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Abstract

In this paper we study Hilbert space embeddings of dynamical systems and embeddings generated via dynamical systems.
This is achieved by following the behavioral framework invented by Willems, namely by comparing trajectories of states. By
a simple application of the Binet-Cauchy theorem we are able to provide a unifying framework for all kernels on dynamical
systems currently used in machine learning. As important special cases we recover and extend graph kernels, we provide novel
kernels on matrices and on Markov Models. Secondly we show how this relates to kernels based on the cepstrum coefficients
of a linear time-invariant system. This leads to filter-invariant kernels.

Besides their theoretical appeal, we show that these kernels can be used efficiently in the comparison of video sequences
via their embedding in linear time-invariant systems. The advantage of our setting over the one by Doretto and coworkers is
that we are able to take the initial conditions of such dynamical systems into account. Experimental evidence shows superior
performance of our kernel.
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1 Introduction

The past few years have witnessed an increasing interest
in the application of system-theoretic techniques to the
modeling of visual dynamical processes. For instance,
Doretto et al. [15,41] have proposed to model the ap-
pearance of dynamic textures, such as video sequences
of water, foliage, hair, etc. as the output of a Gaussian
linear dynamical model. Similarly, Saisan et al. [35] have
used linear dynamical models in the modeling of human
gaits such as walking, running, jumping, etc.

However, when modeling visual dynamical processes one
may be interested not only in obtaining a model for
the process (identification problem), but also in deter-
mining whether two video sequences correspond to the
same process (classification problem) or which process
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is being observed in a given video sequence (recogni-
tion problem). Since the space of models for dynamical
processes typically has a non Euclidean structure, 1 the
above problems have naturally raised the issue of how
to do estimation, classification and recognition on such
spaces.

The study of classification and recognition problems
has been the mainstream areas of research in ma-
chine learning for the past decades. Among the vari-
ous methods for nonparametric estimation that that
have been developed, kernel methods have become one
of the mainstays as witnessed by a large number of
books [43,44,46,23,26,38,10]. However, not much of the
existing literature has addressed the design of kernels
in the context of dynamical systems. To the best of
our knowledge, the metric for ARMA models based on
comparing their cepstrum coefficients [31] is one of the
first papers to address this problem. De Cook and De
Moor [11] extended this concept to ARMA models in
state-space representation by considering the subspace

1 For instance, the model parameters of a linear dynamical
model are determined only up to a change of basis, hence
the space of models has the structure of a Stiefel manifold.
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angles between the observability subspaces. Recently,
Wolf and Shashua [51] demonstrated how subspace an-
gles can be efficiently computed by using kernel meth-
ods.

1.1 Paper contributions

In this paper we attempt to bridge the gap between non-
parametric estimation methods and dynamical systems.
More specifically, we build on previous work using ex-
plicit embedding constructions and regularization the-
ory [39,51,40] to propose a family of kernels explicitly
designed for dynamical systems. These comparisons are
carried out by comparing the trajectories arising from
dynamical systems.

We show that the two strategies which have been used
in the past are special cases of one unified framework.
It works by computing traces over compound matrices.
More specifically, we show that one popular approach is
based on the computation of traces, whereas the other
relies on the computation of determinants over matrix
products.

• The first family is based on the idea of extracting
coefficients of a linear time-invariant (LTI) system
(ARMA or linear differential equation) and defining a
scalar product in terms of these quantities. This con-
struction will allow us to state important properties
regarding invariance of the systems with respect to fil-
tering directly by using results from Martin [31]. The
results of [11,15] allow us to connect these kernels with
the recent work of Wolf and Shashua of kernels via
subspace angles [51].

The downside of the above approach is that it that
the resulting kernel is insensitive to initial conditions.
For instance, not every initial configuration of the
joints of the human body is appropriate for modeling
human gaits.
• The second family is based directly on the time-

evolution properties of dynamical systems [39,51,40].
We show that the diffusion kernels of [28], the graph
kernels of [18], and similarity measures between
graphs [8] can be found as special cases of our frame-
work. It has the option to take the initial conditions
of the systems into account explicitly.

As disparate as both methods seem, we show that both
arise from a common family of kernels which can be
defined in terms of traces over compound matrices of
order q. The Binet-Cauchy theorem [1] is then invoked
to show that both families of kernels arise simply by
suitable preprocessing of the trajectory matrices and by
a corresponding choice of the order q.

Finally, we show how the proposed kernels can be used
to classify dynamic textures via their embedding in LTI
systems. Experimental evidence shows superior perfor-
mance of our kernel.

1.2 Paper outline

After a brief overview of kernel methods in Section 2
and an outline of the basic concepts involved in com-
puting kernels on dynamical systems in Section 3 we de-
rive explicit formulae for so-called trajectory kernels in
Sections 4 and 4.3. Special cases are discussed in Sec-
tion 6. Experiments and a discussion conclude in Sec-
tions 8 and 9.

2 Kernel Methods

In this section we give a brief overview of binary classi-
fication with kernels. For extensions such as multi-class
settings, the ν-parameterization, loss functions, etc. we
refer the reader to [38,23,44] and the references therein.

Assume we have m observations (xi, yi) drawn iid (in-
dependently and identically distributed) from a distri-
bution over X × Y, where in our case X is the set of
images and Y = {±1} are the labels, that can represent
for instance water versus foliage in dynamic textures. It
is our goal to find a function f : X → Y which classifies
observations x ∈ X into classes +1 and −1.

For the moment assume that X is a dot product space
(we will relax this condition subsequently via the intro-
duction of kernels) and f be given by

f(x) = sgn(〈w, x〉+ b). (1)

Here the sets {x|f(x) ≥ 0} and {x|f(x) ≤ 0} denote
half-spaces and the separating hyperplane between them
is given by H(w, b) := {x|〈w, x〉+ b = 0}. In the case of
linearly separable datasets, that is, if we can find (w, b)
such that all (xi, yi) pairs satisfy yif(xi) = 1, the optimal
separating hyperplane is given by the (w, b) pair for which
all xi have maximum distance from H(w, b). In other
words, it is the hyperplane which separates the two sets
with the largest possible margin.

2.1 Linearly Nonseparable Problems

Unfortunately, such separation is not always possible
and we need to allow for slack in the separation of the
two sets. Without going into details (which can be found
in [38]) this leads to the optimization problem:

minimize
w,b,ξ

1
2
‖w‖2 + C

m∑
i=1

ξi

subject to yi (〈w, xi〉+ b) ≥ 1− ξi ∀1 ≤ i ≤ m
ξi ≥ 0

(2)

Here the constraint yi (〈w, xi〉+ b) ≥ 1 ensures that
each (xi, yi) pair is classified correctly. The slack vari-
able ξi relaxes this condition at penalty Cξi. Finally,
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minimization of ‖w‖2 ensures maximization of the mar-
gin by seeking the smallest ‖w‖ for which the condition
yi (〈w, xi〉+ b) ≥ 1 is still satisfied.

Computing the dual of (2) leads to a quadratic optimiza-
tion problem

minimize
α

1
2
α>Kα−~1>α

subject to ~y>α = 0 and αi ∈ [0, C]
(3)

where Kij = yiyj〈xi, xj〉 and ~1 denotes the vector of
ones. The primal variable w can be found as a lin-
ear combination of the Lagrange multipliers α via
w =

∑
i yiαixi.

2.2 Kernel Expansion

To obtain a nonlinear classifier, one simply replaces the
observations xi by Φ(xi). That is, we extract features
Φ(xi) from xi and compute a linear classifier in terms of
the features. Note that there is no need to compute Φ(xi)
explicitly, since Φ only appears in terms of dot products:

• 〈Φ(x), w〉 can be computed by exploiting the
linearity of the scalar product, which leads to∑

i αiyi〈Φ(x),Φ(xi)〉.
• Likewise ‖w‖2 can be expanded in terms of a

linear combination scalar products by exploiting
the linearity of scalar products twice to obtain∑

i,j αiαjyiyj〈Φ(xi),Φ(xj)〉.

Consequently there is no need to compute Φ(x) explic-
itly. Furthermore, if we define

k(x, x′) := 〈Φ(x),Φ(x′)〉, (4)

we may use k(x, x′) wherever 〈x, x′〉 occurs. We only
need to modify (2) marginally to suit our needs: replace
the old definition of K with

Kij = yiyjk(xi, xj). (5)

The resulting hyperplane (now in feature space) is

f(x) = 〈Φ(x), w〉+ b =
m∑

i=1

αiyik(xi, x). (6)

This is also known as the kernel expansion and it stems
from a deep fact about Reproducing Kernel Hilbert
Spaces. See [38] for details on the Representer Theorem.

Finally, it is worthwhile mentioning that the particular
setting of the optimization problem (2) typically results
in many coefficients αi being 0. This considerably speeds
up the estimation step, since these terms can be dropped

from (6). The nonzero terms are commonly referred to
as Support Vectors, since they support the optimal sep-
arating hyperplane. Efficient codes exist for the solution
of (2) [25,16,45,27].

2.3 Kernels on Euclidean Spaces

There are many practical situations in which one is given
a similarity measure k(x, x′) which is constructed with-
out necessarily having an embedding Φ(x) is mind. In
such cases one may ask if the given k is indeed a kernel,
i.e., whether it can be seen as a scalar product in some
space as in (4). The following theorem provides us with
a tool to analyze such k.

Theorem 1 (Mercer [32,29]) Suppose k ∈ L∞(X 2)
(i.e. k is square integrable on X 2) is a symmetric real-
valued function such that the integral operator

Tk : L2(X )→ L2(X )

(Tkf)(x) :=
∫
X
k(x, x′)f(x′) dµ(x′) (7)

is positive definite; that is, for all f ∈ L2(X ), we have∫
X 2
k(x, x′)f(x)f(x′) dµ(x)dµ(x′) ≥ 0. (8)

Let ψj ∈ L2(X ) be the normalized orthogonal eigenfunc-
tions of Tk associated with the eigenvalues λj > 0, sorted
in non-increasing order. Then

(1) the series of eigenvalues is absolutely convergent and
the eigenfunctions are uniformly bounded almost ev-
erywhere.

(2) k(x, x′) =
∑NH

j=1 λjψj(x)ψj(x′) holds for almost all
(x, x′). Either NH ∈ N, or NH = ∞; in the latter
case, the series converges absolutely and uniformly
for almost all (x, x′).

This means that for a kernel satisfying Mercer’s condi-
tion, we can find the feature space associated with k by
studying the eigensystem of the integral operator Tk. In
the following we will call such kernels admissible.

Two of the most popular kernels include the Gaussian
kernel (9) introduced in [2] and the polynomial kernel
(10) proposed in [33]:

k(x, x′) = exp
(
λ‖x− x′‖2

)
for λ > 0 (9)

k(x, x′) = (〈x, x′〉+ r)d where r ≥ 0, d ∈ N. (10)

Many further kernels exist, e.g., kernels for sets, mul-
tisets, strings, or probability distributions. One of the
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attractive properties of kernels is that they can be com-
posed to form more complex objects in a simple fashion.
For instance

k(x, x′) = k1(x, x′) + k2(x, x′)
k(x, x′) = k1(x, x′)k2(x, x′)
k(x, x′) = κ(〈Φ(x),Φ(x′)〉) if κ(〈x, x′〉) is a kernel
k(x, x′) = κ(‖Φ(x)− Φ(x′)‖) if κ(‖x− x′‖) is a kernel

are all kernels. Similarly a convex combination of kernels
is also a kernel. All these properties allow us to build
structured kernels in an efficient fashion.

2.4 Metric Methods

Metric methods rely on the distances between objects
for estimation. For instance, a Nearest Neighbor clas-
sifier will classify an unseen object as belonging to the
class of its nearest neighbor. Variations on this theme,
such as using k-nearest neighbors for classification via
a majority vote have been studied in great detail and
rates of convergence exist. See for instance [14] and the
references therein. For the computation of distances in
feature space one simply uses

d(x, x′) := ‖φ(x)− φ(x′)‖ (11)

=
√
k(x, x) + k(x′, x′)− 2k(x, x′).

Likewise distance-based clustering operations such as k-
means [30] can easily be extended to kernels [37]: simply
replace all distance computations by kernel functions.

3 Kernels on Dynamical Systems

3.1 Dynamical Systems

We begin with some definitions. For the remainder of the
paper we assume that the state space X , with x ∈ X , is a
Hilbert space. This is not a major restriction, since e.g.,
any countable set S can be made into a Hilbert space
by mapping it into `S2 . Similar choices can be made for
non-countable sets. 2

Moreover we assume that the time evolution of x is de-
termined by

xA(t) := A(t)x for A ∈ A, (12)

where t ∈ T is the time of the measurement and A de-
notes the set of time evolution operators. We will choose

2 Should further generality be required, one may use alge-
braic semi-ring methods proposed by [12], albeit at a sig-
nificant technical complication. This leads to rational series
and functions on them.

T = N0 or T = R+
0 , depending on whether we wish to

deal with discrete-time or continuous-time systems.

Note that A may be a nonlinear operator and that both
x and A may be random variables rather than determin-
istic variables. In those cases, we assume that both x and
A are endowed with suitable probability measures. For
instance, we may want to consider initial conditions cor-
rupted by additional noise or LTI systems with additive
noise.

Also note that xA(t) need not be the only variable in-
volved in the time evolution process. For instance, for
partially observable models, we may only see yA(t) which
depends on the evolution of a hidden state xA(t). These
cases will be discussed in more detail in Section 4.

3.2 Trajectories

When dealing with dynamical systems, one may com-
pare their similarities by checking whether they satisfy
similar functional dependencies. For instance, for LTI
systems one may want to compare the the transfer func-
tions, the system matrices, the poles and/or zeros, etc.
This is indeed useful in determining when systems are
similar whenever suitable parameterizations exist. How-
ever, it is not difficult to find rather different functional
dependencies, which, nonetheless, behave almost identi-
cally, e.g., as long as the domain of initial conditions is
sufficiently restricted. For instance, consider the maps

x← a(x) = |x|p and x← b(x) = min(|x|p, |x|) (13)

for p > 1. While a and b clearly differ, the two sys-
tems behave identically for all initial conditions satisfy-
ing |x| ≤ 1. This example may seem contrived and it is
quite obvious from (13) that identical behavior will oc-
cur in this case, yet for more complex maps and higher
dimensional spaces such statements are not quite as eas-
ily formulated.

One way to amend this situation is to compare trajecto-
ries of dynamical systems and derive measures of simi-
larity from them. The advantage of this approach is that
it is independent of the parameterization of the system.
This approach is in spirit similar to the behavioral frame-
work of [48,49,50], which identifies systems by identify-
ing trajectories. However, it has the disadvantage that
one needs efficient mechanisms to compute the trajecto-
ries, which may or may not always be available. We will
show later that in the case of LTI models such computa-
tions can be performed efficiently by solving Sylvester-
like equations.

In keeping with the spirit of the behavioral framework
we will consider the pairs (x,A) only in terms of the
trajectories which they generate. In other words, we only
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study the result of the map

TrajX ×A → X T where Traj(x,A)(t) = xA(t). (14)

This means that we can identify Traj(x,A) with a linear
operator mapping from X to RT , simply by computing
scalar products between its argument and xA(t) for all
t ∈ T .

3.3 Kernels

In order to define kernels on X T we need to introduce
the notion of compound matrices. Their definition can
be extended to operators as long as we can reduce the
problem to finite dimensional objects by projections.
The motivation for introducing compound matrices is
that they allow us to use the Binet-Cauchy theorem for
the definition of kernels.

Definition 2 (Compound Matrix) Let A ∈ Rn×k.
The compound matrix Cq(A) is the matrix of minors of
order q of A. That is, the (i, j)-th element of Cq(A) is
the determinant of a submatrix of A formed by choosing
a subset of rows indexed by i and a subset of columns in-
dexed by j, with the subsets arranged in lexicographical
order.

Theorem 3 (Binet-Cauchy [1, pp. 93]) For any
A ∈ Rk×n, B ∈ Rn×m and 1 ≤ q ≤ min(k,m, n) we
have

Cq(AB) = Cq(A)Cq(B) (15)

This theorem allows us to state a strengthened version
of [51, Corollary 5] by exploiting the fact that trA>B is
a scalar product between the entries of A and B:

Corollary 4 For any matrices A,B ∈ Rn×k and 1 ≤
q ≤ min(n, k) the function

kq(A,B) := trCq(A>B) (16)

is a kernel. We have the following special cases

k1(A,B) = trC1(A)>C1(B) = trA>B (17)

kn(A,B) = detA>B. (18)

Moreover, when defining kernels over X T we can modify
(17) and (18) to include a positive semidefinite weight-
ing matrix W over the time domain, such as exponen-
tial downweighting. This leads to the kernel functions
trA>WB and detA>WB.

To establish a connection to dynamical systems we only
need to realize that the trajectories Traj(x,A) are es-
sentially matrices. As we shall see, (17) and some of its

refinements lead to kernels which carry out comparisons
of state pairs. Eq. (18), on the other hand, can be used
to define kernels via subspace angles. In this case, one
whitens the trajectories before computing their deter-
minant. We give technical details in Section 4.3.

3.4 Trace Kernels

Computing trA>B means taking the sum over scalar
products between the rows of A and B. For trajectories
this amounts to summing over 〈xA(t), x′A′(t)〉 with re-
spect to t. There are two potential problems arising from
this strategy:

• The sum over t need not converge. This is easily
amended by using a probability measure µ over the
domain T . The particular choice of µ gives rise to
a number of popular and novel kernels for graphs
and similar discrete objects [28,18]. The exponential
discounting schemes

µ(t) = λ−1e−λt for T = R+
0 (19)

µ(t) =
1

1− e−λ
e−λt for T = N0 (20)

are popular choice in reinforcement learning [42,6] and
control theory. Another possible measure is

µ(t) = δτ (t) (21)

where δτ corresponds to the Kronecker-δ for T = N0

and to the Dirac’s δ-distribution for T = R+
0 .

• xA(t) by itself need not lie in a scalar product space.
This can be addressed by the assumption that there
exists some kernel k(x, x′) on the domain X × X .

The above considerations allow us to extend (17) to ob-
tain the following kernel

k((x,A), (x′,A′)) := E
t∼µ(t)

[k (xA(t), x′A′(t))] (22)

on both initial conditions and dynamical systems.

Kernels on dynamical systems: We can specialize
(22) to kernels on initial conditions or dynamical
systems only, simply by taking expectations over a
distribution of them. This means that we can define

k(A,A′) := E
x,x′

[k ((x,A), (x′,A′))] . (23)

However, we need to show that (23) actually satisfies
Mercer’s condition.

Theorem 5 Assume that {x, x′} are drawn from an
infinitely extendable and exchangeable probability dis-
tribution. Then (23) satisfies Mercer’s condition.
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Proof. By De Finetti’s theorem [13], infinitely ex-
changeable distributions arise from conditionally in-
dependent random variables. In practice this means
that

p(x, x′) =
∫
p(x|c)p(x′|c)dp(c) (24)

for some p(x|c) and a measure p(c). Hence we can
rearrange the integral in (23) to obtain

k(A,A′) =
∫

[k ((x,A), (x′,A′)) dp(x|c)dp(x′|c)] dp(c).

Here the result of the inner integral is a kernel by the
decomposition admitted by Mercer’s theorem. Tak-
ing a convex combination of such kernels preserves
Mercer’s condition, hence k(A,A′) is a kernel.

In practice, one typically uses either p(x, x′) =
p(x)p(x′) if independent averaging over the initial
conditions is desired, or p(x, x′) = δ(x−x′)p(x) when-
ever the averaging is assumed to occur synchronously.

Kernels via dynamical systems: By the same strat-
egy, we can also define kernels exclusively on initial
conditions x, x′ simply by averaging over the dynam-
ical systems they should be subjected to:

k(x, x′) := E
A,A′

[k ((x,A), (x′,A′))] . (25)

As before, whenever p(A,A′) is infinitely exchange-
able in A,A′, (25) corresponds to a proper kernel. 3

Note that in this fashion the metric imposed on ini-
tial conditions is one that follows naturally from the
particular dynamical system under consideration. For
instance, differences in directions which are rapidly
contracting carry less weight than a discrepancy in a
divergent direction of the system.

3.5 Determinant Kernels

Instead of computing traces of Traj(x,A)> Traj(x′,A′)
we can follow (18) and compute determinants of such ex-
pressions. As before, the following extensions are useful:

• We allow for the introduction of a kernel to com-
pare states. This means that the scalar prod-
ucts in Traj(x,A)> Traj(x′,A′) are replaced by
k(xA(t), x′A′(t)).
• Moreover, as before we insert a positive semidefinite

matrix weighting matrixW over the time domain. For
the sake of computational tractability one typically
chooses a diagonal matrix with a finite number of ze-
ros.

3 Note that we made no specific requirements on the param-
eterization of A,A′. For instance, for certain ARMA models
the space of parameters has the structure of a manifold. The
joint probability distribution, by its definition, has to take
such facts into account. Often the averaging simply takes
additive noise of the dynamical system into account.

This means that we are computing the determinant of a
kernel matrix, which in turn is then treated as a kernel
function. This allows us to give an information-theoretic
interpretation to the so-defined kernel function. In-
deed, [20,3] show that such determinants can be seen as
measures of the independence between sequences. This
means that independent sequences can now be viewed
as orthogonal in some feature space, whereas a large
overlap indicates statistical correlation.

4 Kernels on Linear Dynamical Models

A special yet important class of dynamical systems are
LTI systems of the form

yt = Cxt + wt where wt ∼ N (0, R), (26)
xt+1 = Axt + vt where vt ∼ N (0, Q),

where the driving noise wt, vt consists of iid normal ran-
dom variables with zero mean, yt are the observed ran-
dom variables at time t, xt are the latent variables, and
the matrices A,C are the parameters of the dynamical
system.

In this section, we show how to efficiently compute an
expression for the trace kernel between two LTI systems
(x0, A, C) and (x′0, A

′, C ′), where x0 and x′0 are the ini-
tial conditions. We also establish a connection between
the determinant kernel, the Martin kernel [31] and the
kernels based on subspace angles [11] .

4.1 Trace kernels on LTI systems

If one assumes an exponential discounting µ(t) = e−λt

with rate λ > 0, then the trace kernel for LTI systems is

k((x0, A, C), (x′0, A
′, C ′)) := E

v,w

[ ∞∑
t=1

e−λty>t Wy′t

]
,(27)

where W is a user-specified positive semidefinite matrix
W specifying the kernel in Y as k(y, y′) = y>Wy′ —
by default, one may choose W = 1, which leads to the
standard Euclidean scalar product between yt and y′t.

A major difficulty in computing the above kernel, is that
it involves computing an infinite sum. As it turns out, one
can avoid computing such a sum by solving a couple of
Sylvester equations. Before proceeding further, we need
the following technical lemma.

Lemma 6 Denote by A,B linear operators on X . Then
for all λ such that e−λ‖A‖‖B‖ < 1 and for all linear
operators W : X → X the series

M :=
∞∑

t=1

e−λtAtWBt (28)
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converges andM can be computed by solving the Sylvester
equation e−λAMB+e−λAWB = M . If the series starts
at a t = 0, thenM is the solution of e−λAMB+W = M .

Note that Sylvester equations of type AXB + CXD =
E can be readily solved at O(n3) time [17] with freely
available code (A,B,C,D ∈ Rn×n).

Proof. To show that M is well defined we use the tri-
angle inequality, leading to

‖M‖=

∥∥∥∥∥
∞∑

t=1

e−λtAtWBt

∥∥∥∥∥ ≤
∞∑

t=1

∥∥e−λtAtWBt
∥∥

≤
∞∑

t=0

(
e−λ‖A‖‖B‖

)t ‖W‖ =
‖W‖

1− e−λ‖A‖‖B‖
.

Next we decompose the sum in M to obtain

M = e−λAWB +
∞∑

t=1

e−λtAtWBt

= e−λAWB + e−λA

[ ∞∑
t=1

e−λtAtWBt

]
B

= e−λAWB + e−λAMB.

Similarly if the series starts at t = 0.

We now have all the ingredients to derive a closed form
expression for computing the trace kernel (27).

Theorem 7 If e−λ‖A‖‖A′‖ < 1, then the kernel of (27)
is given by

k = x>0 Mx′0 +
(
eλ − 1

)−1
tr

[
QM̃ +WR

]
, (29)

where M,M̃ satisfy

M = e−λA>C>WC ′A′ + e−λA>MA′ (30)

M̃ = C>WC ′ + e−λA>M̃A′. (31)

Proof. By repeated substitution of (26) we see that

yt = C

[
Atx0 +

t−1∑
i=0

Aivt−i

]
+ wt. (32)

Hence in order to compute k we need to take expecta-
tions and sums over 9 different terms for every y>t My′t.
Fortunately, terms involving vi alone, wi alone, and the
mixed terms involving vi, wj for any i, j, and the mixed

terms involving vi, vj for i 6= j vanish since all the ran-
dom variables are zero mean and independent. Next note
that

E
wt

[
w>t Wwt

]
= tr WR, (33)

where R is the covariance matrix of wt, as specified in
(26). Taking sums over t ∈ N yields

∞∑
t=1

e−λttr WR =
(
eλ − 1

)−1
tr WR. (34)

Next we address the terms depending only on x0, x
′
0.

Define
W̄ := C>WC ′. (35)

Then we have

∞∑
t=1

e−λt(CAtx0)>W (C ′A′tx′0) (36)

=x>0

[ ∞∑
t=1

e−λt(At)>W̄A′
t

]
x′0 (37)

=x>0 Mx′0, (38)

where M is the solution of a Sylvester equation

e−λA>C>WC ′A′ + e−λA>MA′ = M. (39)

The last terms to be considered are those depending on
vi. Using the fact that for i 6= j the random variables
vi, vj are independent, we have

∞∑
t=1

t−1∑
j=0

e−λt(CAjvt−j)>W (C ′A′jvt−j) (40)

=trQ

 ∞∑
t=1

e−λt
t−1∑
j=0

(Aj)>W̄A′
j

 (41)

=trQ

 ∞∑
j=0

1
eλ − 1

e−λj(Aj)>W̄A′
j

 (42)

=
(
eλ − 1

)−1
trQM̃, (43)

where M̃ is the solution of the Sylvester equation

C>WC ′ + e−λA>M̃A′ = M̃. (44)

Here (42) follows from rearranging the sums, which is
permissible because e−λ‖A‖‖A′‖ < 1, hence the series
is absolutely convergent. Combining (33), (38), and (43)
yields the result.

Therefore, in the case of LTI systems, the trace ker-
nel can be computed efficiently by solving two Sylvester
equations. This can be done at a cost O(m3) where m is
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the dimensionality of x [17], the same order as a matrix-
matrix multiplication between the characteristic matri-
ces of the systems.

In case we wish to be independent of the initial condi-
tions, we can simply take the expectation over x0, x

′
0.

Since the only dependency of (29) on the initial condi-
tions manifests itself in the first term of the sum, the
kernel on the dynamical systems (A,C) and (A′, C ′) is

k((A,C), (A′, C ′)) := E
x0,x′0

[k((x0, A, C), (x′0, A
′, C ′))]

= trΣM +
(
eλ − 1

)−1
tr

[
QM̃ +WR

]
,

where Σ is the covariance matrix of the initial conditions
x0, x

′
0 (assuming that we have zero mean).

An important special case are fully observable LTI sys-
tems, i.e., systems with C = 1 and R = 0. In this case,
the expression for the trace kernel reduces to

k = x>0 Mx′0 +
(
eλ − 1

)−1
tr(QM̃), (45)

where M,M̃ satisfy

M = e−λA>WA′ + e−λA>MA′ (46)

M̃ = W + e−λA>M̃A′. (47)

This special kernels were first derived in [40], though
with the summation starting at t = 0.

4.2 Determinant kernels on LTI systems

As before, we consider an exponential discounting µ(t) =
e−λt. We thus obtain the following expression for the
determinant kernel on LTI systems:

k((x0, A, C), (x′0, A
′, C ′)) := E

v,w
det

[ ∞∑
t=1

e−λtyty
′>
t

]
.

(48)

Notice that in this case the effect of the weight matrixW
is just a scaling of k by det(W ), thus we assume W = 1
w.l.o.g.

Also for the sake of simplicity of the calculations and in
order to compare with other kernels we assume an LTI
system with no noise, i.e., vt = 0 and wt = 0. Then we
have the following:

Theorem 8 If e−λ‖A‖‖A′‖ < 1, then the kernel of (48)
is given by

k = detCMC ′>, (49)
where M satisfies

M = e−λAx0x
′>
0 A′> + e−λAMA′>. (50)

Proof. We simply have

k = det
∞∑

t=1

e−λtCAtx0x
′>
0 A′>C ′> = detCMC ′>

where

M =
∞∑

t=1

e−λtAtx0x
′>
0 A′>

= e−λAx0x
′>
0 A′> + e−λAMA′>.

As pointed out in[51], the determinant is not invari-
ant to permutations of the columns of Traj(x,A) and
Traj(x′,A′). Since different columns or linear combina-
tions of them are determined by the choice of the initial
conditions x0 and x′0, this means, as obvious from the
formula forM , that the determinant kernel does depend
on the initial conditions.

In order to make it independent from initial conditions,
as before we can take expectations over x0 and x′0. Un-
fortunately, although M is linear in on both x0 and x′0,
k = detCMC ′> is multilinear. Therefore, the kernel de-
pends not only on the covariance Σ on the initial condi-
tions, but also on higher order statistics. Only in the case
of single-output systems, we obtain a simple expression

k((A,C), (A′, C ′)) = CMC ′>, (51)

where

M = e−λAΣA′> + e−λAMA′>, (52)

for the kernel on dynamical systems only.

4.3 Kernel via subspace angles and Martin kernel

Another way of defining a kernel on dynamical systems
only is by using subspace angles among observability
subspaces, as proposed in [31,11,51]. Such a kernel is
defined as

− log
n∏

i=1

cos2(θi) (53)

where θi is the i − th subspace angle between the col-
umn spaces of the extended observability matrices O =
[C> A>C> · · · ]> and O′ = [C ′> A′>C ′> · · · ]>. The
above kernel can be efficiently computed as det(Q>Q′)2,
where O = QR and O′ = Q′R′ are the QR decompo-
sitions of O and O′, respectively. Therefore, the kernel
based on subspace angles is essentially the square of a
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determinant kernel 4 formed from a whitened version
of the outputs (via the QR decomposition) rather than
from the outputs directly, as with the determinant ker-
nel in (49).

Yet another way of defining a kernel on dynamical sys-
tems only is via cepstrum coefficients, as proposed by
Martin [31]. More specifically, if H(z) is the transfer
function of the ARMA model described in (26), then the
cepstrum coefficients are defined via the Laplace trans-
formation of the logarithm of the ARMA power spec-
trum,

logH(z)H∗(z−1) =
∑
n∈Z

cnz
−n. (54)

The Martin kernel between (A,C) and (A′, C ′) with cor-
responding cepstrum coefficients c′n is defined as

k((A,C), (A′, C ′)) :=
∞∑

n=1

nc∗nc
′
n. (55)

As it turns out, the Martin kernel and the kernel based
on subspace angles are the same as show in [11].

5 Extension to Nonlinear Dynamical Systems

We now extend our results to the case of nonlinear dy-
namical models of the form

xt+1 = f(xt). (56)

5.1 Linear in Feature Space

For such systems, the simplest possible extension would
be to seek a bijective transformation x 7→ z = Φ(x) such
that in the new coordinates we obtain a linear system

zt+1 = Azt. (57)

Then, we can define a kernel on the nonlinear models
with vectors fields f and f ′ as

knonlinear((x0, f), (x′0, f
′)) = klinear((z0, A), (z′0, A

′))

where klinear is any of the kernels for linear models de-
fined in the previous sections.

The above construction can be immediately applied
whenever the vector fields f and f ′ are feedback-
linearizable. Conditions for f to be feedback-linearizable
as well as an algorithm for computing Φ, hence A, from
f can be found in [24].

4 Recall that the square of a kernel is a kernel thanks to the
product property.

However, a given f is in general not feedback-
linearizable. In such cases, we propose to find an injec-
tion Φ such that

Φ(xt+1) = AΦ(xt) + vt (58)

for a fully observable model and Φ′(yt) = CΦ(xt) + wt

for a partially observable model. In the following we only
deal with the fully observable case. The key in these
transformations is that Φ(x) and x have the same di-
mensionality. Consequently we can define kernels on the
so-defined dynamical systems, simply by studying tra-
jectories in φ(xt) rather than xt.

Unfortunately, such a transformation need not always
exist. Moreover, for the purpose of comparing trajecto-
ries it is not necessary that the map Φ be bijective. In
fact, injectivity is all we need. This means that as long
as we can find a linear system such that (58) holds we
can extend the tools of the previous sections to nonlin-
ear models. In essence this is what was proposed in [34,4]
in the context of time-series prediction. In the following,
we only consider the fully observable case.

The problem with (58) is that once we spell it out in
feature space using Φ the matrix A turns into an opera-
tor. However, since we have only a finite number of ob-
servations at our disposition we need to impose further
restrictions on the operators for a useful result.

5.2 Solution by Restriction

The first restriction that we impose is that the image
of A be contained in the span of the Φ(xi). This means
that we can find an equivalent condition to (58) via

k(xi, xt+1) = Φ(xi)>AΦ(xt)︸ ︷︷ ︸
:=Ãit

+〈Φ(xi), vt〉. (59)

For a perfect solution we “only” need to find an operator
A for which

KT+ = Ã, (60)
where T+ ∈ Rm×m−1 is the shift operator in Rm, that
is (T+)ij = δi−1,j . Moreover K is the kernel matrix
k(xi, xj). For a large number of kernel matrices K with
full rank, such a solution always exists regardless of the
dynamics, which leads to overfitting problems. Conse-
quently we need to restrict A further.

A computationally attractive option is to restrict the
rank of A further so that

A :=
∑

i,j∈S

αijΦ(xi)Φ(xj)> (61)

for some subset S. We choose the same basis in both
terms such that the image ofA and of its adjoint operator
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A> lie in the same subspace. Using K̃ ∈ Rm×|S| with
K̃ij = k(xi, xj) (where j ∈ S) we obtain the following
condition:

KT+ = K̃αK̃T−. (62)

Here T− ∈ Rm×m−1 is the inverse shift operator, that is
(T−)ij = δij . One option to solve (62) is to use pseudo-
inverses. This yields

α = K̃†(KT+)(K̃T−)†. (63)

5.3 Sylvester Equations in Feature Space

Finally, one needs to solve the Sylvester equations, or
QR factorizations or determinants in feature space. We
will only deal with the Sylvester equation below. Using
derivations in [51] it is easy to obtain analogous expres-
sions for the latter cases.

We begin with (46). Without loss of generality we as-
sume thatW = 1 (other cases can be easily incorporated
into the scalar product directly, hence we omit them).
Moreover we assume that A,A′ have been expanded us-
ing the same basis Φ(xi) with i ∈ S.

The RHS of (46) has the same expansion as A, hence
we can identify M uniquely by observing the action
of M on the subspace spanned by Φ(xi). Using M =∑

i,j∈S ηijΦ(xi)Φ(xj)> and K̄ij := k(xi, xj) we obtain

Φ(xi)>MΦ(xj) =[K̄ηK̄]ij (64)

=e−λ
[
K̄α>K̄α′K̄

]
ij

+

e−λ
[
K̄α>K̄ηK̄α′K̄

]
ij

Assuming that K̃ has full rank (which is a reasonable
assumption for a set of vectors used to span the image
of an operator, we can eliminate K̄ on both sides of
the equation and we have the following new Sylvester
equation:

η = e−λα>K̄α′ + e−λα>K̄ηK̄α′. (65)

In the same fashion, (47) can be expressed in terms of a
feature space representation. This yields

η̃ = K̃ + e−λα>K̃η̃K̃α′. (66)

Finally, computing traces over finite rank operators can
be done simply by noting that

tr
∑
i,j

αijΦ(xi)Φ(xj)> = tr
∑
i,j

αijΦ(xj)>Φ(xi) = trK̃α.

(67)

6 Markov Processes

Many discrete objects can be interpreted as describing a
Markov process. This connection is then used to define
kernels on them. One such example are graphs, which
we will discuss in Section 6.2. The combination with
induced feature spaces then leads to efficient similarity
measures between discrete structures (Section 6.3).

We begin with some elementary definitions: Markov pro-
cesses have the property that their time evolution be-
havior depends only on their current state and the state
transition properties of the model. Denote by S the set
of discrete states, 5 . The evolution of the probabilities
(denoted by x ∈ [0, 1]S) satisfies the Bellman equation.
This means that

x(t+ 1) = Ax(t) or
d

dt
x(t) = Ax(t) (68)

for discrete-time and continuous time processes respec-
tively. Here A is the state transition matrix, that is
for discrete processes Aij = p(i|j) is the probability of
reaching state i from state j.

6.1 General Properties

A kernel defined via A computes the average overlap
between the states when originating from x = ei, x̃ = ej

in k(i, j). Here ei are “pure” states, that is the system is
guaranteed to be in state i rather than in a mixture of
states.

Since A is a stochastic matrix (positive entries with row-
sum 1), its eigenvalues are bounded by 1 and therefore,
any discounting factor λ > 0 will lead to a well-defined
kernel.

Note that the average overlap between state vectors orig-
inating from different initial states are used in the con-
text of graph segmentation and clustering [47,21]. This
means that µ(t) is nonzero only for some t ≤ t0, which
is similar to heavy discounting.

Recall, however, if eλ is much smaller than the mixing
time, k will almost exclusively measure the overlap be-
tween the initial states x, x̃ and the transient distribu-
tion on the Markov process. The quantity of interest here
will be the ratio between eλ and the gap between 1 and
the second largest eigenvalue of A [19].

An extension to Continuous-Time Markov Chains
(CMTC) is straightforward. Again x(t) corresponds to
the state at time t and the matrix A (called the rate

5 Extensions to the continuous case are straightforward,
however for the sake of conciseness we omit them in this pa-
per.
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matrix in this context) denotes the differential change
in the concentration of states.

When the CTMC reaches a state, it stays there for an
exponentially distributed random time (called the state
holding time) with a mean that depends only on the
state. For instance, diffusion processes can be modelled
in this fashion.

6.2 Graphs

In the present section we study an important special case
of Markov processes, namely random walks on (directed)
graphs. Here diffusion through each of the edges of the
graph is constant (in the direction of the edge). This
means that, given an adjacency matrix representation
of a graph via D (here Dij = 1 if an edge from j to i
exists), we compute the Laplacian L = D − diag(D1)
of the graph, and use the latter to define the diffusion
process d

dtx(t) = Lx(t).

• Using the measure µ(t) = δτ (t) of (21) we compute
the overlap at time t, which yields

K = exp(τL)> exp(τL) (69)

as covariance matrix between the distributions over
various states. Kij therefore equals the probability
that any other state l could have been reached jointly
from i and j [28].
• The time τ chosen is user defined and consequently it

tends to be debatable. On the other hand, we might
as well average over a large range of τ , leading to a
kernel matrix

K =
1
2

(
A+

λ

2
1
)−1

. (70)

This yields a kernel whose inverse differs by λ
21 from

the normalized graph Laplacian (another important
quantity used for graph segmentation). The attraction
of (70) is that its inverse is easy to come by and sparse,
translating into significant computational savings for
estimation.
• The kernel proposed by [18] can be recovered by set-

ting W to have entries {0, 1} according to whether
vertices i and j bear the same label and considering a
discrete time random walk rather than a continuous
time diffusion processes (various measures µ(t) take
care of the exponential and harmonic weights).
• Finally, discrete-time Markov processes can be treated

in complete analogy, yielding either K = (1 − A)−1

or similar variants, should snapshots be required.

[28] suggested to study diffusion on undirected graphs.
As diffusion processes satisfy the Markov property, we
get the kernels of Kondor and Lafferty as a special case

of the above reasoning. In particular note that for undi-
rected graphs L = L> and consequently the kernel ma-
trix K can simplify (69) to

K = exp(τL)> exp(τL) = exp(2τL). (71)

6.3 Inducing Feature Spaces

Burkhardt [8] uses features on graphs to derive invari-
ants for the comparison of polygons. More specifically,
he picks a set of feature functions, denoted by the vec-
tor Φ(x, p), defined on x with respect to the polygon
p and he computes their value on the entire trajectory
through the polygon. Here x is an index on the vertex of
the polygon and the dynamical system simply performs
the operation x→ (xmodn) + 1, where n is the number
of vertices of the polygon.

Essentially, what happens is that one maps the poly-
gon into the trajectory (Φ(1, p), . . . ,Φ(n, p)). For a fixed
polygon, this already would allow us to compare vertices
based on their trajectory. In order to obtain a method for
comparing different polygons, one needs to rid oneself of
the dependency on initial conditions: the first point is
arbitrary. To do so, one simply assumes a uniform dis-
tribution over the pairs (x, x′) of initial conditions. This
distribution satisfies the conditions of de Finetti’s the-
orem and we can therefore compute the kernel between
two polygons via

k(p, p′) =
1
nn′

n,n′∑
x,x′=1

〈Φ(x, p),Φ(x′, p′)〉. (72)

Note that in this context the assumption of a uniform
distribution amounts to computing the Haar integral
over the cyclical group defined by the vertices of the
polygon.

The key difference to [8] in (72) is that one is not lim-
ited to a small set of polynomials which need to be con-
structed explicitly. Instead, one can use any kernel func-
tion k((x, p), (x′, p′)) for this purpose.

This is but a small example of how rich features on the
states of a dynamical system can be used in the com-
parison of trajectories. What should be clear, though, is
that a large number of the efficient computations has to
be sacrificed in this case. Nonetheless, for discrete mea-
sures µ with a finite number of nonzero steps this can be
an attractive alternative to a manual search for useful
features.

7 Application to Video Sequences

Applications of kernel methods to computer vision have
so far been largely restricted to methods which ana-
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lyze a single image at a time, possibly with some post-
processing to take advantage of the fact that images
are ordered. Essentially there are two main approaches
[22]: kernels which operate directly on the raw pixel data
[36,7], such as the Haussdorff kernel which matches sim-
ilar pixels in a neighborhood [5], and kernels which ex-
ploit the statistics of a small set of features on the image,
such as intensity, texture, and color histograms [9].

However, when dealing with video sequences, such sim-
ilarity measures are highly inadequate as they do not
take the temporal structure of the data into account.
The work of Doretto and coworkers [15,41] points out a
means of dealing with dynamic textures by first approx-
imating them with an autoregressive model, and sub-
sequently computing the subspace angles between the
models.

7.1 Setup

As in [15] we use the working assumption that dynamic
textures are sequences of images of moving scenes which
exhibit certain stationarity properties in time, which can
be modeled by a stochastic process. The latter assump-
tion has proven to be very reasonable, when applied to
a large number of common phenomena such as smoke,
fire, water flow, foliage, wind etc., as corroborated by
the impressive results of Soatto and coworkers.

We briefly summarize the connection between ARMA
models and dynamic textures. Let, It ∈ Rm for t =
1, . . . , τ be a sequence of τ images and assume that at
every time step we measure a noisy version yt = It +wt

wherewt ∈ Rm is Gaussian noise distributed asN (0, R).
To model the sequences of observed images as a Gaus-
sian ARMA model we will assume that there exists a
positive integer n� m, a process xt ∈ Rn and symmet-
ric positive definite matrices Q ∈ Rn×n and R ∈ Rm×m

such that (26) holds.

Without loss of generality, the scaling of the model is
fixed by requiring

C>C = 1 (73)

Given a sequence of images the identification problem
is to estimate A, B, Q and R. Exact solutions like the
n4sid method in MATLAB exist but they are very ex-
pensive to compute for large images. Instead we use a
sub-optimal closed form solution by computing the SVD
of the matrix Y := [y(1), . . . , y(τ)], as proposed in [15].
The latter is done for a) computational reasons and b)
in order to be able to compare our results with previous
work.

7.2 Parameters

The parameters of the ARMA model deserve some con-
sideration. The initial conditions of a video clip are given

by the x0. This helps in distinguishing scenes which have
a stationary background and dynamical texture part,
e.g. a tree in the foreground with a lawn in the back-
ground and where the foreground shares similar dynam-
ics, yet the stationary part differs.

In this case, if we use identical initial conditions for both
systems, the similarity measure will focus on the dynam-
ical part (the foreground). On the other hand, if we make
use of x0, we will be able to distinguish between scenes
which only differ in their background.

Another important factor which influences the value of
the kernel is the value of λ. If we want to provide more
weightage to short range interactions due differences in
initial conditions it might be desirable to use a large val-
ues of λ since it results in heavy attenuation of contri-
butions as time t increases. On the other hand, when we
want to identify samples of the same dynamical system
it might be desirable to use small values of λ.

Finally, A,C determine the dynamics. Note that there is
no requirement thatA,A′ share the same dimensionality.
Indeed, the only condition on the two systems is that
the spaces of observations yt, y

′
t agree. This allows us,

for instance, to determine the approximation qualities
of systems with various detail of parameterization.

7.3 Change Detection within Sequences

A convenient side-effect of the kernels derived in the
current context is that they allow us to detect changes
within a video sequence (e.g. water starting to boil,
changes in smoke patterns), simply by computing the
ARMA model estimates at various points in time. Fig-
ure 2 shows how changes between video clips lead to in-
creased distances, which can be used for change detec-
tion directly or via an online novelty detector [38].

8 Experiments

For our experiments we used some sequences from the
MIT temporal texture database. We also constructed our
own database of dynamic textures by capturing natural
and artificial objects like trees, water bodies, water flow
in kitchen sinks, etc. For instance we recorded the move-
ment of the leaves of a tree at the same angle but under
various wind conditions. Each sequence consists of 120
frames. We downsampled the images to use a grayscale
colormap (256 levels) with each frame of size 115x170.
Figure 1 shows some samples from our dataset.

We used the procedure outlined in [15] for estimating
the model parameters A, B and C. Once the system pa-
rameters are estimated we compute distances between
models using our trace kernel as well as the Martin dis-
tance described in [15]. We varied the value of the down-
weighting parameter λ and report results for two values
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Fig. 1. Some sample textures from our dataset

λ = 0.1 and λ = 0.9. The distance matrix obtained us-
ing each of the above methods is shown in Figure 2.

In general, clips which are closer to each other on an
axis are closely related (that is they are either from sim-
ilar natural phenomenon or are extracted from the same
master clip). Hence a perfect distance measure will pro-
duce a block diagonal matrix with a high degree of cor-
relation between neighboring clips. As can be seen from
our plots, the kernel using trajectories assigns a high
similarity to clips extracted from the same master clip
while the Martin distance fails to do so. Another inter-
esting feature of our approach is that the value of the
kernel seems to be fairly independent of λ. The reason
for this might be because we consider long range inter-
actions averaged out over infinite time steps. Two dy-
namic textures derived from the same source might ex-
hibit very different short term behavior induced due to
the differences in the initial conditions. But once these
short range interactions are attenuated we expect the
two systems to behave in a more or less similar fashion.
Hence, an approach which uses only short range interac-
tions might not be able to correctly identify these clips.

To further test the effectiveness of our method, we in-
troduced some “corrupted” clips (clip numbers 65 - 80).
These are random clips which clearly cannot be mod-
eled as dynamic textures. For instance, we used shots
of people and objects taken with a very shaky camera.
From Figure 2 it is clear that our kernel is able to pick
up such random clips as novel. This is because our ker-
nel compares the similarity between each frame during
each time step. Hence if two clips are very dissimilar our
kernel can immediately flag this as novel.

9 Summary and Outlook

The current paper sets the stage for kernels on dynami-
cal systems as they occur frequently in linear and affine
systems. By using correlations between trajectories we
were able to compare various systems on a behavioral
level rather than a mere functional description. This al-
lowed us to define similarity measures in a natural way.

While the larger domain of kernels on dynamical sys-
tems is still untested, special instances of the theory have
proven to be useful in areas as varied as classification
with categorical data [28,18] and speech processing [12].
This gives reason to believe that further useful applica-
tions will be found shortly.

For instance, we could use kernels in combination with
novelty detection to determine unusual initial condi-
tions, or likewise, to find unusual dynamics. In addi-
tion, we can use the kernels to find a metric between ob-
jects such as HMMs, e.g., to compare various estimation
methods.
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Fig. 3. Typical frames from a few samples are shown. The first two correspond to a flushing toilet, the remainder are corrupted
sequences and do not correspond to a dynamical texture. The distance matrix shows that our kernel is able to pick out this
anomaly.

In this paper, we show that the Martin distance used
for dynamic texture recognition is a kernel. The main
drawback of the Martin kernel is that it does not take
into account the initial conditions and might be very ex-
pensive to compute. To overcome these drawbacks we
introduced a kernel based on comparing the trajectory
of a linear first-order ARMA process. Our kernel is sim-
ple to implement and compute in closed form. By ap-
propriately choosing downweighting parameters we can
concentrate of either short term or long term interac-
tions. Future work will focus on applications of our ker-
nels to system identification and computation of closed
form solutions for higher order ARMA processes.
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kernels for nonlinear time series prediction. In Advances in
Neural Processing Systems NIPS. MIT Press, 2003.

[35] P. Saisan, G. Doretto, Y.N. Wu, and S. Soatto. Dynamic
texture recognition. In Proceedings of CVPR, volume 2, pages
58–63, 2001.

[36] B. Schölkopf. Support Vector Learning. R. Oldenbourg
Verlag, München, 1997. Doktorarbeit, TU Berlin. Download:
http://www.kernel-machines.org.

[37] B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear
component analysis as a kernel eigenvalue problem. Neural
Computation, 10:1299–1319, 1998.

15



[38] B. Schölkopf and A. J. Smola. Learning with Kernels. MIT
Press, 2002.

[39] A.J. Smola and I.R. Kondor. Kernels and regularization
on graphs. In B. Schölkopf and M. Warmuth, editors,
Proceedings of the Annual Conference on Computational
Learning Theory, Lecture Notes in Computer Science.
Springer, 2003.

[40] A.J. Smola and S.V.N. Vishwanathan. Hilbert space
embeddings in dynamical systems. In Proceedings of the 13th

IFAC symposium on system identification. IFAC, August
2003. In press.

[41] S. Soatto, G. Doretto, and Y.N. Wu. Dynamic textures.
In Proceedings of the Eighth International Conference On
Computer Vision (ICCV-01), pages 439–446, Los Alamitos,
CA, 2001. IEEE Computer Society.

[42] R.S. Sutton and A.G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[43] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, New York, 1995.

[44] V. Vapnik. Statistical Learning Theory. John Wiley and
Sons, New York, 1998.

[45] S. V. N. Vishwanathan, M. N. Murty, and A. J. Smola. SSVM:
A simple SVM algorithm. In Proceedings of the International
Conference on Machine Learning, 2003.

[46] G. Wahba. Spline Models for Observational Data, volume 59
of CBMS-NSF Regional Conference Series in Applied
Mathematics. SIAM, Philadelphia, 1990.

[47] Y. Weiss. Segmentation using eigenvectors: A unifying view.
In International Conference on Computer Vision ICCV,
pages 975–982, 1999.

[48] J. C. Willems. From time series to linear system. I. Finite-
dimensional linear time invariant systems. Automatica J.
IFAC, 22(5):561–580, 1986.

[49] J. C. Willems. From time series to linear system. II. Exact
modelling. Automatica J. IFAC, 22(6):675–694, 1986.

[50] J. C. Willems. From time series to linear system. III.
Approximate modelling. Automatica J. IFAC, 23(1):87–115,
1987.

[51] L. Wolf and A. Shashua. Learning oveer sets using kernel
principal angles. Jounal of Machine Learning Research,
4:913–931, 2003.

16


	Introduction
	Paper contributions
	Paper outline

	Kernel Methods
	Linearly Nonseparable Problems
	Kernel Expansion
	Kernels on Euclidean Spaces
	Metric Methods

	Kernels on Dynamical Systems
	Dynamical Systems
	Trajectories
	Kernels
	Trace Kernels
	Determinant Kernels

	Kernels on Linear Dynamical Models
	Trace kernels on LTI systems
	Determinant kernels on LTI systems
	Kernel via subspace angles and Martin kernel

	Extension to Nonlinear Dynamical Systems
	Linear in Feature Space
	Solution by Restriction
	Sylvester Equations in Feature Space

	Markov Processes
	General Properties
	Graphs
	Inducing Feature Spaces

	Application to Video Sequences
	Setup
	Parameters
	Change Detection within Sequences

	Experiments
	Summary and Outlook
	Acknowledgements
	References

