
Journal of Machine Learning Research 3 (2003) xxxx Submitted xx/xx; Published xx/xx

Learning the Kernel with Hyperkernels

Cheng Soon Ong Cheng.Ong@anu.edu.au

Alexander J. Smola Alex.Smola@anu.edu.au
Machine Learning Group, Research School of Information Sciences and Engineering,
Australian National University
Canberra, ACT 0200, Australia

Robert C. Williamson Bob.Williamson@anu.edu.au

National ICT Australia and Research School of Information Sciences and Engineering,
Australian National University
Canberra, ACT 0200, Australia

Editor: U.N. Known (joint publication with www.kernel-machines.org)

Abstract

This paper addresses the problem of choosing a kernel suitable for estimation with a
Support Vector Machine, hence further automating machine learning. This goal is achieved
by defining a Reproducing Kernel Hilbert Space on the space of kernels itself. Such a
formulation leads to a statistical estimation problem very much akin to the problem of
minimizing a regularized risk functional.

We state the equivalent representer theorem for the choice of kernels and present
a semidefinite programming formulation of the resulting optimization problem. Several
recipes for constructing hyperkernels are provided, as well as the details of common ma-
chine learning problems. Experimental results for classification, regression and novelty
detection on UCI data show the feasibility of our approach.

Keywords: learning the kernel, capacity control, kernel methods, Support Vector Ma-
chines, representer theorem, semidefinite programming

1. Introduction

Kernel Methods have been highly successful in solving various problems in machine learning.
The algorithms work by implicitly mapping the inputs into a feature space, and finding a
suitable hypothesis in this new space. In the case of the Support Vector Machine (SVM),
this solution is the hyperplane which maximizes the margin in the feature space. The
feature mapping in question is defined by a kernel function, which allows us to compute
dot products in feature space using only objects in the input space. For an introduction
to SVMs and kernel methods, the reader is referred to numerous tutorials (e.g. (Burges,
1998)) and books (e.g. (Schölkopf and Smola, 2002)).

Choosing a suitable kernel function, and therefore a feature mapping, is imperative to
the success of this inference process. To date, there are few systematic techniques to assist
in this choice. Even the restricted problem of choosing the “width” of a parameterized
family of kernels (e.g. Gaussian kernel) has not had a simple and elegant solution.

c©2003 Cheng Soon Ong, Alexander J. Smola, and Robert C. Williamson.

Ong, Smola and Williamson

There are still no general principles to guide the choice of a) which family of kernels
to choose, b) efficient parameterizations over this space, and c) suitable penalty terms to
combat overfitting. Whilst not yet providing a complete solution to these problems, this
paper does present a framework that allows the optimization within a parameterized family
relatively simply, and crucially, intrinsically captures the tradeoff between the size of the
family of kernels and the sample size available. Furthermore, the solution presented is for
optimizing kernels themselves, rather than the kernel matrix as done by (Crammer et al.,
2002, Lanckriet et al., 2002).

This problem is very much akin to the situation in neural networks 10 years ago, where
the choice of the function (not the function class) was also hindered by the three issues
mentioned above. This leads to the idea that possibly the kernel trick on kernels, may be
useful to alleviate the issues.

1.1 Motivation

As motivation for the need for methods to learn the kernel function, consider Figure 1,
which shows the separating hyperplane, the margin and the training data for a synthetic
dataset. Figure 1(a) shows the classification function for a support vector machine using
a Gaussian radial basis function (RBF) kernel. The data has been generated using two
gaussian distributions with standard deviation 1 in one dimension and 1000 in the other.
This difference in scale creates problems for the Gaussian RBF kernel, since it is unable
to find a kernel width suitable for both directions. Hence, the classification function is
dominated by the dimension with large variance. Increasing the value of the regularization
parameter, C, and hence decreasing the smoothness of the function results in a hyperplane
which is more complex, and equally unsatisfactory (Figure 1(b)). The traditional way to
handle such data is to normalize each dimension independently.

Instead of normalising the input data, we make the kernel adaptive to allow independent
scales for each dimension. This allows the kernel to handle unnormalised data. However, the
resulting kernel would be difficult to hand-tune as there may be numerous free variables.
In this case, we have a free parameter for each dimension of the input. We ‘learn’ this
kernel by defining a quantity analogous to the risk functional, called the quality functional,
which measures the ‘badness’ of the kernel function. The classification function for the
above mentioned data is shown in Figure 1(c). Observe that it captures the scale of each
dimension independently. In general, the solution does not consist of only a single kernel
but a linear combination of them.

1.2 Related Work

We analyze some recent approaches to learning the kernel by looking at the objective func-
tion that is being optimized and the class of kernels being considered. We will see later
(Section 2) that this objective function is related to our definition of a quality functional.
Cross validation has been used to select the parameters of the kernels and SVMs (Duan
et al., 2003, Meyer et al., 2003), with varying degrees of success. The objective function is
the cross validation risk, and the class of kernels is a finite subset of the possible parameter
settings. Duan et al. (2003) and Chapelle et al. (2002) test various simple approximations
which bound the leave one out error, or some measure of the capacity of the SVM. The no-

1002

Hyperkernels

(a) Standard Gaussian RBF
kernel (C=10)

(b) Standard Gaussian RBF
kernel (C=108)

(c) RBF-Hyperkernel with
adaptive widths

Figure 1: For data with highly non-isotropic variance, choosing one scale for all dimensions
leads to unsatisfactory results. Plot of synthetic data, showing the separating
hyperplane and the margins given for a uniformly chosen length scale (top) and
an automatic width selection (bottom).

tion of alignment (Cristianini et al., 2002) uses the objective function y>Ky where y are the
training labels, and K is from the class of kernels spanned by the eigenvectors of the kernel
matrix of the combined training and test data. Note that the definition in Cristianini et al.
(2002) looks somewhat different (tr(Kyy>)), yet it is algebraically identical to the definition
above. The semidefinite programming (SDP) approach (Lanckriet et al., 2002) uses a more
general class of kernels, namely a linear combination of positive semidefinite matrices. They
minimize the margin of the resulting SVM using a SDP for kernel matrices with constant
trace. Similar to this, Bousquet and Herrmann (2002) further restricts the class of kernels
to the convex hull of the kernel matrices normalized by their trace. This restriction, along
with minimization of the complexity class of the kernel, allows them to perform gradient
descent to find the optimum kernel. Using the idea of boosting, Crammer et al. (2002) op-
timize

∑
t βtKt, where βt are the weights used in the boosting algorithm. The class of base

kernels is obtained from the normalized solution of the generalized eigenvector problem. In
principle, one can learn the kernel using Bayesian methods by defining a suitable prior, and
learning the hyperparameters by optimizing the marginal likelihood. Table 1 summarizes
these approaches. The notation K � 0 means that K is positive semidefinite, that is for all
a ∈ Rn, a>Ka > 0.

1.3 Outline of the Paper

We show (Section 2) that for most kernel-based learning methods there exists a functional,
the quality functional, which plays a similar role to the empirical risk functional. We intro-
duce a kernel on the space of kernels itself, a hyperkernel (Section 3), and its regularization
on the associated Hyper Reproducing Kernel Hilbert Space (Hyper-RKHS). This leads to a
systematic way of parameterizing kernel classes while managing overfitting. We give several
examples of hyperkernels and recipes to construct others (Section 4) and show (Section 5)

1003

Ong, Smola and Williamson

Approach Objective function Kernel class (K)
Cross Validation CV Risk Finite set of kernels
Alignment y>Ky

∑m
i=1 βiviv

>
i |vi are eigenvectors of K

SDP margin
∑m

i=1 βiKi|Ki � 0, trKi = c
Complexity Bound margin

∑m
i=1 βiKi|Ki � 0, trKi = c, βi > 0

Boosting ExpLoss or LogLoss
∑

t βtKt|Kt maximum eigenvector
Bayesian neg. log-posterior dependent on prior

Table 1: Summary of recent approaches to kernel learning

how they can be used in practice via semidefinite programming. Experimental results for
classification, regression and novelty detection (Section 6) are shown. Finally, some issues
and open problems are discussed (Section 7).

2. Kernel Quality Functionals

We denote by X the space of input data and Y the space of labels (if we have a supervised
learning problem). Denote by Xtrain := {x1, . . . , xm} the training data and with Ytrain :=
{y1, . . . , ym} a set of corresponding labels, jointly drawn independently and identically from
some probability distribution Pr(x, y) on X×Y. We shall, by convenient abuse of notation,
generally denote Ytrain by the vector y, when writing equations in matrix notation. We
denote by K the kernel matrix given by Kij := k(xi, xj) where xi, xj ∈ Xtrain. We also use
trK to mean the trace of the matrix and |K| to mean the determinant.

We begin by introducing a new class of functionals Q on data which we will call quality
functionals. Their purpose is to indicate, given a kernel k and the training data, how
suitable the kernel is for explaining the training data, or in other words, the quality of the
kernel for the estimation problem at hand. Such quality functionals may be the kernel target
alignment, the negative log posterior, the minimum of the regularized risk functional, or
any luckiness function for kernel methods. We will discuss those functionals after a formal
definition of the quality functional itself.

2.1 Empirical and Expected Quality

Definition 1 (Empirical Quality Functional) Given a kernel k, and data X, Y , we de-
fine Qemp(k, X, Y) to be an empirical quality functional if it depends on k only via k(xi, xj)
where xi, xj ∈ X for 1 6 i, j 6 m.

By this definition, Qemp is a function which tells us how well matched k is to a specific
dataset X, Y . Typically such a quantity is used to adapt k in such a manner that Qemp is
optimal (e.g., optimal alignment, greatest luckiness, smallest negative log-posterior), based
on this one single dataset X, Y . Provided a sufficiently rich class of kernels k it is in general
possible to find a kernel k∗ that attains the minimum of any such Qemp regardless of the
data.1 However, it is very unlikely that Qemp(k∗, X, Y) would be similarly small for other

1. Note that by quality we actually mean badness, as we would like to minimize this quantity.

1004

Hyperkernels

X, Y , for such a k∗. To measure the overall quality of k we therefore introduce the following
definition:

Definition 2 (Expected Quality Functional) Denote by Qemp(k,X, Y) an empirical
quality functional, then

Q(k) := EX,Y [Qemp(k, X, Y)]

is defined to be the expected quality functional. Here the expectation is taken over X, Y ,
where all xi, yi are drawn from Pr(x, y).

Observe the similarity between the empirical quality functional, Qemp(k, X, Y), and the
empirical risk of an estimator, Remp(f,X, Y) = 1

m

∑m
i=1 `(xi, yi, f(xi)) (where ` is a suitable

loss function); in both cases we compute the value of a functional which depends on some
sample X, Y drawn from Pr(x, y) and a function and in both cases we have

Q(k) = EX,Y [Qemp(k, X, Y)] and R(f) = EX,Y [Remp(f,X, Y)] .

Here R(f) denotes the expected risk. However, while in the case of the empirical risk, we can
interpret Remp as the the empirical estimate of the expected loss R(f) = Ex,y[`(x, y, f(x))],
no such analogy is available for quality functionals. Finding a general-purpose bound of the
expected error in terms of Q(k) is difficult, since the definition of Q depends heavily on the
algorithm under consideration. Nonetheless, it provides a general framework within which
such bounds can be derived.

Assume a) we have given a concentration inequality on quality functionals, such as

Pr {|Qemp(k, X, Y)−Q(k)| > εQ} < δQ,

and b) we have a bound on the deviation of the empirical risk in terms of the quality
functional (and possibly other terms)

Pr {|Remp(f,X, Y)−R(f)| > εR} < δ(Qemp).

Then we can chain both inequalities together to obtain the following bound

Pr {|Remp(f,X, Y)−R(f)| > εR} < δQ + δ(Q + εQ).

This means that the bound now becomes independent of the particular value of the quality
functional obtained on the data, rather than the expected value of the quality functional.
Bounds of this type have been derived for Kernel Target Alignment (?, Theorem 9) and the
Algorithmic Luckiness framework (Herbrich and Williamson, 2002, Theorem 17).

2.2 Examples of Qemp

Before we continue with the derivations of a regularized quality functional and introduce a
corresponding Reproducing Kernel Hilbert Space, we give some examples of quality func-
tionals and present their exact minimizers, whenever possible. This demonstrates that given
a rich enough feature space (in many cases below we use the labels), we can arbitrarily min-
imize the empirical quality functional Qemp.

1005

Ong, Smola and Williamson

Example 1 (Regularized Risk Functional) These are commonly used in SVMs and
related kernel methods (see e.g., (Wahba, 1990, Vapnik, 1995, Schölkopf and Smola, 2002)).
They take on the general form

Rreg(f,Xtrain, Ytrain) :=
1
m

m∑
i=1

`(xi, yi, f(xi)) +
λ

2
‖f‖2

H (1)

where ‖f‖2
H is the RKHS norm of f . By virtue of the representer theorem (see Section 3)

we know that the minimizer of (1) can be written as a kernel expansion. This leads to the
following definition of a quality functional, for a particular cost functional `:

Qregrisk
emp (k, Xtrain, Ytrain) := min

α∈Rm

[
1
m

m∑
i=1

`(xi, yi, [Kα]i) +
λ

2
α>Kα

]
. (2)

The minimizer of (2) is somewhat difficult to find, since we have to carry out a double
minimization over K and α. However, we know that Qregrisk

emp is bounded from below by 0.
Hence, it is sufficient if we can find a (possibly) suboptimal pair (α, k) for which Qregrisk

emp ≤ ε
for any ε > 0:

• Note that for K = βyy> and α = 1
β‖y‖2 y we have Kα = y and α>Kα = β−1.

This leads to c(xi, yi, f(xi)) = 0 and therefore Qregrisk
emp (k, Xtrain, Ytrain) = λ

2β . For

sufficiently large β we can make Qregrisk
emp (k, Xtrain, Ytrain) arbitrarily close to 0.

• Even if we disallow setting K arbitrarily close to zero by setting trK = 1, finding the
minimum of (2) can be achieved as follows: let K = 1

‖z‖2 zz>, where z ∈ Rm, and
α = z. Then Kα = z and we obtain

1
m

m∑
i=1

`(xi, yi, [Kα]i) +
λ

2
α>Kα =

m∑
i=1

`(xi, yi, zi) +
λ

2
‖z‖2

2. (3)

Choosing each zi = argminζ `(xi, yi, ζ)+ λ
2 ζ2, where ζ comes from the class of possible

hypotheses, yields the minimum with respect to z. Since (3) tends to zero and the
regularized risk is lower bounded by zero, we can still arbitrarily minimize Qregrisk

emp .

Example 2 (Negative Log-Posterior) This functional is similar to Rreg, as it includes
a regularization term (in this case the negative log prior), a loss term (the negative log-
likelihood), and additionally, the log-determinant of K (Schölkopf and Smola, 2002, Chapter
16). The latter measures the size of the space spanned by K. This leads to the following
quality functional:

Qlogpost
emp (k, Xtrain, Ytrain) := min

f∈Rm

[
− log p(yi|xi, fi) +

1
2
f>K−1f +

1
2

log det K

]
(4)

Note that Qlogpost
emp is not bounded from below in general. Any K which does not have full

rank will send (4) to −∞, hence Qemp is minimized trivially. If we fix the determinant of
K to be some constant to ensure that K is full rank, we can set

K = β‖y‖−2yy> + β−
1

m−1 (1− ‖y‖−2yy>)

1006

Hyperkernels

which leads to |K| = 1. Under the assumption that the minimum of − log p(yi, xi, fi) with
respect to fi is attained at fi = yi, we can see that β −→ ∞ leads to the overall minimum
of Qlogpost

emp (k, Xtrain, Ytrain).

Example 3 (Cross Validation) Cross validation is a widely used method for estimat-
ing the generalization error of a particular learning algorithm. Specifically, the leave-one-
out cross validation is an almost unbiased estimate of the generalization error (Luntz and
Brailovsky, 1969). The quality functional for classification using kernel methods is given
by:

Qloo
emp(k, Xtrain, Ytrain) = min

α∈Rm

[
1
m

m∑
i=1

−yi sign([Kα]i)

]
Choosing K = yy> and αi = 1

‖yi‖2 yi, where αi and yi are the vectors with the ith element
set to zero, we have Kα = y. Hence we can achieve perfect prediction. For a validation
set of larger size, i.e. k-fold cross validation, the same result can be achieved by defining a
corresponding α.

Example 4 (Kernel Target Alignment) This quality functional was introduced by Cris-
tianini et al. (2002) to assess the alignment of a kernel with training labels. It is defined
by

Qalignment
emp (k, Xtrain, Ytrain) := 1− y>Ky

‖y‖2
2‖K‖2

. (5)

Here ‖y‖2 denotes the `2 norm of the vector of observations and ‖K‖2 is the Frobenius
norm, i.e., ‖K‖2

2 := tr(KK>) =
∑

i,j(Kij)2. By decomposing K into its eigensystem one
can see that (5) is minimized, if K = yy>, in which case

Qalignment
emp (k∗, Xtrain, Ytrain) = 1− y>yy>y

‖y‖2
2‖yy>‖2

= 1− ‖y‖4
2

‖y‖2
2‖y‖2

2

= 0.

We cannot expect that Qalignment
emp (k∗, X, Y) = 0 for data other than that chosen to determine

k∗, in other words, a restriction of the class of kernels is required.

Example 5 (Luckiness for Classification with Kernels) Recently the concept of algo-
rithmic luckiness (Herbrich and Williamson, 2002) was introduced to assess the quality of
an estimate in a sample and algorithm dependent fashion. We define the quality functional
for a kernel method to be:

Qluckiness
emp (k, Xtrain, Ytrain) := min

j∈N

{
j >

(
εj(Xtrain)‖A(Xtrain, Ytrain)‖1

Γ(Xtrain,Ytrain)(wA(Xtrain,Ytrain))

)2
}

where εi is the smallest ε such that {φ(x1), . . . , φ(xn)} can be covered by at most i balls of
radius ε, A(Xtrain, ytrain) is the α vector (dual coefficients) of the maximum margin solution,
wA(Xtrain,ytrain), is the corresponding weight vector, φ is the feature mapping corresponding
to k, and ΓXtrain,Ytrain is the normalized margin min(x,y)∈(Xtrain,Ytrain)

yi〈φ(xi),w〉
‖φ(xi)‖‖w‖

For K = yy>, we can cover the feature space by balls of radius 1, that is εj(Xtrain) = 1 for
all j > 2. Since the algorithmic luckiness framework depends on the choice of a particular

1007

Ong, Smola and Williamson

algorithm, we have to choose a rule for α. We consider any choice for which yiαi ≥ 0
and ‖α‖1 = 1, as is satisfied for SVM, linear programming estimators, and many boosting
algorithms. For this choice, the empirical error vanishes with margin 1 and by construction
‖A(Xtrain, ytrain)‖1 = 1. Hence, Qluckiness

emp (k, Xtrain, Ytrain) = 1, which is the global minimum.

Example 6 (Radius-Margin Bound) For SVMs without thresholding and with no train-
ing errors, Vapnik (1998) proposed the following upper bound on the generalization error
of the classifier in terms of the radius and margin of the SVM (Bartlett and Shawe-Taylor,
1999).

T =
1
m

R2

γ2

where R and γ are the radius and the margin of the training data. We can define a quality
functional:

Qradius
emp (k, Xtrain, Ytrain) =

1
m

R2α>Kα

Choosing K = βyy> and α = 1
β‖y‖2 y, we obtain a bound on the radius R2 6 β(maxi y

2
i),

and an expression for the margin, α>Kα = β−1. Therefore Qradius
emp (k, Xtrain, Ytrain) 6 β2

m ,
which can be made arbitrarily close to zero by letting β −→ 0.

The above examples illustrate how many existing methods for assessing the quality of a
kernel fit within the quality functional framework. We also saw that given a rich enough
class of kernels K, optimization of Qemp over K would result in a kernel that would be
useless for prediction purposes, in the sense that they can be made to look arbitrarily good
in terms of Qemp but with the result that the generalization performance will be poor. This
is yet another example of the danger of optimizing too much and overfitting – there is (still)
no free lunch.

3. Hyper Reproducing Kernel Hilbert Spaces

We now propose a conceptually simple method to optimize quality functionals over classes
of kernels by introducing a Reproducing Kernel Hilbert Space on the kernel k itself, so to
say, a Hyper-RKHS. We first review the definition of a RKHS (Aronszajn, 1950).

Definition 3 (Reproducing Kernel Hilbert Space) Let X be a nonempty set (the in-
dex set) and denote by H a Hilbert space of functions f : X → R. H is called a reproducing
kernel Hilbert space endowed with the dot product 〈·, ·〉 (and the norm ‖f‖ :=

√
〈f, f〉) if

there exists a function k : X× X → R with the following properties.

1. k has the reproducing property

〈f, k(x, ·)〉 = f(x) for all f ∈ H, x ∈ X;

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′) for all x, x′ ∈ X.

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X} where X is the completion of the set X.

1008

Hyperkernels

In the rest of the paper, we use the notation k to represent the kernel function and H to
represent the RKHS. In essence, H is a Hilbert space of functions, and have the special
property of being defined by the kernel function k.

The advantage of optimization in an RKHS is that under certain conditions the optimal
solutions can be found as the linear combination of a finite number of basis functions,
regardless of the dimensionality of the space H the optimization is carried out in. The
theorem below formalizes this notion (see Kimeldorf and Wahba (1971), Cox and O’Sullivan
(1990)).

Theorem 4 (Representer Theorem) Denote by Ω : [0,∞) → R a strictly monotonic
increasing function, by X a set, and by ` : (X×R2)m → R∪{∞} an arbitrary loss function.
Then each minimizer f ∈ H of the general regularized risk

` ((x1, y1, f(x1)) , . . . , (xm, ym, f(xm))) + Ω (‖f‖H)

admits a representation of the form

f(x) =
m∑

i=1

αik(xi, x). (6)

where αi ∈ R for all 1 6 i 6 m.

3.1 Regularized Quality Functional

Definition 1 allows one to define an RKHS on kernels X × X → R, simply by introducing
the compounded index set, X := X× X and by treating k as functions k : X → R:

Definition 5 (Hyper Reproducing Kernel Hilbert Space) Let X be a nonempty set.
and denote by X := X × X the compounded index set. The Hilbert space H of functions
k : X → R, endowed with a dot product 〈·, ·〉 (and the norm ‖k‖ =

√
〈k, k〉) is called a

Hyper Reproducing Kernel Hilbert Space if there exists a hyperkernel k : X × X → R with
the following properties:

1. k has the reproducing property

〈k, k(x, ·)〉 = k(x) for all k ∈ H;

in particular, 〈k(x, ·), k(x′, ·)〉 = k(x, x′).

2. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.

3. For any fixed x ∈ X the hyperkernel k is a kernel in its second argument; i.e. for any
fixed x ∈ X, the function k(x, x′) := k(x, (x, x′)), with x, x′ ∈ X, is a kernel.

This is a RKHS with an additional requirement on its elements. In fact, we can have a
recursive definition of an RKHS of an RKHS ad infinitum. We define the corresponding
notations for elements, kernels, and RKHS by underlining it. What distinguishes H from a
normal RKHS is the particular form of its index set (X = X2) and the additional condition on
k to be a kernel in its second argument for any fixed first argument. This condition somewhat

1009

Ong, Smola and Williamson

limits the choice of possible kernels but it allows for simple optimization algorithms which
consider kernels k ∈ H, which are in the convex cone of k.

By analogy with the definition of the regularized risk functional (1), we proceed to define
the regularized quality functional as

Qreg(k, X, Y) := Qemp(k, X, Y) +
λQ

2
‖k‖2

H (7)

where λQ > 0 is a regularization constant and ‖k‖2
H denotes the RKHS norm in H. Mini-

mization of Qreg is less prone to overfitting than minimizing Qemp, since the regularization
term λQ

2 ‖k‖
2
H effectively controls the complexity of the class of kernels under consideration.

The complexity class can be derived from the results of Bousquet and Herrmann (2002).
Regularizers other than λQ

2 ‖k‖
2 are possible, such as Lp penalties. In this paper, we re-

strict ourselves to the L2 norm (7). The advantage of (7) is that its minimizer satisfies the
representer theorem.

Corollary 6 (Representer Theorem for Hyper-RKHS) Let X be a set, Qemp an ar-
bitrary empirical quality functional, and X, Y as defined above, then each minimizer k ∈ H

of the regularized quality functional Qreg(k, X, Y) admits a representation of the form

k(x, x′) =
m∑
i,j

αm
i,jk((xi, xj), (x, x′)). for all x, x′ ∈ X (8)

Proof All we need to do is rewrite (7) so that it satisfies the conditions of Theorem 4. Let
xij := (xi, xj). Then Q(k, X, Y) has the properties of a loss function, as it only depends on

k via its values at xij . Furthermore, λQ

2 ‖k‖
2
H is an RKHS regularizer, so the representer

theorem applies and (8) follows.

Corrolary 6 imples that the solution of the regularized quality functional is a linear com-
bination of hyperkernels on the input data. This shows that even though the optimization
takes place over an entire Hilbert space of kernels, one can find the optimal solution by
choosing among a finite number.

Note that the minimizer (8) is not necessarily positive semidefinite. This is not sur-
prising, since we did not explicitly require this property in the optimization problem. In
practice, however, this is clearly not what we want and therefore we need to impose addi-
tional constraints of the type K � 0 or k ∈ {Mercer Kernel}.

While the latter is almost impossible to enforce directly, the former could be verified
directly, hence imposing a constraint only on the values k(xi, xj) rather than on k itself.
This means that the conditions of the Representer Theorem apply and (8) applies (with
suitable constraints on the coefficients αi,j).

Another option is to be somewhat more restrictive and require that all expansion coef-
ficients αi,j > 0. While this may prevent us from obtaining the minimizer of the objective
function, it yields a much more amenable optimization problem in practice, in particular
if the resulting cone spans a large enough space (as happens with increasing m). In the
subsequent derivations of optimization problems, we choose this restriction as it provides a
more tractable problem in practice.

1010

Hyperkernels

Default GP GFED@ABCX
k0 chosen by user // GFED@ABCK0

//?>=<89:;t // ?>=<89:;y

Hyperkernel GP GFED@ABCX
k chosen via GP // GFED@ABCK //?>=<89:;t // ?>=<89:;y

Figure 2: Top: Generative model for Gaussian Process estimation; Bottom: Generative
model for Gaussian Process estimation using hyperpriors on k defined by k.

3.2 A Bayesian Perspective

It is well known that there exists a Gaussian Process (GP) analog to the Support Vector Ma-
chine (e.g. (Opper and Winther, 2000)), which is essentially obtained (ignoring normalizing
terms) by exponentiating the regularized risk functional used in SVMs.

An analogous insight can be obtained by exponentiating −Qreg, again ignoring normal-
ization terms. In a nutshell, exponentiating −1

2‖k‖
2 means that we assume a GP with

covariance function k to be the underlying distribution for the kernels k, or more precisely,
the restriction of such a GP to the cone of covariance functions. In other words, we have
two nested GPs to model the data generation scheme. Hence we are studying a mixture of
Gaussian processes.

The general scheme is well known in Bayesian estimation and is commonly referred to
as hyperpriors, which determine the distribution of the priors (here the GP with covariance
k). Figure 2 describes the model: whereas in an ordinary GP, t is drawn from a Gaussian
distribution with covariance matrix K0 and y is conditionally independent given t, in a
Hyperkernel-GP we assume that K itself is drawn according to a GP before performing
further steps of dependency calculation.

Note that the MAP2 (maximum a posteriori-2) method (MacKay, 1994) in Bayesian
estimation leads to the same optimization problems as those arising from minimizing the
regularized quality functional.

4. Hyperkernels

Having introduced the theoretical basis of the Hyper-RKHS, it is natural to ask whether
hyperkernels, k, exist which satisfy the conditions of Definition 5. We address this question
by giving a set of general recipes for building such kernels.

4.1 Power Series Construction

Suppose k is a kernel such that k(x, x′) ≥ 0 for all x, x′ ∈ X, and suppose g : R → R is
a function with positive Taylor expansion coefficients, that is g(ξ) =

∑∞
i=0 ciξ

i for basis
functions ξ, and convergence radius R. Then for k(x, x′) ≤

√
R,

k(x, x′) := g(k(x)k(x′)) =
∞∑
i=0

ci(k(x)k(x′))i (9)

1011

Ong, Smola and Williamson

is a hyperkernel. For k to be a hyperkernel, we need to check that firstly, k is a kernel, and
secondly, for any fixed pair of elements of the input data, x, the function k(x, (x, x′)) is a
kernel. To see this, observe that for any fixed x, k(x, (x, x′)) is a sum of kernel functions,
hence it is a kernel itself (since kp(x, x′) is a kernel if k is, for p ∈ N). To show that k is a
kernel, note that k(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) := (

√
c0,

√
c1k

1(x),
√

c2k
2(x), . . .).

Example 7 (Harmonic Hyperkernel) Suppose k is a kernel with range [0, 1], (RBF
kernels satisfy this property), and set ci := (1 − λh)λi

h, i ∈ N, for some 0 < λh < 1. Then
we have

k(x, x′) = (1− λh)
∞∑
i=0

(
λhk(x)k(x′)

)i =
1− λh

1− λhk(x)k(x′)
. (10)

For k(x, x′) = exp(−σ2‖x− x′‖2) this construction leads to

k((x, x′), (x′′, x′′′)) =
1− λh

1− λh exp (−σ2(‖x− x′‖2 + ‖x′′ − x′′′‖2))
. (11)

As one can see, for λh → 1, k converges to δx,x′, and thus ‖k‖2
H converges to the Frobenius

norm of k on X ×X.

It is straightforward to find other hyperkernels of this sort, simply by consulting tables on
power series of functions. Table 2 contains a short list of suitable expansions.

g(ξ) Power series expansion Radius of Convergence
exp ξ 1 + 1

1!ξ + 1
2!ξ

2 + 1
3!ξ

3 + . . . + 1
n!ξ

n + . . . ∞
sinh ξ 1

1!ξ + 1
3!ξ

3 + 1
5!ξ

5 + . . . + 1
(2n+1)!ξ

(2n+1) + . . . ∞
cosh ξ 1 + 1

2!ξ
2 + 1

4!ξ
4 + . . . + 1

(2n)!ξ
(2n) + . . . ∞

arctanhξ ξ
1 + ξ3

3 + ξ5

5 + . . . + ξ2n+1

2n+1 + . . . 1

− ln(1− ξ) ξ
1 + ξ2

2 + ξ3

3 + . . . + ξn

n + . . . 1

Table 2: Hyperkernels by Power Series Construction.

However, if we want the kernel to adapt automatically to different widths for each
dimension, we need to perform the summation that led to (10) for each dimension in its
arguments separately. Such a hyperkernel corresponds to ideas developed in automatic
relevance determination (ARD) (MacKay, 1994, Neal, 1996).

Example 8 (Hyperkernel for ARD) Let kΣ(x, x′) = exp(−dΣ(x, x′)), where dΣ(x, x′) =
(x−x′)>Σ(x−x′), and Σ a diagonal covariance matrix. Take sums over each diagonal entry
σj = Σjj separately to obtain

k((x, x′), (x′′, x′′′)) = (1− λh)
d∑

j=1

∞∑
i=0

(
λhkΣ(x, x′)kΣ(x′′, x′′′)

)i

=
d∏

j=1

1− λh

1− λh exp
(
−σj((xj − x′j)2 + (x′′j − x′′′j)2)

) . (12)

1012

Hyperkernels

Eq. (12) holds since k(x) factorizes into its coordinates. A similar definition also allows us
to use a distance metric d(x, x′) which is a generalized radial distance as defined by Haussler
(1999).

4.2 Hyperkernels Invariant to Translation

Another approach to constructing hyperkernels is via an extension of a result due to Smola
et al. (1998) concerning the Fourier transform of translation invariant kernels.

Theorem 7 (Translation Invariant Hyperkernel) Suppose k((x1−x′1), (x2−x′2)) is a
function which depends on its arguments only via x1−x′1 and x2−x′2. Let F1k(ω, (x2−x′2))
denote the Fourier transform with respect to (x1 − x′1).

The function k is a hyperkernel if k(τ, τ ′) is a kernel in τ, τ ′ and F1k(ω, (x′′ − x′′′)) ≥
0 for all (x′′ − x′′′) and ω.

Proof From (Smola et al., 1998) we know that for k to be a kernel in one of its arguments,
its Fourier transform has to be nonnegative. This yields the second condition. Next, we
need to show that k is a kernel in its own right. Mercer’s condition requires that for arbitrary
f the following is positive:∫

f(x1, x
′
1)f(x2, x

′
2)k((x1 − x′1), (x2 − x′2))dx1dx′1dx2dx′2

=
∫

f(τ1 + x′1, x
′
1)f(τ2 + x′2, x

′
2)dx1,2k(τ1, τ2)dτ1dτ2

=
∫

g(τ1)g(τ2)k(τ1, τ2)dτ1dτ2

where τ1 = x1 − x′1 and τ2 = x2 − x′2. Here g is obtained by integration over x1 and x2

respectively. The latter is exactly Mercer’s condition on k, when viewed as a function of
two variables only.

This means that we can check whether a radial basis function (e.g. Gaussian RBF, expo-
nential RBF, damped harmonic oscillator, generalized Bn spline), can be used to construct
a hyperkernel by checking whether their Fourier transform is positive.

4.3 Explicit Expansion

If we have a finite set of kernels that we want to choose from, this results in a hyperkernel
which is a finite sum of possible kernel functions. This setting is similar that of Lanckriet
et al. (2002).

Suppose ki(x, x′) is a kernel for each i = 1, . . . , n (e.g. the RBF kernel or the polynomial
kernel), then

k(x, x′) :=
n∑

i=1

ciki(x)ki(x′), ki(x) > 0,∀x (13)

is a hyperkernel, as can be seen by an argument similar to that of section 4.1. k is a kernel
since k(x, x′) = 〈Φ(x),Φ(x′)〉, where Φ(x) := (

√
c1k1(x),

√
c2k2(x), . . . ,

√
cnkn(x)).

Example 9 (Polynomial and RBF combination) Let k1(x, x′) = (〈x, x′〉 + b)2p for
some choice of b ∈ R and p ∈ N, and k2(x, x′) = exp(−σ2‖x− x′‖2). Then,

k((x1, x
′
1), (x2, x

′
2)) = c1(〈x1, x

′
1〉+ b)2p(〈x2, x

′
2〉+ b)2p

+c2 exp(−σ2‖x1 − x′1‖2) exp(−σ2‖x2 − x′2‖2)
(14)

1013

Ong, Smola and Williamson

is a hyperkernel.

5. Optimization Problem

We will now consider the optimization of the quality functionals utilizing hyperkernels. We
choose the regularized risk functional as the empirical quality functional, i.e. Qemp(k, X, Y) =
Rreg(f,X, Y). Hence, for a particular loss function `(xi, yi, f(xi)), we obtain the regularized
quality functional.

min
k∈H

min
f∈Hk

1
m

m∑
i=1

`(xi, yi, f(xi)) +
λ

2
‖f‖2

Hk
+

λQ

2
‖k‖2

H. (15)

By the representer theorem (Theorem 4 and 6) we can write the regularizers as quadratic
terms. Using the soft margin loss, we obtain

min
β

max
α

1
m

∑
i = 1m max(0, 1− yif(xi)) +

λ

2
α>Kα +

λQ

2
β>kβ (16)

where α ∈ Rm are the coefficients of the kernel expansion (6), and β ∈ Rm2
are the

coefficients of the hyperkernel expansion (8). The corresponding optimization problems can
be expressed as a SDP. In general, a SDP would be take longer to solve than a quadratic
program (as in a traditional SVM). This reflects the added cost incurred for optimizing over
a class of kernels.

5.1 Semidefinite Programming Formulations

Semidefinite programming (Vandenberghe and Boyd, 1996) is the optimization of a linear
objective function subject to constraints which are linear matrix inequalities and affine
equalities.

Definition 8 (Semidefinite Program) A semidefinite program (SDP) is a problem of
the form:

min
x

c>x

subject to F0 +
q∑

i=1

xiFi � 0 and Ax = b

where x ∈ Rp are the decision variables, A ∈ Rp×q, b ∈ Rp, c ∈ Rq, and Fi ∈ Rr×r are
given.

We derive the corresponding SDP for Equation (15). The following proposition allows us to
derive a SDP from a class of general quadratic programs. It is a straightforward extension
of the derivation in (Lanckriet et al., 2002) and its proof can be found in Appendix A.

Proposition 9 (Quadratic Minimax) Let m,n,M ∈ N, H : Rn → Rm×m, c : Rn →
Rm, be linear maps. Let A ∈ RM×m and a ∈ RM . Also, let d : Rn → R and G(ξ) be a

1014

Hyperkernels

function and the further constraints on ξ. Then the optimization problem

minimize
ξ∈Rn

maximize
x∈Rm

−1
2x>H(ξ)x− c(ξ)>x + d(ξ)

subject to H(ξ) � 0
Ax + a > 0
G(ξ) � 0

(17)

can be rewritten as
minimize

t,ξ,γ

1
2 t + a>γ + d(ξ)

subject to

diag(γ) 0 0 0

0 G(ξ) 0 0
0 0 H(ξ) (A>γ − c(ξ))
0 0 (A>γ − c(ξ))> t

 � 0
(18)

in the sense that the ξ which solves (18) also solves (17).

Specifically, when we have the regularized quality functional, d(ξ) is quadratic, and hence
we obtain an optimization problem which has a mix of linear, quadratic and semidefinite
constraints.

Corollary 10 Let H, c, A and a be as in Proposition 9, and Σ � 0, then the solution ξ∗ to
the optimization problem

minimize
ξ

maximize
x

−1
2x>H(ξ)x− c(ξ)>x + 1

2ξ>Σξ

subject to H(ξ) � 0
Ax + a > 0
ξ > 0

(19)

can be found by solving the a semidefinite programming problem

minimize
t,t′,ξ,γ

1
2 t + 1

2 t′ + a>γ

subject to γ > 0
ξ > 0
‖Σ

1
2 ξ‖ 6 t′[

H(ξ) (A>γ − c(ξ))
(A>γ − c(ξ))> t

]
� 0

(20)

Proof By applying proposition 9, and introducing an auxiliary variable t′ which upper
bounds the quadratic term of ξ, the claim is proved.

Comparing the objective function in (19) with (16), we observe that H(ξ) and c(ξ) are
linear in ξ. Let ξ′ = εξ. As we vary ε the constraints are still satisfied, but the objective
function scales with ε. Since ξ is the coeffient in the hyperkernel expansion, this implies
that we have a set of possible kernels which are just scalar multiples of each other. To avoid
this, we add an additional constraint on ξ which is 1>ξ = c, where c is a constant. This
breaks the scaling freedom of the kernel matrix. As a side-effect, the numerical stability of
the SDP problems improves considerably. We chose a linear constraint so that it does not
add too much overhead to the optimization problem.

1015

Ong, Smola and Williamson

5.2 Examples of Hyperkernel Optimization Problems

From the general framework above, we derive several examples of machine learning prob-
lems, specifically binary classification, regression, and single class (also known as novelty
detection) problems. The following examples illustrate our method for simultaneously op-
timizing over the class of kernels induced by the hyperkernel, as well as the hypothesis
class of the machine learning problem. We consider machine learning problems based on
kernel methods which are derived from (15). The derivation is basically by application of
Corollary 10. Appendix B details the derivation of Example 10. Derivations of the other
examples follow the same reasoning, and are omitted.

In this subsection, we define the following notation. For p, q, r ∈ Rn, n ∈ N let r =
p � q be defined as element by element multiplication, ri = pi × qi (the .∗ operation in
Matlab). The pseudo-inverse (or Moore-Penrose inverse) of a matrix K is denoted K†.
Define the hyperkernel Gram matrix K by Kijpq = k((xi, xj), (xp, xq)), the kernel matrix
K = reshape(Kβ) (reshaping a m2 by 1 vector, Kβ, to a m by m matrix), Y = diag(y) (a
matrix with y on the diagonal and zero everywhere else), G(β) = Y KY (the dependence
on β is made explicit), I the identity matrix and 1 a vector of ones.

The number of training examples is assumed to be m, i.e. Xtrain = {x1, . . . , xm} and
Ytrain = y = {y1, . . . , ym}. Where appropriate, γ and χ are Lagrange multipliers, while η
and ξ are vectors of Lagrange multipliers from the derivation of the Wolfe dual for the SDP,
β are the hyperkernel coefficients, t1 and t2 are the auxiliary variables.

Example 10 (Linear SVM (C-parameterization)) A commonly used support vector
classifier, the C-SVM (Bennett and Mangasarian, 1992, Cortes and Vapnik, 1995) uses an
L1 soft margin, which allows errors on the training set. The parameter C is given by the
user, and the resulting SDP is

minimize
β,γ,η,ξ

1
2 t1 + C

mξ>1 + CλQ

2 t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

G(β) z
z> t1

]
� 0

(21)

where z = γy + 1 + η − ξ.
The classification function is given by f = sign(KG(β)†(y � z)− γ).

Example 11 (Linear SVM (ν-parameterization)) An alternative parameterization of
the L1 soft margin was introduced by (Schölkopf et al., 2000), where the user defined pa-
rameter ν ∈ [0, 1] controls the fraction of margin errors and support vectors. Using ν-SVM
as Qemp, the corresponding SDP is given by

minimize
β,γ,η,ξ,χ

1
2 t1 − χν + ξ> 1

m + λQ

2 t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

G(β) z
z> t1

]
� 0

(22)

1016

Hyperkernels

where z = γy + χ1 + η − ξ.
The classification function is given by f = sign(KG(β)†(y � z)− γ).

Example 12 (Quadratic SVM (Lagrangian SVM)) Instead of using an L1 loss class,
Mangasarian and Musicant (2001) uses an L2 loss class, and regularized the weight vector
as well as the bias term. The resulting dual SVM problem has fewer constraints, as is
evidenced by the smaller number of Lagrange multipliers needed in the SDP below.

minimize
β,η

1
2 t1 + λQ

2 t2

subject to η > 0, β > 0
‖K

1
2 β‖ 6 t2[
H(β) (η + 1)

(η + 1)> t1

]
� 0

(23)

where H(β) = Y (K + 1m×m + λmI)Y , z = γ1 + η − ξ.
The classification function is given by f = sign(KH(β)†((η + 1)� y)).

Example 13 (Single class SVM) For unsupervised learning, the single class SVM com-
putes a function which captures regions in input space where the probability density is in
some sense large (Schölkopf et al., 2001). The corresponding SDP for this problem, also
known as novelty detection, is shown below.

minimize
β,γ,η,ξ

1
2 t1 + ξ> 1

νm − γ + λQ

2ν t2

subject to η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

K z
z> t1

]
� 0

(24)

where z = γ1 + η − ξ, and ν ∈ [0, 1] a user selected parameter controlling the proportion of
the data to be classified as novel.

The score to be used for novelty detection is given by f = Kα − γ1, which reduces to
f = η − ξ, by substituting α = K†(γ1 + η − ξ) and K = reshape(kβ).

Example 14 (ν-Regression) We derive the SDP for ν regression (Schölkopf et al., 2000),
which automatically selects the ε insensitive tube for regression. As in the ν-SVM case in
Example 11, the user defined parameter ν controls the fraction of errors and support vectors.

minimize
β,γ,η,ξ,χ

1
2 t1 + χν

λ + ξ> 1
mλ + λQ

2λ t2

subject to χ > 0, η > 0, ξ > 0, β > 0
‖K

1
2 β‖ 6 t2[

F (β) z
z> t1

]
� 0

(25)

where z =
[
−y
y

]
− γ

[
1
−1

]
+ η − ξ − χ

[
1
1

]
and F (β) =

[
K −K
−K K

]
.

The regression function is given by f =
[
−K K

]
F (β)†z − γ.

1017

Ong, Smola and Williamson

Example 15 (Kernel Target Alignment) For the Alignment approach (Cristianini et al.,
2002), Qemp = y>Ky, we directly minimize the regularized quality functional, obtaining the
following optimization problem,

minimize
k∈H

−1
2y>Ky + λQ

2 β>Kβ

subject to β > 0

6. Experiments

In the following experiments, we use data from the UCI repository. Where the data at-
tributes are numerical, we do not perform any preprocessing of the data. Boolean attributes
are converted to {−1, 1}, and categorical attributes are arbitrarily assigned an order, and
numbered {1, 2, . . .}. The SDPs were solved using SeDuMi (Sturm, 1999), and YALMIP
(Löfberg, 2002) was used to convert the equations into standard form. We used the hyper-
kernel for automatic relevance determination (HARD) defined by (12) for the hyperkernel
optimization problems. The scaling freedom that HARD provides for each dimension means
we do not have to normalize data to some arbitrary distribution.

For the classification and regression experiments, the datasets were split into 100 random
permutations of 60% training data and 40% test data. We deliberately did not attempt
to tune parameters and instead made the following choices uniformly for all datasets in
classification, regression and novelty detection:

• The kernel width σi, for each dimension, was set to 50 times the 90% quantile of
the value of |xi − xj | over the training data. This ensures sufficient coverage without
having too wide a kernel. This value was estimated from a 20% random sampling of
the training data.

• λ was adjusted so that 1
λm = 100 (that is C = 100 in the Vapnik-style parameterization

of SVMs). This has commonly been reported to yield good results.
• ν = 0.3. While this is clearly suboptimal for many datasets, we decided to choose it

beforehand to avoid having to change any parameter. Clearly we could use previous
reports on generalization performance to set ν to this value for better performance.
For novelty detection, ν = 0.1 (see Section 6.5 for details).

• λh for the Harmonic Hyperkernel was chosen to be 0.6, giving adequate coverage over
various kernel widths in (10) (small λh focus almost exclusively on wide kernels, λh

close to 1 will treat all widths equally).
• The hyperkernel regularization constant was set to λQ = 1.
• For the scale breaking constraint 1>β = c, c was set to 1 for classification as the

hypothesis class only involves the sign of the trained function, and therefore is scale
free. However, for regression, c := std(Ytrain) so that the hyperkernel coefficients are
of the same scale as the output (the constant offset b takes care of the mean).

In the following experiments, the hypothesis function is computed using the variables
of the SDP. In certain cases, numerical problems in the SDP optimizer or in the pseudo-
inverse may prevent this hypothesis from optimizing the regularized risk for the particular

1018

Hyperkernels

kernel matrix. In this case, one can use the kernel matrix K from the SDP and obtain the
hypothesis function via a standard SVM.

6.1 Low Rank Approximation

Although the optimization of (15) has reduced the problem of optimizing over two possibly
infinite dimensional Hilbert spaces to a finite problem, it is still formidable in practice as
there are m2 coefficients for β. For an explicit expansion of type (13) one can optimize in
the expansion coefficients ki(x)ki(x′) directly, which leads to a quality functional with an
`2 penalty on the expansion coefficients. Such an approach is appropriate if there are few
terms in (13).

In the general case (or if the explicit expansion has many terms), one can use a low-
rank approximation, as described by Fine and Scheinberg (2000) and Zhang (2001). This
entails picking from {k((xi, xj), ·)|1 ≤ i, j ≤ m} a small fraction of terms, p (where m2 � p),
which approximate k on Xtrain ×Xtrain sufficiently well. In particular, we choose an m× p
truncated lower triangular matrix G such that ‖PKP> − GG>‖F 6 η, where P is the
permutation matrix which sorts the eigenvalues of K into decreasing order, and η is the
level of approximation needed. The norm, ‖ · ‖F is the Frobenius norm. In the following
experiments, the hyperkernel matrix was approximated to η = 10−6 using the incomplete
Cholesky factorization method (Bach and Jordan, 2002).

6.2 Classification Experiments

Several binary classification datasets2 from the UCI repository were used for the experi-
ments. A set of synthetic data sampled from two Gaussians was created to illustrate the
scaling freedom between dimensions. The first dimension has standard deviation of 1000
whereas the second dimension has standard deviation of 1 (a sample result is shown in
Figure 1). The results of the experiments are shown in Table 3. The second, third and
fourth columns show the results of the hyperkernel optimizations of C-SVM (Example 10),
ν-SVM (Example 11) and Lagrangian SVM (Example 12) respectively. The results in the
fifth column shows the best results from (Freund and Schapire, 1996, Rätsch et al., 2001,
Meyer et al., 2003).

The rightmost column shows a C-SVM tuned in the traditional way. A Gaussian RBF
kernel was tuned using 10-fold cross validation on the training data, with the best value of
C shown in brackets. A grid search was performed on (C, σ). The values of C tested were
{10−2, 10−1, . . . , 109}. The values of the kernel width, σ, tested were between 10% and 90%
quantile of the distance between a pair of sample of points in the data. These quantiles
were estimated by a random sample of the training data.

In an attempt to lower the computational time required for the experiments, we also
performed low rank approximation of the kernel matrix, which effectively is a selection of a
subset of the training data. Table 4 shows the results obtained when we approximate the
kernel matrix using a tolerance of 10−6. The number of data points selected was forced to
be between 80 and 300, to control the size of the kernel matrix. The rightmost two columns
are repeated from Table 3. The results from the approximate problem were all within one

2. We classified window vs. non-window for glass data, the other datasets are all binary.

1019

Ong, Smola and Williamson

Data C-SVM ν-SVM Lag-SVM Best other Tuned SVM (C)
syndata 2.8±2.4 1.9±1.9 2.4±2.2 NA 5.9±5.4 (108)
pima 23.5±2.0 27.7±2.1 23.6±1.9 23.5 24.1±2.1 (104)

ionosph 6.6±1.8 6.7±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 19.7±3.3 19.3±2.4 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 7.2±3.2 10.1±4.0 6.2±3.1 4.4 5.2±2.2 (105)
sonar 14.8±3.7 15.3±3.7 14.7±3.6 15.4 15.3±4.1 (103)
credit 14.6±1.8 13.7±1.5 14.7±1.8 22.8 15.3±2.0 (108)
glass 6.0±2.4 8.9±2.6 6.0±2.2 NA 7.2±2.7 (103)

Table 3: Hyperkernel classification: Test error and standard deviation in percent

standard deviation of the method using all the data points. This shows the potential of
using a subset of the training data to obtain an equally good classification result. The
second column shows the average value of the constant η used in the approximation.

Data Approx. η C-SVM ν-SVM Lag-SVM other Tuned SVM (C)
syndata 0 2.9±2.4 1.9±1.9 2.4±2.1 NA 5.9±5.4 (108)
pima 4× 10−7 23.8±2.0 27.2±2.3 24.1±1.9 23.5 24.1±2.1 (104)

ionosph 5× 10−7 6.6±2.0 6.8±1.8 6.4±1.9 5.8 6.1±1.8 (103)
wdbc 3× 10−4 3.3±1.2 3.8±1.2 3.0±1.1 3.2 5.2±1.4 (106)
heart 2× 10−7 19.5±3.3 19.4±2.5 20.1±2.8 16.0 23.2±3.7 (104)

thyroid 1× 10−9 6.0±3.1 7.2±3.6 5.5±2.6 4.4 5.2±2.2 (105)
sonar 3× 10−15 14.8±3.7 15.6±3.8 14.8±3.5 15.4 15.3±4.1 (103)
credit 1× 10−4 14.8±1.8 13.8±1.6 14.8±1.8 22.8 15.3±2.0 (108)
glass 3× 10−7 5.9±2.4 8.5±2.6 5.8±2.2 NA 7.2±2.7 (103)

Table 4: Approximate kernel classification: Test error and standard deviation in percent

Ong et al. (2002) reported results which were based on an optimization problem where
we iteratively alternated between optimizing the kernel coefficients and hyperkernel coeffi-
cients. This could potentially result in local minima. In that setting, the regularized quality
functional performed poorly on the Ionosphere dataset. This is not the case here, where we
optimize using a SDP. Note that the results here for the tuned C-SVM (rightmost column)
for the synthetic data and the credit data have improved over our earlier results (see (Ong
and Smola, 2003)). This was because we only searched up till C = 106 in our earlier work,
and we searched further for our current results. This demonstrates another advantage of
the hyperkernel optimization over parameter selection using cross validation, we can only
search a finite number of values (usually only a small number of these) for each parameter.

6.3 Effect of λQ and λh on Classification Error

To investigate the effect of varying the hyperkernel regularization constant, λQ, and the
Harmonic Hyperkernel parameter, λh, we performed experiments using the C-SVM hyperk-
ernel optimization (Example 10). We performed two sets of experiments. In the first, we set

1020

Hyperkernels

λQ = 1 and varied λh = {0.1, 0.2, . . . , 0.9, 0.92, 0.94, 0.96, 0.98}. In the second experiment,
we set λh = 0.6 and varied λQ = {10−4, 10−3, . . . , 105}. The results shown in Figures 4 and
3 are the average error over 10 random 60%/40% splits.

From Figure 3, we observe3 that the variation in classification accuracy over the whole
range of the hyperkernel regularization constant, λQ is less than the standard deviation of
the classification accuracies of the various datasets (compare with Table 3 and 4). This
demonstrates that our method is insensitive to the regularization parameter over the range
of values tested for the various datasets.

The method shows a higher sensitivity to the harmonic hyperkernel parameter, λh (Fig-
ure 4). Since this parameter effectively selects the scale of the problem, by selecting the
“width” of the kernel, it is to be expected that each dataset would have a different ideal
value of λh. It is to be noted that the generalization accuracy at λh = 0.6 is within one
standard deviation (see Table 3 and 4) of the best accuracy achieved over the whole range
tested.

6.4 Regression Experiments

To demonstrate that we can solve problems other than binary classification using the same
framework, we performed regression and novelty detection. The results of regression are
shown in Table 5. We have the same parameter settings as in the previous section. The
second column shows the results from the hyperkernel optimization of the ν-regression
(Example (14)). The results in the third column shows the best results from (Meyer et al.,
2003). The rightmost column shows a ε-SVR with a gaussian kernel tuned using 10-fold
cross validation on the training data. Similar to the classification setting, grid search was
performed on (C, σ). The values of C tested were {10−2, 10−1, . . . , 109}. The values of the
kernel width, σ, tested were between the 10% and 90% quantiles of the distance between a
pair of sample of points in the data. These quantiles were estimated by a random sample
of the training data.

Data ν-SVR Best other Tuned ε-SVM
auto-mpg 7.76±1.05 7.11 9.61±1.18
boston 12.02±2.25 9.60 15.04±3.31

auto imports(×106) 4.42±1.04 0.25 5.76±1.28
cpu(×103) 4.25±2.89 3.16 9.79±7.29

servo 0.79±0.16 0.25 0.57±0.14

Table 5: Hyperkernel regression: Mean Squared Error

Meyer et al. (2003) use a 90%/10% split of the data for their experiments. Analyzing
their results further indicate that, for the auto imports, cpu and servo datasets, their results
were obtained using projection pursuit regression, which is spline based. This indicates that
we may have been searching in the incorrect class of kernels (for these specific datasets)
when considering Gaussian kernels.

3. The training error for the sonar dataset is zero.

1021

Ong, Smola and Williamson

Figure 3: Effect of varying λQ on classification error

1022

Hyperkernels

Figure 4: Effect of varying λh on classification error

1023

Ong, Smola and Williamson

Figure 5: Top rows: Images of digits ‘1’ and ‘2’, considered novel by algorithm; Bottom:
typical images of digits ‘1’ and ‘2’.

6.5 Novelty Detection

We apply the single class support vector machine to detect outliers in the USPS data. The
test set of the default split in the USPS database was used in the following experiments.
The parameter ν was set to 0.1 for these experiments, hence selecting up to 10% of the data
as outliers. By visualizing a sample of the digits, we can see that the algorithm identifies
‘novel’ digits, such as in the top rows of Figure 5. The bottom rows shows a sample of digits
which have been deemed to be ‘common’.

7. Summary and Outlook

The regularized quality functional allows the systematic solution of problems associated
with the choice of a kernel. Quality criteria that can be used include target alignment,
regularized risk and the log posterior. The regularization implicit in our approach allows
the control of overfitting that occurs if one optimizes over a too large a choice of kernels.

We have shown that when the empirical quality functional is the regularized risk func-
tional, the resulting optimization problem is convex. This SDP, which learns the best
kernel given the data, has a Bayesian interpretation of a hierarchical GP. Since we can
optimize over the whole class of kernel functions, we can define more general kernels which
may have many free parameters, without overfitting. The experimental results on classi-
fication demonstrate that it is possible to achieve the state of the art. Furthermore, the
same framework and parameter settings work for various datasets as well as regression and
novelty detection.

1024

Hyperkernels

It is important to stress that our approach has made support vector estimation more
automated. Parameter adjustment is less critical compared to the case when the kernel
is fixed. Future work will focus on deriving improved statistical guarantees for estimates
derived via hyperkernels which match the good empirical performance. Extensions of the
method to learning functions more general than kernels, such as kernels without the posi-
tivity constraint, metrics, and operators are also under investigation.

Acknowledgements This work was supported by a grant of the Australian Research
Council. The authors would like to thank Laurent El Ghaoui, Michael Jordan, John Lloyd,
Daniela Pucci de Farias and Grace Wahba for their helpful comments and suggestions. The
authors also thank Alexandros Karatzoglou for his help with SVLAB.

Appendix A. Proof of Proposition 9

We will make use of a theorem due to (Albert, 1969) which is a generalization of the Schur
complement lemma for positive semidefinite matrices.

Theorem 11 (Generalized Schur Complement) Let X =
[

A B
B> C

]
, where A and

C are symmetric. Then

X � 0 if and only if A � 0, AA†B = B and C −B>A†B � 0 (26)

where A† is the Moore-Penrose inverse of A.

We prove the proposition that the solution of the quadratic minimax problem (17) is
obtained by minimizing the SDP (18).
Proof [of Proposition 9] Rewrite the terms of the objective function in (17) dependent on
x in terms of their Wolfe dual. The corresponding Lagrange function is

L(x, ξ, γ) = −1
2
x>H(ξ)x− c(ξ)>x + γ>(Ax + a), (27)

where γ ∈ RM is a vector of Lagrange multipliers with γ > 0. By differentiating L(x, ξ, γ)
with respect to x and setting the result to zero, one obtains that (27) is maximized with
respect to x for x = H(ξ)†(A>γ − c(ξ)) and subsequently we obtain the dual

D(ξ, γ) =
1
2
(A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)) + γ>a. (28)

Note that H(ξ)†H(ξ)H(ξ)† = H(ξ)†. For equality constraints in (17), such as Bx + b = 0,
we get correspondingly free dual variables.

The dual optimization problem is given by inserting (28) into (17)

minimize
ξ,γ

1
2(A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)) + γ>a + d(ξ)

subject to H(ξ) � 0, G(ξ) � 0, γ > 0.
(29)

1025

Ong, Smola and Williamson

Introducing an auxiliary variable, t, which serves as an upper bound on the quadratic
objective term gives an objective function linear in t and γ. Then (29) can be written as

minimize
ξ,γ

1
2 t + γ>a + d(ξ)

subject to t � (A>γ − c(ξ))>H(ξ)†(A>γ − c(ξ)),
H(ξ) � 0, G(ξ) � 0, γ > 0.

(30)

From the properties of the Moore-Penrose inverse, we get H(ξ)H(ξ)†(A>γ−c(ξ)) = (A>γ−
c(ξ)). Since H(ξ) � 0, by Theorem 11, the quadratic constraint in (30) is equivalent to[

H(ξ) (A>γ − c(ξ))
(A>γ − c(ξ))> t

]
� 0 (31)

Stacking all the constraints in (30) as one linear matrix inequality proves the claim.

Appendix B. Derivation of SDP for C-SVM

We derive the corresponding SDP for the case when Qemp is a C-SVM (Example 10).
We begin our derivation from the regularized quality functional (15). Dividing through-

out by λ and setting the cost function to the L1 soft margin loss, that is `(xi, yi, f(xi)) =
max(0, 1− yif(xi)) we get the following equation.

mink∈H minf∈Hk

1
mλ

∑m
i=1 ξi + 1

2‖f‖
2
Hk

+ λQ

2λ ‖k‖
2
H

subject to yif(xi) > 1− ξi

ξi > 0
(32)

Recall the form of the C-SVM,

min
w,ξ

1
2
‖w‖2 +

C

m

m∑
i=1

ξi

subject to yi(〈xi, w〉+ b) > 1− ξi

ξi > 0 for all i = 1, . . . ,m

and its dual,

max
α∈Rm

m∑
i=1

αi −
1
2

m∑
i=1

αiαjyiyjk(xi, xj)

subject to
∑m

i=1 αiyi = 0
0 6 αi 6 C

m for all i = 1, . . . ,m.

By considering the optimization problem dependent on f in (32), we can use the derivation
of the dual problem of the standard C-SVM. Observe that C = λ−1, and we can rewrite

1026

Hyperkernels

‖k‖2
H = β>Kβ due to the representer theorem. Substituting the dual C-SVM problem into

(32), we get the following matrix equation,

min
β

max
α

1>α− 1
2α>G(β)α + CλQ

2 β>Kβ

subject to α>y = 0
0 6 αi 6 C

m for all i = 1, . . . ,m
βi > 0

(33)

This is of the quadratic form of Corollary 10 where x = α, ξ = β, H(ξ) = G(β), c(ξ) = 1,
Σ = CλQK, A =

[
y −y I −I

]> and a = C
m . Applying Corollary 10, we obtain the

SDP in Example 10.

References

A. Albert. Conditions for positive and nonnegative definiteness in terms of pseudoinverses.
SIAM Journal on Applied Mathematics, 17(2):434–440, 1969.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68:337–404, 1950.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine
Learning Research, 3:1–48, 2002.

P. L. Bartlett and J. Shawe-Taylor. Generalization performance of support vector machines
and other pattern classifiers. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in Kernel Methods—Support Vector Learning, pages 43–54, Cambridge, MA,
1999. MIT Press.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination of two
linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

O. Bousquet and D. Herrmann. On the complexity of learning the kernel matrix. In
Advances in Neural Information Processing Systems 15, 2002. In press.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining
and Knowledge Discovery, 2(2):121–167, 1998.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for
support vector machines. Machine Learning, 46(1):131–159, 2002.

C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297, 1995.

D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related estima-
tors. Annals of Statistics, 18:1676–1695, 1990.

K. Crammer, J. Keshet, and Y. Singer. Kernel design using boosting. In Advances in Neural
Information Processing Systems 15, 2002. In press.

1027

Ong, Smola and Williamson

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 367–373, Cambridge, MA, 2002. MIT Press.

K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning
svm hyperparameters. Neurocomputing, 51:41–59, 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation.
Technical report, IBM Watson Research Center, New York, 2000.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In Proceedings
of the International Conference on Machine Learing, pages 148–146. Morgan Kaufmann
Publishers, 1996.

D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-CRL-
99-10, Computer Science Department, UC Santa Cruz, 1999.

R. Herbrich and R.C. Williamson. Algorithmic luckiness. Journal of Machine Learning
Research, 3:175–212, 2002.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
J. Math. Anal. Applic., 33:82–95, 1971.

G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and M. Jordan. Learning the kernel
matrix with semidefinite programming. In Proceedings of the International Conference
on Machine Learning. Morgan Kaufmann, 2002.

J. Löfberg. YALMIP, yet another LMI parser, 2002. http://www.control.isy.liu.se/ ˜jo-
hanl/yalmip.html.

A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical procedure
of recognition (in Russian). Technicheskaya Kibernetica, 3, 1969.

D. J. C. MacKay. Bayesian non-linear modelling for the energy prediction competition.
ASHRAE Transcations, 4:448–472, 1994.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines. Journal of
Machine Learning Research, 1:161–177, 2001. http://www.jmlr.org.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine under test. Neurocom-
puting, 2003. Forthcoming.

R. Neal. Bayesian Learning in Neural Networks. Springer, 1996.

C. S. Ong and A. J. Smola. Machine learning using hyperkernels. In Proceedings of the
International Conference on Machine Learning, 2003. submitted.

C. S. Ong, A. J. Smola, and R. C. Williamson. Hyperkernels. In Neural Information
Processing Systems, volume 15. MIT Press, 2002.

1028

Hyperkernels

M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-out. In
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers, pages 311–326, Cambridge, MA, 2000. MIT Press.

G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Machine Learning, 42
(3):287–320, 2001.

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimating the
support of a high-dimensional distribution. Neural Computation, 13(7), 2001.

B. Schölkopf, A. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algo-
rithms. Neural Computation, 12:1207–1245, 2000.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2002.

A. Smola, B. Schölkopf, and K.-R. Müller. The connection between regularization operators
and support vector kernels. Neural Networks, 11:637–649, 1998.

J.F. Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones.
Optimization Methods and Software, 11-12:625–653, 1999. Special issue on Interior Point
Methods (CD supplement with software).

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review., 38(1):49–95,
1996.

V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Con-
ference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

T. Zhang. Some sparse approximation bounds for regression problems. In Proc. 18th Inter-
national Conf. on Machine Learning, pages 624–631. Morgan Kaufmann, San Francisco,
CA, 2001.

1029

	Introduction
	Motivation
	Related Work
	Outline of the Paper

	Kernel Quality Functionals
	Empirical and Expected Quality
	Examples of Qemp

	Hyper Reproducing Kernel Hilbert Spaces
	Regularized Quality Functional
	A Bayesian Perspective

	Hyperkernels
	Power Series Construction
	Hyperkernels Invariant to Translation
	Explicit Expansion

	Optimization Problem
	Semidefinite Programming Formulations
	Examples of Hyperkernel Optimization Problems

	Experiments
	Low Rank Approximation
	Classification Experiments
	Effect of Q and h on Classification Error
	Regression Experiments
	Novelty Detection

	Summary and Outlook
	Proof of Proposition 9
	Derivation of SDP for C-SVM

