, allow for multiple paths, i.e. if a vertex contains contains
a wildcard ’*’ and the symbol ’A’ in its children, then when observing ’A’ both
paths would need to be followed. This means that the algorithm now is more
expensive, exactly by the number of concurrent paths that need to be taken into
account simultaneously.

Another approach to account for wildcards is to build a compact Finite State
Automata (FSA) to represent the dictionary patterns (Navarro and Raffinot, 1999).
This can be viewed as a generalization of suffix trees with failure functions.

1.4.4 Generic Weights

In case of generic weights, where individual subwords are assigned weights indepen-
dent of each other, we proceed as in the dictionary approach. The main difference is
that here the dictionary is only given implicitly. Hence denote by X = {x1, . . . , xm}
the set of all arguments to be used for kernel evaluation purposes.

Compute ws for all substrings of xi and treat the result as a dictionary. This
reduces the present case to the situation above, which may result in superlinear
time to annotate S(D), due to the significantly larger number of nonzero weights.
However, this should not be surprising, since we need to read each of the weights
used in computing the kernel at least once.

Our approach offers the option to assign weights according to the frequency of
occurrence of strings in a text. For this purpose, build a suffix tree first, use the
latter to obtain string frequency counts, then compute the according weights, and
proceed by annotating the suffix tree. This allows one to implement kernels such as
the ones proposed by Leopold and Kindermann (2002) efficiently.

1.5 Optimization and Prediction

Beyond the actual evaluation of scalar products, we can extend our techniques to
compute linear combinations of kernel functions efficiently. Crucial in this context
is the fact that the computation of k(x, y) is asymmetric in x and y insofar as a
suffix tree for y is computed, whereas x is merely compared to S(y).

In the following we will extend this idea by manipulating the suffix tree of the
set of support vectors directly, which will allow us to obtain O(|x|) time algorithms
even for combinations of kernels.



2004/08/23 16:52

1.5 Optimization and Prediction 15

1.5.1 Linear Time Prediction

Let X = {x1, x2, . . . , xm} be the set of support vectors. Recall that for prediction
in a Support Vector Machine we need to compute

f(x) =
m∑

i=1

αiyik(xi, x), (1.14)

which implies that we need to combine the contribution due to matching substrings
from each one of the support vectors. Using the definition of the string kernel we
can expand f as

f(x) =
m∑

i=1

∑
svxi

∑
s′vx

αiyiwsδs,s′ . (1.15)

Previously each substring match contributed a weight of ws to the kernel. Now
substring s from support vector xi contributes a weight of αiyiws. This suggest a
simple strategy akin to the one we used for position dependent weights.

We first construct S(X) in linear time by using the algorithm of Amir et al.
(1994). Next, each leaf in S(X) arising from xi, is assigned the weight αiyi rather
than 1. All we need to do now is define at each node w an updated weight, given
byWeighted leaf

nodes
weight(w) =

m∑
i=1

αiyi lvsxi
(w) (1.16)

where lvsxi
(w) denotes the number of leaves of S(xi) at node ceil(w).

This allows us to take the contribution of all SVs into account simultaneously.
A straightforward application of the matching statistics algorithm of Chang and
Lawler (1994) shows that we can find the matching statistics of x with respect to all
strings in X in O(|x|) time. Now (1.6) can be applied verbatim to compute f(x).1

In summary, we can classify texts in linear time regardless of the size of the
training set. This makes SVM for large-scale text categorization practically feasible.
However, note that this ability comes at a cost: we have to store S(X), which has
memory requirements linear in the size of the support vectors.

1.5.2 Sliding Windows

Now assume that we want to classify subsequences of a long string, e.g. a DNA
sequence d. The typical approach in this case is to take d[i : i+n], where n specifies
the window size, and compute f(d[i : i + n]) for all i ≤ |d| − n individually without
taking the correlation between the function values f(d[i : i + n]) into account.

This is highly wasteful, since the difference between two adjoint strings, that is

1. See (Vishwanathan, 2002) for further details and a proof.
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Figure 1.3 In a sliding window classifier we extend only those matches which cross
the current window boundary.

d[i : i + n] and d[i + 1 : i + n + 1] is just given by d[i] and d[i + n + 1]. All other
symbols and their order are identical. This means that a large part of what has
been computed for d[i : n] can be reused for its successor d[i + 1 : n + 1].

As before we merge the suffix trees of all support vectors into a master suffix
tree denoted by S(X). Next we compute the matching statistics of the entire long
sequence x with respect to S(X). Let cj

i and vj
i denote the matching statistics of

the jth character in the ith window, x[i : i + n]. Since a match cannot extend
beyond the boundary of the window it is clear that vj

i = min(n − j, vi+j) while
cj
i = ceil(x[i : vj

i ]. This means that we need not parse S(X) again and again
for computing the matching statistics of each window, which in turn will lead to
implementation speedups.

An even more efficient strategy is to keep track of those strings whose matches
end on the current window boundary. In the worst case there can be n of them,
but, in general the number will be typically smaller than n. When we perform
estimation for the next window we need to extend only those matches which ended
on the previous window boundary. If the number of matches that we need to extend
is less than n, then we can perform estimation for the next window in sub-linear
time (that is less than O(n) time). Figure 1.3 depicts this strategy.

In general, vi denotes the length of the longest match at location i of string x.
This implies that the match corresponding to x[i : vi] will cross at most vi window
boundaries and hence will need to be extended exactly vi times. Thus the total
time required to compute the sliding window kernel is proportional to

∑
i min(vi, n)

which is typically much smaller than n|x|.

1.6 Experimental Results
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Figure 1.4 Total number of families for which an SVM classifier exceeds a ROC50

score threshold.

For a proof of concept we tested our approach on a remote homology detection
problem2 (Jaakkola et al., 2000) using Stafford Noble’s SVM package3 as the
training algorithm. A length weighted kernel was used and we assigned weights
ws = λ|s| for all substring matches of length greater than 3 regardless of triplet
boundaries. To evaluate performance we computed the ROC50 scores.4

Being a proof of concept, we did not try to tune the soft margin SVM parameters
(the main point of the chapter being the introduction of a novel means of evaluating
string kernels efficiently rather than applications - a separate paper focusing on
applications is in preparation).

Figure 1.4 contains the ROC50 scores for the spectrum kernel with k = 3
(Leslie et al., 2002a) and our string kernel with λ = 0.75. We tested with λ ∈
{0.25, 0.5, 0.75, 0.9} and report the best results here. As can be seen our kernel
outperforms the spectrum kernel based on the total number of families for which a
classifier based on our kernel exceeds a ROC50 score threshold.

It should be noted that this is the first method to allow users to specify weights

2. Details and data available at www.cse.ucsc.edu/research/compbio/discriminative.
3. Available at www.cs.columbia.edu/compbio/svm.
4. The ROC50 score (Gribskov and Robinson, 1996Leslie et al., 2002a) is the area under
the receiver operating characteristic curve (the plot of true positives as a function of false
positives) up to the first 50 false positives. A score of 1 indicates perfect separation of
positives from negatives, whereas a score of 0 indicates that none of the top 50 sequences
selected by the algorithm were positives.
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rather arbitrarily for all possible lengths of matching sequences and still be able to
compute kernels at O(|x| + |x′|) time, plus, to predict on new sequences at O(|x|)
time, once the set of support vectors is established.5

1.7 Conclusion

We have shown that string kernels need not come at a super-linear cost in SVMs and
that prediction can be carried out at cost linear only in the length of the argument,
thus providing optimal run-time behavior. Furthermore the same algorithm can be
applied to trees.

The methodology pointed out in this chapter has several immediate extensions:
for instance, we may consider coarsening levels for trees by removing some of the
leaves. For not too-unbalanced trees (we assume that the tree shrinks at least by
a constant factor at each coarsening) computation of the kernel over all coarsening
levels can then be carried out at cost still linear in the overall size of the tree. The
idea of coarsening can be extended to approximate string matching. If we remove
characters, this amounts to the use of wildcards.

Likewise, we can consider the strings generated by finite state machines and
thereby compare the finite state machines themselves. This leads to kernels on
automata and other dynamical systems. More details and extensions can be found
in Vishwanathan (2002).
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