
Bayesian Kernel Methods�

Alexander J. Smola1 and Bernhard Schölkopf2

1 RSISE, The Australian National University, Canberra 0200, ACT, Australia
2 Max Planck Institut für Biologische Kybernetik, 72076 Tübingen, Germany

Abstract. Bayesian methods allow for a simple and intuitive represen-
tation of the function spaces used by kernel methods. This chapter de-
scribes the basic principles of Gaussian Processes, their implementation
and their connection to other kernel-based Bayesian estimation methods,
such as the Relevance Vector Machine.

1 Introduction

The Bayesian approach allows for an intuitive incorporation of prior knowledge
into the process of estimation. Moreover, it is possible, within the Bayesian
framework, to obtain estimates of the confidence and reliability of the estimation
process itself. These estimates are typically relatively easy to compute.

Surprisingly enough, as we shall see, the Bayesian approach leads to algo-
rithms much akin to those developed within the framework of risk minimization.
This allows us to provide new insight into kernel algorithms such as SV clas-
sification and regression. In addition, these similarities help us design Bayesian
counterparts for risk minimization algorithms (such as Laplacian Processes (Sec-
tion 5)), or vice versa (Section 6). In other words, we can tap into the knowledge
from both worlds and combine it to create better algorithms.

We begin in Section 2 with an overview of the basic assumptions underlying
Bayesian estimation. We explain the notion of prior distributions, which encode
our prior belief concerning the likelihood of obtaining a certain estimate, and
the concept of the posterior probability, which quantifies how plausible func-
tions appear after we observe some data. Furthermore we show how inference is
performed, and how certain numerical problems that arise can be alleviated by
various types of Maximum-a-Posteriori (MAP) estimation.

Once the basic tools are introduced, we analyze the specific properties of
Bayesian estimators for three different types of prior probabilities: Gaussian
Processes (Section 3 describes the theory and Section 4 the implementation),
which rely on the assumption that adjacent coefficients are correlated, Laplacian
Processes (Section 5), which assume that estimates can be expanded into a sparse
linear combination of kernel functions, and therefore favor such hypotheses, and
Relevance Vector Machines (Section 6), which assume that the contribution of
each kernel function is governed by a normal distribution with its own variance.
� The present article is based on [62].

S. Mendelson, A.J. Smola (Eds.): Advanced Lectures on Machine Learning, LNAI 2600, pp. 65–117, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.3     Für schnelle Web-Anzeige optimieren: Nein     Piktogramme einbetten: Nein     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 2400 2400 ] dpi     Papierformat: [ 595.276 841.889 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 300 dpi     Downsampling für Bilder über: 450 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Maximal     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 2400 dpi     Downsampling für Bilder über: 3600 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Farbe nicht ändern     Methode: StandardGeräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Ja     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: Ja     DSC-Warnungen protokollieren: Nein     Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja     EPS-Info von DSC beibehalten: Ja     OPI-Kommentare beibehalten: Nein     Dokumentinfo von DSC beibehalten: JaANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments true     /DoThumbnails false     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize false     /ParseDSCCommentsForDocInfo true     /EmitDSCWarnings false     /CalGrayProfile (Ø¯P)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.3     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends true     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo true     /GrayACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 1 1 1 1 ] /QFactor 0.15 /Blend 1 /HSamples [ 1 1 1 1 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /LeaveColorUnchanged     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 300     /EndPage -1     /AutoPositionEPSFiles true     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 2400     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 300     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 2400 2400 ]>> setpagedevice



66 A.J. Smola and B. Schölkopf

Readers interested in a quick overview of the principles underlying Bayesian
statistics will find the introduction sufficient. We recommend that the reader
focus first on Sections 2 and 3. The subsequent sections are ordered in increas-
ing technical difficulty, and decreasing bearing on the core issues of Bayesian
estimation with kernels.

2 Bayesics

The central characteristic of Bayesian estimation is that we assume certain prior
knowledge or beliefs about the data generating process, and the dependencies
we might encounter. It is a natural extension of the maximum likelihood frame-
work (loosely speaking the prior knowledge behaves exactly in the same way
as additional data that we might have observed prior to the actual estimation
problem).

Unless stated otherwise, we observe an m-sample X := {x1, . . . , xm} and
Y := {y1, . . . , ym}, based on which we will carry out inference, typically on a set
of observations X ′ := {x′

1, . . . , x′
m′}. For notational convenience we sometimes

use Z := {(x1, y1), . . . , (xm, ym)} instead of X, Y . We begin with an overview
over the fundamental ideas (see also [3, 40, 46, 63, 56, 62] for more details).1

2.1 Maximum Likelihood and Bayes Rule

Assume that we are given a set of observations Y which are drawn from a
probability distribution pθ(Y ). It then follows that for a given value of θ we can
assess how likely it is to observe Y . Conversely, given the observations Y , we can
try to find a value of θ for which Y was a particularly likely observation.

For instance, if we know that Y is composed of several observations of a scalar
random variable drawn from a normal distribution with mean µ and variance σ,
that is θ = (µ, σ), we could try to infer µ and σ from Y or vice versa, assess how
likely it is that Y came from such a normal distribution.

The process of determining θ from data by maximizing pθ(Y ) is referred to
as maximum likelihood estimation. We obtain

θML(Y ) := argmax
θ

pθ(Y ). (1)

Note that we deliberately write pθ(Y ) instead of the conditional probability
distribution p(Y |θ), since the latter implies that also θ is a random variable with
a certain probability distribution p(θ), an additional assumption we may not
want to make. Note that pθ(Y ), viewed as a function of θ, is often referred to as
the likelihood of Y , given θ.

1 For the sake of simplicity we will gloss over details such as σ-algebras. With some
abuse of notation, p(x) will correspond to either a density or a probability measure,
depending on the context.



Bayesian Kernel Methods 67

If, however, such a p(θ) exists, we can use the definition of conditional dis-
tributions

p(Y, θ) = p(Y |θ)p(θ) = p(θ|Y )p(Y ) (2)

and obtain Bayes’ rule

p(θ|Y ) =
p(Y |θ)p(θ)

p(Y )
∝ p(Y |θ)p(θ). (3)

This means that as soon as we assume that θ itself is a random variable with
p(θ), we can infer how likely it is to observe a certain value of θ, given Y . In
this way, θ is transformed from the parameter of a density to a random variable,
which allows us to make statements about the likely value of θ in the presence
of data.

Typically p(θ|Y ) is referred to as the posterior distribution, whereas p(θ) is
known as the prior, and p(Y |θ) is called the evidence: with a given prior, based
on our prior knowledge about θ and using the evidence of the observations Y we
can come to a posterior assessment p(θ|Y ) on the probability of having observed
a certain value of θ.

Finally, the mode of p(θ|Y ) is used in maximum a posteriori (MAP) estima-
tion to find a good estimate for θ via

θMAP(Y ) := argmax
θ

p(Y |θ)p(θ). (4)

Note that the use of θMAP(Y ) is typically preferred to θML(Y ), since we can
avoid “unreasonable” values of θ by making suitable prior assumptions on θ,
such as its range.

2.2 Examples of Maximum Likelihood Estimation

In the following, we will be introducing various models of pθ(y), which will
become useful in regression and classification problems at a later stage in this
chapter. We begin with the (simplifying) assumption that Y is obtained iid
(identically independently distributed) from pθ(y), that is

pθ(Y ) =
m∏

i=1

pθ(yi). (5)

and that furthermore pθ(y) = p(y−θ), where p is a distribution with zero mean.
In other words, we begin by studying the “estimation of a location parameter
problem”. Depending on the properties of p(y−θ) we will obtain various solutions
for pML(Y ).

For the practical purpose of finding θML(Y ) under the assumption (5) it is
advantageous to rewrite (1) as

θML(Y ) = argmin
θ

m∑

i=1

− log p(yi − θ). (6)



68 A.J. Smola and B. Schölkopf

This reduces the problem of maximizing a joint function of all yi to minimizing
the average of terms, each of which is dependent only on one of the instances yi.
The term − log p(y − θ), considered as a function of θ is often referred to as the
negative log-likelihood.

Normal Distribution: we assume that we have a normal distribution with
fixed variance σ > 0 and zero mean, that is

p(ξ) =
1√
2πσ

exp
(
− 1

2σ2 ξ2
)

(7)

and consequently − log p(y − θ) = 1
2σ2 (y − θ)2 + c, where c is a constant

independent of y and θ. This means that θMP(Y ) satisfies

θMP(Y ) = argmin
θ

m∑

i=1

1
2σ2 (yi − θ)2. (8)

Taking derivatives, simple algebra shows that in this case

θMP(Y ) =
1
m

m∑

i=1

yi. (9)

In other words, θMP(Y ) for the normal distribution leads to the mean of
random variables to estimate the location parameter.

Laplacian Distribution: again this distribution has zero mean, yet much
longer tails than the normal distribution. It satisfies

p(ξ) =
1
2λ

exp
(
− 1

λ
|ξ|

)
(10)

and consequently − log p(y − θ) = 1
λ |y − θ| + c, where c is a constant inde-

pendent of y and θ. This means that θMP(Y ) satisfies

θMP(Y ) = argmin
θ

m∑

i=1

1
2λ
|yi − θ|. (11)

Taking derivatives, we can see that for the minimizer θMP as many terms
must satisfy yi > θ as there are terms with yi < θ. Consequently, the median
of Y is the solution for θMP.
Clearly the median is a much more robust way of estimating the expected
value of a distribution:2 if we corrupt Y with some additional data not
taken from the true distribution we will obtain a good estimate nonetheless,
regardless of the (possibly large) numerical value of the corrupted additional
observations. This is the case since we excluded the extreme values in Y on
both ends.

2 We assume that all distributions we are dealing with are symmetric and have zero
mean, hence mean and median coincide.



Bayesian Kernel Methods 69

Robust Estimation: Using only the median of Y for estimation of θ appears
to be too drastic, especially if we have reason to believe that not all the data
is corrupted. Instead, Huber [29] formalized the notion of using a trimmed
mean, where one only discards a certain fraction of extreme values and takes
the mean of the rest. For this purpose the following density was introduced:

p(ξ) ∝
{

exp(− ξ2

2σ ) if |ξ| ≤ σ
exp(σ

2 − |ξ|) otherwise
(12)

One can show that θML(Y ) is given by the mean of the fraction of obser-
vations that lie within an interval of ±σ around θML(Y ) and where equal
amounts of observations yi exceed θML(Y ) by more than σ from above and
below.

ε-insensitive Density: For computational convenience Vapnik [75] introduced
another variant of density model, based on the ε-insensitive loss function.
It is essentially a Laplacian distribution, where in a neighborhood of size
ε around its mean all data is equally probable. We can formalize this as
follows:

p(ξ) =
1

2(1 + ε)
exp(−|ξ|ε) where |ξ|ε := max(0, |ξ| − ε). (13)

Estimators of θML(Y ) have similar properties to the ones in the previous
paragraph, with the difference that one takes the mean of the two extreme
values in the ε-neighborhood of the expectation rather than the mean over
the whole set. The advantage of this somewhat peculiar estimator is that
optimization problems arising from it have a lower number of active con-
straints. This was exploited in Support Vector regression [75, 76].

Besides estimating the mean of a real-valued random variable y we may also have
to deal with discrete valued ones. For simplicity we consider only binary y, that
is y ∈ {±1}. In this case it is most useful to estimate the probability p(y = 1)
(and p(y = −1) = 1 − p(y = 1)).3 While we could do this directly, it pays to
consider a few indirect strategies for finding such an estimate. The reason is that
at a later stage we will use this indirect parameterization to estimate p(y = 1)
as a function of some additional parameter x (in which case we will call y the
label and x the pattern), a process which is greatly simplified by an indirect
parameterization.

Typically we will study probabilities parameterized by pθ(y) = p(θy), where
p may take on various functional forms. Often in classification, when θ is location
dependent, the values θ(x)y are referred to as the margin at location x.

Logistic Transfer Function: this is given by

pθ(y) :=
exp(θy)

1 + exp(θy)
. (14)

3 As in the real-valued case, we develop the reasoning for p(y) rather than p(y|x) and
will introduce the conditioning part later in Section 3.



70 A.J. Smola and B. Schölkopf

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Normal Distribution

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Laplace Distribution

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Huber’s Robust

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Vapnik’s Insensitive

−log p(y)
p(y)

Fig. 1. Densities and corresponding negative log density. Upper left: Gaussian, upper
right: Laplacian, lower left: Huber’s robust, lower right: ε-insensitive.

In other words, p(y = 1) = eθ

1+eθ and p(y = −1) = e−θ

1+e−θ . Note that logistic
regression with (14) is equivalent to obtaining θ via

θ = ln
p(y = 1)

p(y = −1)
. (15)

Quite often the logarithm of the ratio between the two class probabilities is
also referred to as the log odds ratio.

Probit: we might also assume that y is given by the sign of θ, but corrupted
by Gaussian noise (see for instance [49, 50, 63]); thus, y = sgn (θ + ξ) where
ξ ∼ N(0, 1). In this case, we have

pθ(y) =
∫

sgn (θ + ξ) + 1
2

p(ξ)dξ (16)

=
1√
2π

∫ ∞

−θ

exp
(
−1

2
ξ2
)

dξ = Φ (θ) . (17)



Bayesian Kernel Methods 71

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Logistic Regression

−3 −2 −1 0 1 2 3
0

0.5

1

1.5

2

2.5

3

y

Cumulative Normal Distribution

p(y)
−log p(y)

Fig. 2. Conditional probabilities and corresponding negative log-probability. Left: lo-
gistic regression; Right: Probit.

Here Φ is the distribution function of the normal distribution.

Note the correspondence between the asymptotic behaviors of the logistic
and the probit model on the one hand, and the linear and quadratic soft margin
loss functions (1 − θy)+ and (1 − θy)2+. This also explains why the linear soft
margin loss is a good proxy to logistic regression and the quadratic soft margin
to the probit model. Furthermore, it indicates, that should one use the linear
soft margin as a cheap proxy for optimization purposes, the logistic is a more
adequate model to fit the densities subsequently [51], whereas, for the quadratic
soft margin the probit model is to be preferred.

2.3 Inference

Besides the problem of finding suitable estimates of θ for pθ(Y ), which can be
used to understand the way observations Y were generated from some under-
lying distribution, we may also simply want to infer new values Y ′, given some
observations Y . For this purpose we need to compute p(Y ′|Y ). The factorization
of conditional probabilities leads to

p(Y ′|Y ) =
p(Y ′, Y )

p(Y )
∝ p(Y ′, Y ). (18)

This means that as soon as we can compute the joint probability distribution
function of Y, Y ′ we are able to predict Y ′, given Y . The normalization term
p(Y ) is not always needed — for instance, the mode of p(Y ′|Y ) is independent
of the scale.

Example 1 (Inference with Normal Distributions). Assume that (Y, Y ′) is jointly

normal with covariance matrix Σ =
[

ΣY Y ΣY Y ′

ΣY ′Y ΣY ′Y ′

]
and mean µ =

[
µY

µY ′

]
,



72 A.J. Smola and B. Schölkopf

then p(Y ′|Y ) is drawn from a normal distribution with covariance Σcond =
ΣY ′Y ′ −ΣY ′Y Σ−1

Y Y ΣY Y ′ and mean µcond = µY ′ + ΣY ′Y Σ−1
Y Y (Y − µY ).

This can be seen as follows: since p(Y, Y ′) is jointly normal, the conditional
distribution p(Y ′|Y ) is also a normal distribution, which can be obtained from
p(Y, Y ′) by collecting all the terms which depend on Y ′. We know that p(Y, Y ′)
is given by

(2π)− m+m′
2 (det Σ)− 1

2 exp

(
−1

2

[
Y − µY

Y ′ − µY ′

]� [
ΣY Y ΣY Y ′

ΣY ′Y ΣY ′Y ′

]−1 [
Y − µY

Y ′ − µY ′

])

Writing out the inverse of Σ (see e.g., [39]) and collecting terms yields the above
result.

In the next section we will use the above example to perform Gaussian Pro-
cess prediction. For the moment just note that once we know p(Y, Y ′) it is very
easy to estimate Y ′, given Y , since p(Y ′|Y ) ∝ p(Y, Y ′).

Quite often, unfortunately, we will not have p(Y, Y ′) at our disposition im-
mediately. Instead, we may only have p(Y, Y ′|θ) together with p(θ). For instance,
in all settings described in Section 2.2 we assumed to know the distribution of
the observations only up to their expected value. This means that in order to
obtain p(Y, Y ′) we need to integrate out the latent variable θ. This is achieved
as follows:

p(Y, Y ′) =
∫

p(Y, Y ′, θ)dθ =
∫

p(Y, Y ′|θ)p(θ)dθ. (19)

Eq. (19) may or may not be computable in closed form. Hence there exist various
strategies to deal with the problem of obtaining p(Y, Y ′). We list some of them
below.

Exact Solution: If we can solve for p(Y, Y ′) explicitly we can proceed as before
with our estimation procedure after solving the integral. An important spe-
cial case is where (Y −θ, Y ′−θ′) ∼ N(µ, Σ) and furthermore (θ, θ′) ∼ N(0, Λ),
where θ, Y ∈ R

m, θ′, Y ′ ∈ R
m′

, and Λ ∈ R
(m+m′)2 .

Such a situation may occur where Y (and Y ′) are composed of two random
variables, each of them normally distributed with their own mean and covari-
ance. Typically θ assumes the role of the additive noise and Λ is a multiple
of the unit matrix. This, however need not be the case: we could deal with
colored noise as well.
By construction Y , too, is normally distributed, where we simply add up the
means and variances of the two constituents to obtain (Y, Y ′) ∼ N(µ, Σ+Λ).
Hence, without much effort, we computed integral (19) by remarking that for
normal distributions mean and variance add up. Note that inference in this
situation proceeds identically to the discussion of Example 1). We will later
in this chapter use this setting under the name ’Gaussian Process Regression
with Normal Noise’.



Bayesian Kernel Methods 73

Sampling Methods: We can approximate the integration in (19) by randomly
drawing (Y ′, θ) from p(Y, Y ′, θ) and thereby performing inference about the
distribution of Y ′. Various methods to carry out such samplings exist. Typ-
ically one uses Markov Chain Monte Carlo (MCMC) methods. See [47] for
details and further references.
The advantage of such methods is that given sufficient computational re-
sources, we are able to obtain a very good estimate on the distribution of
Y ′. Furthermore the quality of the estimate keeps on increasing as we wait
for more samples. The obvious downside is that we will not obtain a closed
form analytic expression for a density. Furthermore sampling methods can
be computationally quite expensive, especially if we wish to predict for a
large amount of data.

Variational Methods: The reason why we had to resort to approximating
(19) was that the integrand did not lend itself to a closed form solution of
the integral. However, it may be that for a modified version of p(Y, Y ′|θ) we
might be able to perform the integral.
One option is to use a normal distribution N(µ, Σ), where the mean µ co-
incides with the mode of p(Y, Y ′|θ)p(θ) with respect to θ, and to use the
second derivative of − ln p(Y, Y ′|θ)p(θ) at θ = µ for the variance σ. This is
often referred to as the Laplace Approximation. We set (see for instance [40])

θ|(Y, Y ′) ∼ N(E[θ|(Y, Y ′)], Σ−1) where Σ = −∂2
θ [ln p(θ|(Y, Y ′))]|µ . (20)

The advantage of such a procedure is that the integrals remain tractable.
This is also one of the reasons why normal distributions enjoy a high degree
of popularity in Bayesian methods. Besides, the normal distribution is the
least informative distribution (largest entropy) among all distributions with
bounded variance [7].
As Figure 3 indicates, a single Gaussian may not always be sufficient to
capture the important properties of p(Y, Y ′|θ)p(θ). A more elaborate para-
metric model qφ(θ) of p(θ|Y, Y ′), such as a mixture of Gaussian densities,
can then be used to improve the approximation of (19). A common strategy
is to resort to variational methods. The details are rather technical and go
beyond the scope of this section. The interested reader is referred to [36] for
an overview, and to [4] for an application to the Relevance Vector Machine
of Section 6. The following theorem describes the basic idea.

Theorem 1 (Variational Approximation of Densities). Denote by
θ, Y random variables with corresponding densities p(θ, Y ), p(θ|Y ), and p(θ).
Then for any density q(θ), the following bound holds;

ln p(Y ) =
∫

θ

ln
p(θ, Y )
q(θ)

q(θ)dθ −
∫

θ

ln
p(θ|Y )
q(θ)

q(θ)df ≥
∫

θ

ln
p(θ, Y )
q(θ)

q(θ)dθ.

(21)



74 A.J. Smola and B. Schölkopf

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

y

p(
y)

MeanMean

0 2 4 6 8 10
0

0.5

1

1.5

y

p(
y)

Mode MeanMode Mean

Fig. 3. Left: The mode and mean of the distribution coincide, hence the MAP approx-
imation is satisfied. Right: For multi-modal distributions, the MAP approximation can
be arbitrarily bad.

Proof. We begin with the first equality of (21). Since p(θ, Y ) = p(θ|Y )p(Y ),
we may decompose

p(θ, Y )
q(θ)

= ln p(Y ) + ln
p(θ|Y )
q(θ)

. (22)

Additionally, − ∫
θ
ln p(θ|Y )

q(θ) q(θ)dθ = KL(p(θ|Y )‖q(θ)) is the Kullback-Leibler
divergence between p(θ|Y ) and q(θ) [7]. The latter is a nonnegative quantity
which proves the second part of (21).

The true posterior distribution is usually p(θ|Y ), and q(θ) an approximation
of it. The practical advantage of (21) is that

L :=
∫

θ

ln
p(θ, Y )
q(θ)

q(θ)dθ

can often be computed more easily, at least for simple enough q(θ). Fur-
thermore, by maximizing L via a suitable choice of q, we maximize a lower
bound on ln p(θ).

Expectation Maximization: Another method for approximating p(Y, Y ′)
was suggested in [10], namely that one maximizes the integrand in (19)
jointly over the unknown variable Y ′ and the latent variable θ. While this
is clearly not equivalent to solving the integral, there are many cases where
one may hope that the maximum of the integrand will not differ too much
from the location of the mean of p(y).
Furthermore we gain an interpretation of a possibly plausible value of θ in
conjunction with Y . This could be the noise level of the estimation pro-
cess, certain parameters of the function class such as the degree of smooth-
ness, etc. Several options are at our disposal when it comes to maximizing
p(Y, Y ′|θ)p(θ) with respect to θ and Y ′.



Bayesian Kernel Methods 75

Firstly, we could use a function maximization procedure directly on the joint
distribution. Instead, [10] propose the so-called Expectation Maximization
algorithm, which leads to a local maximum in a very intuitive fashion. Ig-
noring proof details we proceed as follows. Define

Q(θ) := EY ′ [log p(Y ′|Y, θ)] + log p(θ) (23)

where the expectation is taken over p(Y ′|Y, θ̂) for a previously chosen value
θ̂. Computing Q is commonly referred as the Expectation-step. Next we find
the maximum of Q and replace θ̂ by it, that is

θ̂ ← argmax
θ

Q(θ). (24)

This is commonly known as the Maximization-step. There exist many special
cases where these calculations can be carried out in closed form, most notably
distributions derived from the exponential family. [10] show that iteration of
this procedure will converge to a local maximum of p(Y, Y ′, θ). However, it
is not clear, how good the local maximum will be. After all, it depends on
the initial guess of θ̂.
An alternative is to modify the definition of Q(θ) such that θ is used both
for the conditional expectation and as an argument of the expectation itself
(in other words, we merge θ̂ and θ into one variable). In this way we are still
guaranteed to find a joint local maximum of Y ′ and θ through maximizing a
function of θ only, yet the reduced number of parameters can be beneficial for
a general purposed function optimizer. We will come back to this observation
in Section 3.

2.4 Likelihood, Priors, and Hyperpriors

Recall p(Y, Y ′)=
∫

p(Y, Y ′|θ)p(θ). This means that we weigh the values p(Y, Y ′|θ),
which tell us how well (Y, Y ′) fits our model parameterized by θ, by p(θ) accord-
ing to our prior knowledge of the possible value of θ.

For instance, if p(Y, Y ′|θ) describes a jointly normal distribution of iid ran-
dom variables with mean µ and variance σ, that is θ := (µ, σ), p(θ) models our
prior knowledge about the occurrence of a particular (µ, σ)-pair. For instance,
we might know that the variance never exceeds a certain value and that the
mean is always positive.

Quite often, however, we may not even be sure about the specific form of
p(θ) either, in which case we assume a distribution over possible priors, that is

p(θ) =
∫

ω

p(θ|ω)p(ω). (25)

Here ω is a so-called hyperprior describing the uncertainty in θ. In summary, we
have the following dependency model of (Y, Y ′):

p(ω)
�� ω

p(θ|ω)

p(θ|ω)p(ω)
�� θ

p(Y,Y ′|θ)

p(Y,Y ′|θ)p(θ|ω)p(ω)
�� (Y, Y ′)

(26)



76 A.J. Smola and B. Schölkopf

Hence, in order to obtain p(Y, Y ′) we need to solve the integral
∫

ω,θ

p(Y, Y ′, ω, θ)dθdω =
∫

ω,θ

p(Y, Y ′|ω)p(ω|θ)p(θ)dθdω (27)

and again, as in the previous section, we may resort to various methods for ap-
proximating (27). By far the most popular method is to maximize the integrand
and to obtain, what is commonly referred to as a MAP2 approximation:

ωMAP(Y, θ) := argmax
ω

p(Y, θ|ω)p(θ|ω)p(ω). (28)

If possible, one integrates out the θ by solving the inner of the two integrals in
(27) to obtain

ωMAP(Y ) := argmax
ω

p(Y |ω)p(ω) = argmax
ω

∫

θ

p(Y, Y ′|θ)p(θ|ω)dθ. (29)

In other words, θ assumes the role of the new prior, where ω is integrated out
into p(Y, Y ′|θ). Such an approach will be used in Section 6 to obtain numerically
attractive optimization methods for estimation.

3 Gaussian Processes

Gaussian Processes are based on the “prior” assumption that adjacent observa-
tions should convey information about each other. In particular, it is assumed
that the observed variables are normal, and that the coupling between them
takes place by means of the covariance matrix of a normal distribution.

It turns out that this is a convenient way of extending Bayesian modeling of
linear estimators to nonlinear situations (cf. [82, 80, 63]). Furthermore, it repre-
sents the counterpart of the “kernel trick” in methods minimizing the regularized
risk. We present the basic ideas, and relegate details on efficient implementation
of the optimization procedure required for inference to Section 4.

So far we only assumed that we have observations Y and a density p(Y ),
possibly p(Y |θ) that was given to us independently of any other data. However,
if we wish to perform regression or classification, the observations Y will typically
depend on some patterns X. In other words, data comes in (xi, yi) pairs and given
some novel patterns x′

i we will wish to estimate y′
i at those locations. Hence, we

will introduce a conditioning on X and X ′ in our reasoning. Note that this does
not affect any of the derivations above.

3.1 Correlated Observations

If we are observing yi at locations xi, it is only natural to assume that these
values are correlated, depending on their location xi. Indeed, if this were not the
case, we would not be able to perform inference, since by definition, independent
random variables yi do not depend on other observations yj .



Bayesian Kernel Methods 77

In fact, we make a rather strong assumption regarding the distribution of
the yi, namely that they form a normal distribution with mean µ and covari-
ance matrix K.4 We could of course assume any arbitrary distribution; most
other settings, however, result in inference problems that are rather expensive
to compute. Furthermore, as Theorem 5 will show, there exists a large class of
assumptions on the distribution of yi that have a normal distribution as their
limit.

We begin with two observations, y1 and y2, for which we assume zero mean

µ = (0, 0) and covariance K =
[

1 3/4
3/4 3/4

]
. Figure 4 shows the corresponding

density of the random variables y1 and y2. Now assume that we observe y1. This
gives us further information about y2, which allows us to state the conditional
density5

p(y2|y1) =
p(y1, y2)

p(y1)
. (30)

Once the conditional density is known, the mean of y2 need no longer be 0, and
the variance of y2 is decreased. In the example above, the latter becomes 3

16
instead of 3

4 — we have performed inference from the observation y1 to obtain
possible values of y2.

In a similar fashion, we may infer the distribution of yi based on more than
two variables, provided we know the corresponding mean µ and covariance ma-
trix K. This means that K determines how closely the prediction relates to
the previous observations yi. In the following section, we formalize the concepts
presented here and show how such matrices K can be generated efficiently.

3.2 Definitions and Basic Notions

Assume we are given a distribution over observations yi at locations x1, . . . , xm.
Rather than directly specifying that the observations yi are generated from an
underlying functional dependency, we simply assume that they are generated by
a Gaussian Process. Loosely speaking, Gaussian processes allow us to extend the
notion of a set of random variables to random functions. More formally, we have
the following definition:

Definition 1 (Gaussian Process). Denote by y(x) a stochastic process param-
eterized by x ∈ X (X is an arbitrary index set). Then y(x) is a Gaussian process if
for any m ∈ N and {x1, . . . , xm} ⊂ X, the random variables (y(x1), . . . , y(xm))
are normally distributed.
4 Note that we now use K to denote the covariance matrix. This is done for consis-

tency with the literature on Reproducing Kernel Hilbert Spaces and Support Vector
Machines, where K denotes the kernel matrix. We will see that K plays the same
role in Gaussian Processes as the kernel matrix plays in the other settings.

5 A convenient trick to obtain p(y2|y1) for normal distributions is to consider p(y1, y2)
as a function only of y2, while keeping y1 fixed at its observed value. The linear and
quadratic terms then completely determine the normal distribution in y2.



78 A.J. Smola and B. Schölkopf

−2
0

2

−2

0

2
0

0.5

1

y
1

y
2

p(
y 1, y

2)

−2 −1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

y
1

y 2

p(y
1
, y

2
)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

y
2

p(
y 2|y

1 =
 1

)

−4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

y
2

p(
y 2|y

1 =
 −

2)

Fig. 4. Normal distribution with two variables. Top left: normal density p(y1, y2) with
zero mean and covariance K; Top right: contour plot of p(y1, y2); Bottom left: Condi-
tional density of y2 when y1 = 1; Bottom left: Conditional density of y2 when y1 = −2.
Note that in the last two plots, y2 is normally distributed, but with nonzero mean.

We denote by k(x, x′) the function generating the covariance matrix

K := cov{y(x1), . . . , y(xm)}, (31)

and by µ the mean of the distribution. We also write Kij = k(xi, xj). This leads
to

(y(x1), . . . , y(xm)) ∼ N(µ, K) where µ ∈ R
m. (32)

Remark 1 (Gaussian Processes and Positive Definite Matrices). The function
k(x, x′) is well defined, symmetric, and the matrix K is positive definite, that
is, none of its eigenvalues is negative.

Proof. We first show that k(x, x′) is well defined. By definition,

[cov{y(x1), . . . , y(xm)}]ij = cov{y(xi), y(xj)}. (33)



Bayesian Kernel Methods 79

Consequently, Kij is only a function of two arguments (xi and xj), which shows
that k(x, x′) is well defined.

It follows directly from the definition of the covariance that k is symmetric.
Finally, to show that K is positive definite, we have to prove for any α ∈ R

m

that the inequality α�Kα ≥ 0 holds. This follows from

0 ≤ Var

(
m∑

i=1

αiy(xi)

)
= α� [cov{y(xi), y(xj)}] α = α�Kα. (34)

Thus K is positive definite and the function k is an admissible kernel.

Note that even if k happens to be a smooth function (this turns out to be a
reasonable assumption), the actual realizations y(x), as drawn from the Gaus-
sian process, need not be smooth at all. In fact, they may be even pointwise
discontinuous.

Let us have a closer look at the prior distribution resulting from these as-
sumptions. The standard setting is µ = 0, which implies that we have no prior
knowledge about the particular value of the estimate, but assume that small
values are preferred. Then, for a given set of (y(x1), . . . , y(xm)) =: Y , the prior
density function p(Y |X) is given by

p(Y |X) = (2π)− m
2 (det K)− 1

2 exp
(
−1

2
Y �K−1Y

)
. (35)

In most cases, we try to avoid inverting K. By a simple substitution,

Y := Kα, (36)

we have α ∼ N(0, K−1), and consequently

p(α|X) = (2π)− m
2 (det K)− 1

2 exp
(
−1

2
α�Kα

)
. (37)

Taking logs, we see that this term is identical to penalty term arising from
the regularized risk framework (cf. the chapter on Support Vectors and [62,
77, 75, 26]). This result thus connects Gaussian process priors and estimators
using the Reproducing Kernel Hilbert Space framework: Kernels favoring smooth
functions translate immediately into covariance kernels with similar properties
in a Bayesian context.

3.3 Simple Hypotheses

Let us analyze in more detail which functions are considered simple by a Gaussian
process prior. As we know, hypotheses of low complexity correspond to vectors
Y for which Y �K−1Y is small. This is in particular the case for the (normalized)
eigenvectors vi of K with large eigenvalues λi, since

Kvi = λivi yields v�
i K−1vi = λ−1

i . (38)



80 A.J. Smola and B. Schölkopf

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

−5 0 5

−0.1

0

0.1

0 10 20
0

20

40

60

Fig. 5. Hypotheses corresponding to the first eigenvectors of a Gaussian kernel of width
1 over a uniform distribution on the interval [−5, 5]. From top to bottom and from left
to right: The functions corresponding to the first eight eigenvectors of K. Lower right:
the first 20 eigenvalues of K. Note that most of the information about K is contained
in the first 10 eigenvalues. The plots were obtained by computing K for an equidistant
grid of 200 points on [−5, 5]. We then computed the eigenvectors e of K, and plotted
them as the corresponding function values (this is possible since for α = e we have
Kα = λα).

In other words, the estimator is biased towards solutions with small λ−1
i . This

means that the spectrum and eigensystem of K represent a practical means of
actually viewing the effect a certain prior has on the degree of smoothness of the
estimates. Let us consider a practical example: for a Gaussian covariance kernel

k(x, x′) = exp
(
−‖x− x′‖2

2ω2

)
, (39)

where ω = 1, and under the assumption of a uniform distribution on [−5, 5],
we obtain the functions depicted in Figure 5 as simple base hypotheses for our
estimator. Note the similarity to a Fourier decomposition: this means that the
kernel has a strong preference for slowly oscillating functions.

The Gaussian Process setting also allows for a simple connection to paramet-
ric models of uncertainty (see also [80]). For instance, assume that the observa-
tions y are derived from the patterns x via the functional dependency



Bayesian Kernel Methods 81

y(x) =
n∑

i=1

βifi(x), where β ∼ N(0, Σ). (40)

Clearly the random variables y are jointly normal, hence stem from an underlying
Gaussian Process. We can calculate the covariance function k as follows. Let
f(x) := (f1(x), . . . , fn(x)), then

k(x, x′) = Cov(y(x), y(x′)) = f(x)�Σf(x′). (41)

In other words, starting from a parametric model, where we would want to
estimate the coefficients β we arrived at a Gaussian Process with covariance
function f(x)�Σf(x′).

One special case is of interest: set fi(x) = (x)i, that is, fi(x) encodes the
i-th coordinate of x, and Σ = 1. Here k(x, x′) = 〈x, x′〉. This is the simplest
Gaussian Process kernel possible. Other kernels include

k(x, x′) = exp (−ω‖x− x′‖) (Laplacian kernel) (42)
k(x, x′) = (〈x, x′〉+ c)p with c > 0 (Polynomial kernel) (43)

and the Gaussian RBF kernel of (39). For further details on the choice of kernels
see [62, 25, 78, 31, 52, 77] and the references therein.

3.4 Regression

Let us put the previous discussion to practical use. For the sake of simplicity, we
begin with regression (we study the classification setting in the next section).

The natural assumption is that the observations Y are generated by the
Gaussian Process with covariance matrix K and mean µ. Following the reasoning
of Example 1 we can infer novel y′

i, given xi via Y ′ ∼ N(Σ′, µ′) where

Kcond = KY ′Y ′ −KY ′Y K−1
Y Y ΣY Y ′ (44)

µcond = µY ′ + KY ′Y K−1
Y Y (Y − µY ) (45)

This means that the variance is reduced from KY ′Y ′ to a degree controlled by
both the correlation between Y and Y ′ (via KY ′Y ), and the inherent degree
of variability in Y (via K−1

Y Y ). The more certain we can be about Y , the more
this certainty carries over to Y ′. Likewise, the default estimate for the mean of
Y ′, namely µY ′ is corrected by KY ′Y K−1

Y Y (Y − µY ), that is, the deviation of Y
from its default estimate µY , weighted by the correlation between the random
variables Y and Y ′.

Furthermore note that for the purpose of inferring the mean we only need
to store α := K−1

Y Y (Y − µY ) and hence (Y − µY ) = KY Y α. This is similar to
(36), where we used α to establish a connection between the regularized risk
functional and prior probabilities.

Let us get back to the case where k(x, x′) = 〈x, x′〉, that is, the linear covari-
ance kernel. Here we can rewrite (44) as

Kcond = X ′X ′� − (X ′X�)(XX�)−1(XX ′�) = X ′(1− PX)X ′� (46)



82 A.J. Smola and B. Schölkopf

where PX is the projection on the space spanned by X. This means that the
larger X grows, the more reliably we will be able to infer Y ′ for a given X ′. In
the case where X spans the entire space (if x ∈ R

n it may suffice if |X| = n),
PX is the identity and consequently Kcond = 0. In other words, we can perform
inference with certainty.

The avid reader will notice that prediction with certainty can pose a problem
if our model is not quite exact or if the data itself is fraught with measurement
errors or noise. For instance, if we were to observe some Y which do not lie
in the n-dimensional subspace spanned by X, we would have to conclude that
such Y must never occur. In other words, we have a modeling problem. One way
to address this issue is to replace the (apparently) unsuitable kernel k(x, x′) =
〈x, x′〉 by one which guarantees that K has always full rank. This, however, is
rather cumbersome, since the question whether K is nondegenerate depends on
both the data and on the covariance function k(x, x′).

A more elegant way to ensure that our statistical model is better suited to
the task is to introduce an extended dependency model using latent variables as
follows:

p(X)
�� X

p(θ|X)

p(θ|X)p(X)
�� θ

p(Y |θ)

p(Y |θ)p(θ|X)p(X)
�� Y

This means that the random variables X and Y are conditionally independent,
given θ. If we wish to infer Y ′ from X, X ′, Y ′ this means that we need to integrate
out the latent variable θ, in the same fashion as we did in (26) and as discussed
in Section 2.3.

In regression, a popular setting for p(Y |θ) is to assume that we have additive
noise, i.e., Y = θ + ξ, where the ξi are drawn from some distribution (Gaussian,
Laplacian, Huber’s robust, etc.), such as the ones given in Figure 1. And again,
as discussed in Section 2.3, some of the integrals arising from the elimination of
θ may be easily solvable, or we may need to resort to further approximations.

Additive Normal Noise: We begin with the simple case, where ξi ∼ N(0, σ2).
In this situation Y ∼ N(µ, σ21 + K), since Y is the sum of two independent
normal random variables. Consequently we can re-use (44) and (45), the only
difference being that now instead of k(x, x′) we use k(x, x′) + σ2δx,x′ as the
covariance function. Figure 6 gives an example of regression with additive
normal noise.
Specializing (44) and (45) to the estimation of y(x) at only one new location
and assuming µ = 0 we obtain (using k(x) := (k(x1, x), . . . , k(xm, x)))

Kcond = σ2 + k(x, x) − k(x)�(KY Y + σ21)−1k(x) (47)

µcond = k(x)�(KY Y +σ21)−1Y =k(x)�α where α(KY Y +σ21)−1Y. (48)

Note that the mean is a linear combination of kernel functions k(xi, x).
Moreover, if we were to estimate y(x) for an element of x, say y(xi), we
would obtain

k(xi)�(KY Y + σ21)−1Y =
[
KY Y (KY Y + σ21)−1Y

]
i
. (49)



Bayesian Kernel Methods 83

0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 6. Gaussian Process regression with additive normal noise. The stars denote the
observations, dotted lines correspond to the σ-confidence intervals with the prediction
in between, and the solid line crossing the boundaries is the sine function, which, with
additive normal noise, was used to generate the observations. For convenience we also
plot the width of the confidence interval.

If σ2 were 0 we would obtain yi, however, with σ2 > 0 we end up shrinking
yi towards 0, similarly to the shrinkage estimator of James and Stein [33].

Other Additive Noise: While we may in general not be able to integrate out
θ from p(Y |θ), the noise models of regression typically allow one to perform
several simplifications when it comes to estimation. For convenience we will
in the following split up the latent variable into θ and θ′ corresponding to
Y and Y ′. Moreover, we will assume that the additive noise has zero mean.6

Recall from Section 2.3 that an approximation to marginalization is to max-
imize the joint density p(Y ′, θ, θ′, Y, X, X ′) with respect to (Y ′, θ, θ′). Using
the fact that the random variables yi are drawn iid and that Y, Y ′ are con-
ditionally independent of X, X ′ given θ, θ′ we arrive at

6 In the nonzero mean case we simply add the offset to µ, which effectively reduces
the additive noise to zero mean.



84 A.J. Smola and B. Schölkopf

p(Y ′, θ, θ′, Y, X, X ′) = p(Y ′|θ′)p(Y |θ)p(θ′|θ, X, X ′)p(θ|X)p(X, X ′). (50)

Note that Y ′ appears only in p(Y ′|θ). If p(yi|θi) has its mode for yi = θi,
we know that Y ′ = θ maximizes (50) and we only need to care about the
remainder

p(Y ′ = θ′|θ′)p(Y |θ)p(θ′|θ, X, X ′)p(θ|X) (51)

and maximize it with respect to θ and θ′. A further simplification occurs
if p(Y ′ = θ′|θ′) is constant, which is typically the case (e.g., if we have
the same additive noise for all observations). Then the maximization with
respect to θ′ can be carried out by maximizing p(θ′|θ, X, X ′). Note that the
latter is Gaussian in θ′, so the maximum is obtained for the mean µcond of
the corresponding normal distribution, as given by (44) and (45). Moreover,
p(θ′ = µcond|θ, X, X ′) is constant, if we consider µcond as a function of θ.
This means that we now reduced the problem to the one of maximizing

p(Y |θ)p(θ|X). (52)

The latter depends on the training data X, Y alone, which makes the whole
approach computationally very attractive. In summary, the following steps
were needed in reducing (50) to (52):
1. The conditional distribution p(yi|θi) is peaked for yi = θi.
2. p(yi = θi|θi) is constant, when considered as a function of θi.
3. We predict θ′ = µcond for known θ.
4. The maximizer in θ is found by maximizing the posterior probability

p(θ|X) ∝ p(Y |θ)p(θ|X).
We shall see in the next section that even if some of the above assumptions
do not lead to optimality, we may still be able to obtain reasonably good
estimates.

In situations where neither of the two special cases discussed above applies we
will need to resort to a reasoning which is very similar to the one used in Gaussian
Process classification. Since such situations are rather rare we will not discuss
them in further detail.

3.5 Classification

The main difference to regression is that in classification the observations yi are
part of a discrete set Y, which we will either denote by Y = {±1} in the case
of binary classification and Y = {1, . . . , N} for multiclass problems. It is clear
that in such a situation we will need a conditional probability p(yi|θi) if we are
to transform the problem into one involving Gaussian Processes. This will lead
to various models, using the logistic transfer function (14), the Probit (16), and
their multiclass extensions.



Bayesian Kernel Methods 85

Binary Case: Here θi plays the role of a parameter responsible for the calibra-
tion of the conditional probabilities P(yi = 1|X) and P(yi = −1|X) and we
have

p(Y |X) =
∫ [

m∏

i=1

p(yi|θi)

]
p(θ|X)dθ. (53)

Y being a discrete random variable, this gives us the probability of observing
Y , given X. The latter makes classification slightly easier than regression:
provided we are able to solve (53), we immediately know the confidence of
the random variables Y arising from it. Thus, P(yi = 1|X) not only tells us
whether the estimator classifies xi as +1 or −1, but also the probability of
obtaining these labels. Therefore, calculations regarding the variation of Y
are not quite as important as they were for regression.

Multiclass Classification: While one could in theory design some p(yi|θi)
which allows for multiple discrete values of yi and assigns corresponding
probabilities, it is far from clear how such a goal can be best achieved. In-
stead, one typically uses vector valued θi ∈ R

N such that each coordinate
[θi]j is related to the probability of class j occurring. To derive our model
we begin with the observation that for logistic regression

p(yi = 1|θi) =
exp( 1

2θi)
exp( 1

2θi) + exp(− 1
2θi)

(54)

p(yi = −1|θi) =
exp(− 1

2θi)
exp( 1

2θi) + exp(− 1
2θi)

. (55)

In other words, the probability of class 1 or −1 occurring is proportional
to exp(1

2 [θi]1) and exp(1
2 [θi]−1) subject to a normalization constraint, where

we defined the coordinate “[θi]′′−1 := −θi.
From there the extension to more than two classes is straightforward: assume
that the probability of class j is proportional to exp(1

2 [θi]j) and normalize
such that all p(yi = j|θi) sum up to 1, namely

p(yi = j|θi) =
exp

( 1
2 [θi]j

)
∑N

l=1 exp
( 1

2 [θi]l
) . (56)

The default assumption is then that all θi are drawn from a Gaussian Pro-
cess. Without any further knowledge about the relation between the various
classes j, one typically assumes that all coordinates are drawn independently.
An extension to uncertain labels yi is straightforward. Assume that we do not
know the specific class j but merely some probability pij assessing whether
pattern xi belongs to class j or not. In this case we need to integrate over
all j to obtain

p(Yuncertain|θ) =
m∏

i=1




N∑

j=1

pijp(j|θi)



 (57)



86 A.J. Smola and B. Schölkopf

as a replacement for p(yi = j|θi) in the conditional probability p(Y |θ). This
is closely related to uncertain multiclass settings from maximum margin
theory. See [55] for further details.

To solve the inference problem arising from (19) or (50) in the classification case
we will need to resort to approximations. Again, as before, we cannot solve the
integral explicitly, so our main goal is to (approximately) maximize the joint
density. For convenience, we only study the binary case.

Recall that Y ′ appears in the joint density only via p(Y ′|θ). Knowing that this
is maximized with respect to Y ′ if we set y′

i = sgn (θ′
i) we could turn the overall

problem into one of jointly maximizing over the continuous random variables θ
and θ′. Unfortunately the resulting optimization problem is rather ill behaved.
Instead we resort to the EM algorithm or a related method, as described in
Section 2.3. Here Y ′ are the unknown labels and θ, θ′ the latent variables to be
obtained jointly with Y ′.

Taking the expectation over Y ′ as given by p(Y ′|θ′) we can write Q(θ) (see
(23)) as follows

Q(θ, θ′) = EY ′
[
log p(Y ′|θ′)

]
+ log p(Y |θ) + log p(θ, θ′|X, X ′) (58)

=
m′∑

i=1,y′
i∈Y

p(y′
i|θi) log p(y′

i|θ̄′
i) + log p(Y |θ) + log p(θ, θ′|X, X ′) (59)

where θ̄′
i denotes the value of θ′

i obtained from a previous estimate. One then
proceeds as follows: at every step one maximizes Q(θ, θ′) and subsequently up-
dates θ̄′

i ← θ′
i until convergence. [10] show that the algorithm converges to a

local maximum of the joint density p(Y ′, θ, θ′|Y, X, X ′).
Unfortunately, in practice, the local maximum achieved by this process is

often not very good. However, a small modification of (58) leads to an expression
which (empirically) tends to lead to better estimates, yet will also lead to a local
maximum of the joint density. The idea is to remove θ̄′

i from Q and replace it
by θ′

i directly. In this case we have

Q̃(θ, θ′) =
m′∑

i=1,y′
i∈Y

p(y′
i|θi) log p(y′

i|θ′
i) + log p(Y |θ) + log p(θ, θ′|X, X ′) (60)

= −
m′∑

i=1

H(p(yi|θ′
i)) + log p(Y |θ) + log p(θ, θ′|X, X ′), (61)

where H(p) =
∑

j pj log pj is the entropy of p. This function can then be maxi-
mized jointly over θ and θ′ by standard nonlinear optimization methods. Note
that the maxima of Q̃ and the fixed point of Q have to coincide. Since we know
that the latter are the (local) maxima of the joint density we know that Q̃, too,
will yield maxima of the joint density.

From a Minimum Description Length point of view, minimizing −Q̃(θ, θ′)
can be viewed as minimizing the number of bits (we use base e for convenience)



Bayesian Kernel Methods 87

needed to encode (Y ′, θ, θ′), given Y, X, X ′: Firstly encoding Y ′, given θ′ requires
H(p(Y |θ′) bits. Secondly, for a given prior probability p(θ, θ′|X, X ′), the two
remaining terms in (60) describe the number of bits needed to encode these
random variables with respect to a code using log p(Y |θ)+log p(θ, θ′|X, X ′) bits.
The latter is the Shannon optimal code length for random variables distributed
according to the assumed prior distribution.

Note that quite commonly one ignores the terms dependent on X ′, θ′ when
it comes to finding an estimate for θ, hence one effectively resorts to an opti-
mization setting as described in Section 3.4, however without the justification
that could be given in the additive-noise regression case. This tends to yield ac-
ceptable results, however, it is important to bear in mind that better estimates
can be obtained if a joint maximization over all variables is carried out. Figure
7 gives an example on classification with and without taking Y ′ into account.

Fig. 7. Gaussian Process classification without (left) and with (right) knowledge of the
test data. Circles and stars correspond to the respective classes, crosses are unlabeled
observations. Note the errors introduced by ignoring the test data on the left figure.

3.6 Adjusting Hyperparameters for Gaussian Processes

More often than not, we will not know the exact amount of additive noise,
the specific form of the covariance kernel, or other parameters beforehand. To
address this problem, the hyperparameter formalism of Section 2.4 is needed.

However, unlike in the previous section, even an EM approach may be too
costly, since expectations over the set of hyperparameters ω, or over the set of
further latent variables θ, θ′ are too costly to be carried out. Consequently, one
of the few practical method available is that of coordinate descent, that is: a)
optimize over (θ, θ′, Y ′) via the EM algorithm for a fixed ω, b) maximize with
respect to ω for a fixed (θ, θ′, Y ′), and repeat a) and b) until convergence occurs.

To avoid technicalities, we only discuss the special and somewhat simpler
case of regression with additive Gaussian noise, since here the latent variables



88 A.J. Smola and B. Schölkopf

θ, θ′ can be integrated out. We refer the reader to [84, 15, 11, 54] and the
references therein for integration methods based on Markov Chain Monte Carlo
approximations (see also [63] for a more recent overview).

More specifically, assume that both K and σ2 (the additive normal noise)
are functions of ω, so that

p(Y |ω, X) =
1√

(2π)m det(K + σ21)
exp

(
−1

2
Y �(K + σ2)−1Y

)
(62)

and p(Y |X) =
∫

p(Y |ω, X)p(ω)dω. In other words, (62) tells us how likely it is
that we observe y, if we know ω. To maximize the integrand p(Y |ω, X)p(ω) with
respect to ω we require information about the gradient of (62) with respect to
ω. An explicit expression is given below

Since the logarithm is monotonic, we can equivalently minimize the negative
log posterior, ln p(Y |ω)p(ω). With the shorthand Q := K + σ21, we obtain

∂ω [− ln p(Y |ω)p(ω)]

=
1
2
∂ω(ln detQ)− 1

2
∂ω

[
Y �Q−1Y

]− ∂ω ln p(ω) (63)

= − 1
2

tr
(
Q−1∂ωQ

)
+

1
2
Y �Q−1 (∂ωQ) Q−1Y − ∂ω ln p(ω). (64)

Here (64) follows from (63) via standard matrix algebra [39]. Likewise, we could
compute the Hessian of ln p(Y |ω)p(ω) with respect to ω and use a second order
optimization method.7

If we assume a flat8 hyperprior (p(ω) = const.), optimization over ω simply
becomes gradient descent in − ln p(Y |ω); in other words, the term depending
on p(ω) vanishes. Computing (64) is still very expensive numerically since it
involves the inversion of Q, which is an m×m matrix.

One option to parameterize K+σ21 is to assume that the covariance kernel k
itself has been drawn from a Gaussian Process (in this case we need to restrict k
to to the cone of Mercer kernels). Such a setting can be optimized by a so-called
superkernel expansion. See [70] for further details.

Finally, there exist numerous techniques, such as sparse greedy approxima-
tion methods, to alleviate this problem. We present a selection of these tech-
niques in the following section. Additional detail on the topic of hyperparameter
optimization can be found in Section 6, where hyperparameters play a crucial
role in determining the sparsity of an estimate.

4 Implementation of Gaussian Processes

In this section, we discuss various methods to perform inference in the case of
Gaussian process classification or regression. We begin with a general purpose
7 This is rather technical, and the reader is encouraged to consult the literature for

further detail [41, 54, 46, 18].
8 Note that this is clearly an improper hyperprior, which may lead to overfitting.



Bayesian Kernel Methods 89

technique, the Laplace approximation, which is essentially an application of New-
ton’s method to the problem of minimizing the negative log-posterior density.
Since it is a second order method, it is applicable as long as the log-densities have
second order derivatives. Readers interested only in the basic ideas of Gaussian
process estimation may skip the present section.

For classification with the logistic transfer function we present a variational
method (Section 4.2), due to Jaakkola and Jordan [32], and Gibbs and MacKay
[18, 16], a linear system of equations for optimization purposes.

Finally, the special case of regression in the presence of normal noise admits
very efficient optimization algorithms based on the approximate minimization
of quadratic forms (Section 4.3). We subsequently discuss the scaling behavior
and approximation bounds for these algorithms. For convenience, we only study
the problem of maximizing

p(θ|Y, X) ∝ p(Y |θ)p(θ|X) (65)

ignoring the considerations about the test data X ′, which we put forward in
Section 3.5. An extension to these methods is in some cases straightforward (for
the Expectation Maximization setting), and in other cases essentially impossible
(for the direct MDL approach). So we skip both of them. Maximizing p(θ|Y, X)
is equivalent to minimizing − log p(Y |θ)− log p(θ|X), since

L(θ) := − log(θ|Y, X) = − log p(θ|Y, X) = − log p(Y |θ)− log p(θ|X) + c,
(66)

for some constant c ∈ R. L(θ) is commonly referred to as the negative log
posterior and the remainder of this section is devoted to efficient methods of
minimizing it.

4.1 Laplace Approximation

Note that for Gaussian Process regression with additive normal noise (66) be-
comes

L(θ) =
m∑

i=1

1
2σ2 (yi − θi)2 +

1
2
θK−1θ�. (67)

Minimization of (67) can be achieved by solving a quadratic optimization prob-
lem with its minimum θ̂ at

θ̂ = (σ21 + K)−1KY = K(σ21 + K)−1Y (68)

which is identical to the estimate obtained in (48). This means that for nor-
mal distributions seeking the mode of the density and performing a quadratic
approximation at the mode is exact.

In general, however, the negative log posterior (66), is not quadratic, hence
the minimum cannot be found analytically and typically we will not be able to



90 A.J. Smola and B. Schölkopf

study the variation of the estimate explicitly either. A possible solution is to make
successive quadratic approximations of the negative log posterior, and minimize
the latter iteratively. This strategy is referred to as the Laplace approximation9

[71, 84, 63]; the Newton-Raphson method, in numerical analysis (see [72, 53]);
or the Fisher scoring method, in statistics.

A necessary condition for the minimum of a differentiable function g is that
its first derivative be 0. For convex functions, this requirement is also sufficient.
We approximate g′ linearly by

g′(x + ∆x) ∼ g′(x) + ∆xg′′(x), and hence ∆x = − g′(x)
g′′(x)

. (69)

Substituting ln p(f |X, Y ) into (69) and using the definitions

c := (−∂θ1 ln p(y1|θ1), . . . ,−∂θm ln p(ym|θm)) , (70)
C := diag

(−∂2
θ1

ln p(y1|θ1), . . . ,−∂2
θm

ln p(ym|θm)
)
, (71)

we obtain the following update rule for α (where θ = Kα),

αnew = (KC + 1)−1(KCαold − c). (72)

While (72) is usually an efficient way of finding a maximizer of the log posterior,
it is far from clear that this update rule is always convergent (to prove the
latter, we would need to show that the initial guess of α lies within the radius
of attraction [53, 13, 19, 38]. Nonetheless, this approximation turns out to work
in practice, and the implementation of the update rule is relatively simple.

The major stumbling block if we want to apply (72) to large problems is that
the update rule requires the inversion of an m ×m matrix. This is costly, and
effectively precludes efficient exact solutions for problems of size significantly
larger than 103, due to memory and computational requirements. If we are able
to provide a low rank approximation of K by

K̃ = U�KsubU where U ∈ R
n×m and Ksub ∈ R

n×n (73)

with n� m, however, we may compute (72) much more efficiently. For instance,
it follows immediately from the Sherman-Woodbury-Morrison formula [22],

(V + RHR�)−1 = V −1 − V −1R(H−1 + R�V −1R)−1R�V −1, (74)

that we obtain the following update rule for K̃,

αnew =
(
1− U� (

K−1
sub + UCU�)−1

UC
)

(U�KsubUCαold − c). (75)

9 Strictly speaking, the Laplace approximation refers only to the fact that we approx-
imate the mode of the posterior by a Gaussian distribution. We already use the
Gaussian approximation in the second order method, however, in order to maxi-
mize the posterior. Hence, for all practical purposes, the two approximations just
represent two different points of view on the same subject.



Bayesian Kernel Methods 91

In particular, the number of operations required to solve (72) is O(mn2 + n3)
rather than O(m3). Numerically more stable, yet efficient and easily imple-
mentable methods than the Sherman-Woodbury-Morrison method exist, how-
ever their discussion would be somewhat technical. See [69, 12, 21] for further
details and references.

There are several ways to obtain a good approximation of (73). One way is to
project k(xi, x) on a random subset of dimensions, and express the missing terms
as a linear combination of the resulting sub-matrix (this is the Nyström method
proposed by Seeger and Williams [83]). We might also construct a randomized
sparse greedy algorithm to select the dimensions (see [68] for details), or resort
to a positive diagonal pivoting strategy [12].

An approximation of K by its leading principal components, as often done
in machine learning, is usually undesirable, since the computation of the eigen-
system would still be costly, and the time required for prediction would still rise
with the number of observations (since we cannot expect the leading eigenvectors
of K to contain a significant number of zero coefficients).

4.2 Variational Methods

In the case of logistic regression, Jaakkola and Jordan [32] compute upper and
lower bounds on the logistic (1 + e−t)−1, by exploiting the log-concavity of
eq:gp:logistic-model: A convex function can be bounded from below by its tan-
gent at any point, and from above by a quadratic with sufficiently large curvature
(provided the maximum curvature of the original function is bounded). These
bounds are

p(y = 1|t) ≥ 1
1 + e−ν

exp
(

(t− ν)
2

− λ(ν)(t2 − ν2)
)

, (76)

p(y = 1|t) ≤ exp (µt−H(µ)) , (77)

where µ, ν ∈ [0, 1] and λ(ν) = (1+e−ν)−1−1/2
2ν . Furthermore, H(µ) is the binary

entropy function, H(µ) = −µ lnµ− (1− µ) ln(1− µ).
Likewise, bounds for p(y = −1|t) follow from p(y = −1|t) = 1 − p(y = 1|t).

Equations (77) and (76) can be calculated quite easily, since they are linear
or quadratic functions in t. This means that for fixed parameters µ and ν, we
can optimize an upper and a lower bound on the log posterior using the same
techniques as in Gaussian process regression (Section 3).

Approximations (77) and (76) are only tight, however, if ν, µ are chosen
suitably. Therefore we have to adapt these parameters at every iteration (or
after each exact solution), for instance by gradient descent (by minimizing the
upper bound and maximizing the lower bound correspondingly). See [16, 17]
for details. Again, factorizations for rank-degenerate matrices as in the previous
section can be used for efficient implementation.



92 A.J. Smola and B. Schölkopf

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t(x)

p(
y=

1|
t(

x)
)

Logistic   
Lower Bound
Upper Bound

Fig. 8. Variational Approximation for µ = ν = 0.5. Note that the quality of the
approximation varies widely, depending on the value of f(x).

4.3 Approximate Solutions for Gaussian Process Regression

The approximations of Section 4.1 indicate that one of the more efficient ways of
implementing Gaussian process estimation on large amounts of data is to find a
low rank approximation10 of the matrix K. Such an approximation is very much
needed in practice, since (47) and (48) show that exact solutions of Gaussian
Processes can be hard to come by. Even if α is computed beforehand (see Table 1
for the scaling behavior), prediction of the mean at a new location still requires
O(m) operations. In particular, memory requirements are O(m2) to store K,
and CPU time for matrix inversions, as are typically required for second order
methods, scales with O(m3).

Let us limit ourselves to an approximation of the MAP solution. One of the
criteria to impose is that the posterior probability at the approximate solution be
close to the maximum of the posterior probability. Note that this requirement
is different from the requirement of closeness in the approximation itself, as
represented for instance by the expansion coefficients (the latter requirement
10 Tresp [74] devised an efficient way of estimating f(x) if the test set is known at the

time of training. He proceeds by projecting the estimators on the subspace spanned
by the functions k(x̃i, ·), where x̃i are the training data. Likewise, Csató and Opper
[9] design an iterative algorithm that performs gradient descent on partial posterior
distributions and simultaneously projects the estimates onto a subspace.



Bayesian Kernel Methods 93

was used by Gibbs and Mackay [18]). Proximity in the coefficients, however, is
not what we want, since it does not take into account the importance of the
individual variables. For instance, it is not invariant under transformations of
scale in the parameters.

For the remainder of the current section, we consider only additive normal
noise. Here, the log posterior takes a quadratic form, given by (67). The following
theorem, which uses an idea from [18], gives a bound on the approximation qual-
ity of minima of quadratic forms and is thus applicable to (67). For convenience
we rewrite (67) in terms of θ = Kα.

Theorem 2 (Approximation Bounds for Quadratic Forms [67]). Denote
by K ∈ R

m×m a symmetric positive definite matrix, y, α ∈ R
m, and define the

two quadratic forms

L(α) := −y�Kα +
1
2
α�(σ2K + K�K)α, (78)

L∗(α) := −y�α +
1
2
α�(σ21 + K)α. (79)

Suppose L and L∗ have minima Lmin and L∗
min. Then for all α, α∗ ∈ R

m we
have

L(α) ≥ Lmin ≥ −1
2
‖y‖2 − σ2L∗(α∗), (80)

L∗(α∗) ≥ L∗
min ≥ σ−2

(
−1

2
‖y‖2 − L(α)

)
, (81)

with equalities throughout when L(α) = Lmin and L∗(α∗) = L∗
min.

Hence, by minimizing L∗ in addition to L, we can bound L’s closeness to the
optimum and vice versa.

Proof. The minimum of L(α) is obtained for αopt = (K + σ21)−1y (which also
minimizes L∗),11 hence

Lmin = −1
2
y�K(K + σ21)−1y and L∗

min = −1
2
y�(K + σ21)−1y. (82)

This allows us to combine Lmin and L∗
min to Lmin + σ2L∗

min = − 1
2‖y‖2. Since

by definition L(α) ≥ Lmin for all α (and likewise L∗(α∗) ≥ L∗
min for all α∗), we

may solve Lmin + σ2L∗
min for either L or L∗ to obtain lower bounds for each of

the two quantities. This proves (80) and (81).

Equation (80) is useful for computing an approximation to the MAP solution
(the objective function is identical to L(α), ignoring constant terms independent
of α), whereas (81) can be used to obtain error bars on the estimate. To see this,
11 If K does not have full rank, L(α) still attains its minimum value for αopt. There

will then be additional α′ that minimize L(α), however.



94 A.J. Smola and B. Schölkopf

note that in calculating the variance (47), the expensive quantity to compute is
−k�(K + σ21)−1k. This can be found as

−k�(K + σ21)−1k = 2 min
α∈Rm

[−k�α + 1
2α� (

σ21 + K
)
α
]
, (83)

however. A close look reveals that the expression inside the parentheses is L∗(α)
with y = k (see (79)). Consequently, an approximate minimizer of (83) gives an
upper bound on the error bars, and lower bounds can be obtained from (81). In
practice, we use the relative discrepancy between the upper and lower bounds,

Gap(α, α∗) :=
2(L(α) + σ2L∗(α∗) + 1

2‖y‖2)
−L(α) + σ2L∗(α∗) + 1

2‖y‖2
, (84)

to determine how much further the approximation has to proceed.

4.4 Solutions on Subspaces

The central idea of the algorithm below is that improvements in speed can
be achieved by a reduction in the number of free variables. Denote by P ∈
R

m×n with m ≥ n and m, n ∈ N an extension matrix (in other words, P� is a
projection), with P�P = 1. We make the ansatz

αP := Pβ where β ∈ R
n, (85)

and find solutions β such that L(αP ) (or L∗(αP )) is minimized. The solution is

βopt =
(
P� (

σ2K + K�K
)
P
)−1

P�K�y. (86)

If P is of rank m, then KαP is also the minimizer of (67). In all other cases,
however, it is an approximation.

For a given P ∈ R
m×n, let us analyze the computational cost involved in

computing (86). We need O(nm) operations to evaluate P�Ky, O(n2m) op-
erations for (KP )�(KP ), and O(n3) operations for the inversion of an n × n
matrix. This brings the total cost to O(n2m). Predictions require k�α, which
entails O(n) operations. Likewise, we may use P to minimize L∗(Pβ∗), which is
needed to upper-bound the log posterior. The latter costs no more than O(n3).

To compute the posterior variance, we have to approximately minimize (83),
which can done for α = Pβ at cost O(n3) . If we compute (PKP�)−1 before-
hand, the cost becomes O(n2), and likewise for upper bounds. In addition to
this, we have to minimize −k�KPβ + 1

2β�P�(σ2K + K�K)Pβ, which again
costs O(n2m) (once the inverse matrices have been computed, however, we may
also use them to compute error bars at different locations, thus limiting the cost
to O(n2)). Accurate lower bounds on the error bars are not especially crucial,
since a bad estimate leads at worst to overly conservative confidence intervals,
and has no further negative effect. Finally, note that we need only compute and
store KP — that is, the m × n sub-matrix of K — and not K itself. Table 1
summarizes the scaling behavior of several optimization algorithms.



Bayesian Kernel Methods 95

Table 1. Computational Cost of Various Optimization Methods. Note that n � m, and
that different values of n are used in Conjugate Gradient, Sparse Decomposition, and
Sparse Greedy Approximation methods: nCG ≤ nSD ≤ nSGA, since the search spaces
are progressively more restricted. Near-optimal results are obtained when κ = 60.

Exact Conjugate Sparse Sparse Greedy
Solution Gradient [18] Decomposition Approximation

Memory O(m2) O(m2) O(nm) O(nm)
Initialization O(m3) O(nm2) O(n2m) O(κn2m)
(= Training)
Prediction:
Mean O(m) O(m) O(n) O(n)
Error Bars O(m2) O(nm2) O(n2m) or O(n2) O(κn2m) or O(n2)

This leads us to the question of how to choose P for optimum efficiency. Pos-
sibilities include using the principal components of K [83], performing conjugate
gradient descent to minimize L [18], performing symmetric diagonal pivoting
[12], or applying a sparse greedy approximation to K directly [68]. Yet these
methods have the disadvantage that they either do not take the specific form of
y into account [83, 68, 12], or lead to expansions that cost O(m) for prediction,
and require computation and storage of the full matrix [83, 18].

By contrast to these methods, we use a data adaptive version of a sparse
greedy approximation algorithm. We may then only consider matrices P that
are a collection of unit vectors ei (here (ei)j = δij), since these only select a
number of rows of K equal to the rank of P (see also [62] for a template of a
sparse greedy algorithm).

– First, for n = 1, we choose P = ei such that L(Pβ) is minimal. In this case
we could permit ourselves to consider all possible indices i ∈ {1, . . . m} and
find the best one by trying all of them.

– Next, assume that we found a good solution Pβ, where P contains n
columns. In order to improve this solution, we expand the projection op-
erator P into the matrix Pnew := [Pold, ei] ∈ R

m×(n+1) and seek the best ei

such that Pnew minimizes minβ L(Pnewβ).

Note that this method is very similar to Matching Pursuit [42] and to iterative
reduced set Support Vector algorithms [60], with the difference that the target
to be approximated (the full solution α) is only given implicitly via L(α).

Recently Zhang [85] proved lower bounds on the rate of sparse approximation
schemes. In particular, he shows that most subspace projection algorithms enjoy
at least an O(n−1) rate of convergence.

4.5 Implementation Issues

Performing a full search over all possible n + 1 of m indices is excessively costly.
Even a full search over all m−n remaining indices to select the next basis func-
tion can be prohibitively expensive. A simple result concerning the tails of rank



96 A.J. Smola and B. Schölkopf

statistics (see [62]) comes to our aid — it states that with high probability, a
small subset of size κ = 59, chosen at random, guarantees near optimal perfor-
mance. Hence, if we are satisfied with finding a relatively good index rather than
the best index, we may resort to selecting only a random subset.

Algorithm 1.1 Sparse Greedy Quadratic Minimization.
Require: Training data X = {x1, . . . , xm}, Targets y, Noise σ2, Precision ε, corre-

sponding quadratic forms L and L∗.
Initialize index sets I, I∗ = {1, . . . , m}; S, S∗ = ∅.
repeat

Choose M ⊆ I, M∗ ⊆ I∗.
Find argmin i∈M Q

(
[P, ei]βopt

)
, arg mini∗∈M∗ L∗ (

[P ∗, ei∗ ]β∗
opt

)
.

Move i from I to S, i∗ from I∗ to S∗.
Set P := [P, ei], P ∗ := [P ∗, ei∗ ].

until L(Pβopt) + σ2L∗(Pβ∗
opt) + 1

2‖y‖2 ≤ ε
2 (|L(Pβopt)| + |σ2L∗(Pβ∗

opt) + 1
2‖y‖2|

Output: Set of indices S, βopt, (P �KP )−1, and (P �(K�K + σ2K)P )−1.

It is now crucial to obtain the values of L(Pβopt) cheaply (with P = [Pold, ei]),
assuming that we found Pold previously. From (86) we can see that we need
only do a rank-1 update on the inverse. We now show that this can be obtained
in O(mn) operations, provided the inverse of the smaller subsystem is known.
Expressing the relevant terms using Pold and ki, we obtain

P�K�y = [Pold, ei]�K�y = (P�
oldK�y,k�

i y), (87)

P� (
K�K + σ2K

)
P =

[
P�

old

(
K�K + σ2K

)
Pold P�

old

(
K� + σ21

)
ki

k�
i (K + σ21)Pold k�

i ki + σ2Kii

]
.(88)

Thus computation of the terms costs only O(nm) once we know Pold. Further-
more, we can write the inverse of a strictly positive definite matrix as

[
A B

B� C

]−1

=
[

A−1 + (A−1B)�γ(A−1B) −γ(A−1B)
−(γ(A−1B))� γ

]
, (89)

where γ := (C − B�A−1B)−1. Hence, inversion of P� (
K�K + σ2K

)
P costs

only O(n2). Thus, to find the matrix P of size m×n takes O(κn2m) time. For the
error bars, (P�KP )−1 is generally a good starting value for the minimization of
(83), so the typical cost for (83) is O(τmn) for some τ < n, rather than O(mn2).

If additional numerical stability is required, we might want to replace (89) by
a rank-1 update rule for Cholesky decompositions of the corresponding positive
definite matrix. Furthermore, we may want to add the kernel function chosen
by positive diagonal pivoting [12] to the selected subset, in order to ensure that
the n× n sub-matrix remains invertible. See numerical mathematics textbooks,
such as [28], for more detail on update rules.



Bayesian Kernel Methods 97

4.6 Hardness and Approximation Results

It is worthwhile to study the theoretical guarantees on the performance of the
algorithm (as described in Algorithm 1.1). It turns out that our technique closely
resembles a Sparse Linear Approximation problem studied by Natarajan [44]:

Given A ∈ R
m×n, b ∈ R

m, and ε > 0, find x ∈ R
n with minimal number of

nonzero entries such that ‖Ax− b‖2 ≤ ε. If we define

A =
(
σ2K + K�K

) 1
2 and b := A−1Ky, (90)

we may write

L(α) =
1
2
‖b−Aα‖2 + c, (91)

where c is a constant independent of α. Thus the problem of sparse approximate
minimization of L(α) is a special case of Natarajan’s problem (where the matrix
A is square, and strictly positive definite). In addition, the algorithm considered
in [44] involves sequentially choosing columns of A to maximally decrease ‖Ax−
b‖. This is equivalent to the algorithm described above and we may apply the
following result to our sparse greedy Gaussian process algorithm.

Theorem 3 (Natarajan, 1995 [44]). A sparse greedy algorithm to approxi-
mately solve the problem

minimize ‖y −Ax‖ (92)

needs at most

n ≤ 18n∗(ε)‖A+‖22 ln
‖y‖
2ε

(93)

non-zero components, where n∗(ε) is the minimum number of nonzero compo-
nents in vectors α for which ‖y −Ax‖ ≤ ε, and A+ is the matrix obtained from
A by normalizing its columns to unit length.

Corollary 1 (Approximation Rate for Gaussian Processes). Algo-
rithm 1.1 satisfies L(α) ≤ L(αopt) + ε2 when α has

n ≤ 18n∗(ε)
λ2 ln

‖A−1Ky‖
2ε

(94)

non-zero components, where n∗(ε) is the minimum number of nonzero compo-
nents in vectors α for which L(α) ≤ L(αopt) + ε2, A = (σ2K + K�K)1/2, and
λ is the smallest magnitude of the singular values of A, the matrix obtained by
normalizing the columns of A.

Moreover, we can also show NP-hardness of sparse approximation of Gaussian
process regression. The following theorem holds:



98 A.J. Smola and B. Schölkopf

Theorem 4 (NP-Hardness of Approximate GP Regression). There exist
kernels K and labels y such that the problem of finding the minimal set of indices
to minimize a corresponding quadratic function L(α) with precision ε is NP-
hard.

Proof. We use the hardness result [44, Theorem 1] for Natarajan’s quadratic
approximation problem in terms of A and b. More specifically, we have to proceed
in the opposite direction to (90) and (91) and show that for every A and b, there
exist K and y for an equivalent optimization problem.

Since ‖Ax− b‖2 = x�(A�A)x− 2(b�A)x + ‖b‖2, the value of A enters only
via A�A, which means that we have to find K in (78) such that

A�A = K�K + σ2K. (95)

We can check that it is possible to find a suitable positive definite K for any A,
by using identical eigensystems for A�A and K, and subsequently solving the
equations ai = λ2

i + σ2λi for the respective eigenvalues ai and λi of A�A and
K. Furthermore, we have to satisfy

y�K = bA. (96)

To see this, recall that bA is a linear combination of the nonzero eigenvectors of
A�A; and since K has the same rank and image as A�A, the vector bA can also
be represented by y�K. Thus for every A, b there exists an equivalent L, which
proves NP-hardness by reduction.

This shows that the sparse greedy algorithm is an efficient approximate solution
of an NP-hard problem.

4.7 Experimental Evidence

We conclude this section with a brief experimental demonstration of the ef-
ficiency of sparse greedy approximation methods, using the Abalone dataset.
Specifically, we used Gaussian covariance kernels, and we split the data into
4000 training and 177 test examples to assess training speed (to assess general-
ization performance, a 3000 training and 1177 test set split was used).

For the optimal parameters (2σ2 = 0.1 and 2ω2 = 10, chosen after [68]), the
average test error of the sparse greedy approximation trained until Gap(α, α∗) <
0.025 is indistinguishable from the corresponding error obtained by an exact
solution of the full system. The same applies for the log posterior. See Table 2 for
details. Consequently for all practical purposes, full inversion of the covariance
matrix and the sparse greedy approximation have comparable generalization
performance.

A more important quantity in practice is the number basis functions needed
to minimize the log posterior to a sufficiently high precision. Table 3 shows this
number for a precision of Gap(α, α∗) < 0.025, and its variation as a function
of the kernel width σ; the latter dependency is observed since the number of



Bayesian Kernel Methods 99

0 20 40 60 80 100 120 140 160 180 200
10

−2

10
−1

Number of Iterations

G
ap

Fig. 9. Speed of Convergence. We plot the size of the gap between upper and lower
bound of the log posterior (Gap(α, α∗)), for the first 4000 samples from the Abalone
dataset (σ2 = 0.1 and 2ω2 = 10). From top to bottom: Subsets of size 1, 2, 5, 10,
20, 50, 100, 200. The results were averaged over 10 runs. The relative variance of the
gap size is less than 10%. We can see that subsets of size 50 and above ensure rapid
convergence.

kernels determines time and memory needed for prediction and training. In all
cases, less than 10% of the kernel functions suffice to find a good minimizer of
the log posterior; less than 2% are sufficient to compute the error bars. This is
a significant improvement over a direct minimization approach.

A similar result can be obtained on larger datasets. To illustrate, we generated
a synthetic data set of size 10.000 in R

20 by adding normal noise with variance
σ2 = 0.1 to a function consisting of 200 randomly chosen Gaussians of width
2ω2 = 40 and with normally distributed expansion coefficients and centers.

To avoid trivial sparse expansions, we deliberately used an inadequate Gaus-
sian process prior (but correct noise level) consisting of Gaussians with width
2σ2 = 10. After 500 iterations (thus, after using 5% of all basis functions), the
size of Gap(α, α∗) was less than 0.023. This demonstrates the feasibility of the
sparse greedy approach on larger datasets.

5 Laplacian Processes

So far the dependency of the latent variables θ on X could not be factorized
easily in terms of the xi. That is, p(θ|X) = ∏

i p(θi|xi). This is due to the fact



100 A.J. Smola and B. Schölkopf

Table 2. Performance of sparse greedy approximation vs. explicit solution of the full
learning problem. In these experiments, the Abalone dataset was split into 3000 training
and 1177 test samples. To obtain more reliable estimates, the algorithm was run over
10 random splits of the whole dataset.

Generalization Error Log Posterior
Optimal Solution 1.782 ± 0.33 −1.571 · 105(1 ± 0.005)
Sparse Greedy Approximation 1.785 ± 0.32 −1.572 · 105(1 ± 0.005)

Table 3. Number of basis functions needed to minimize the log posterior on the
Abalone dataset (4000 training samples), for various kernel widths ω. Also given is
the number of basis functions required to approximate k�(K + σ21)−1k, which is
needed to compute the error bars. Results were averaged over the 177 test samples.

Kernel width 1 2 5 10 20 50
Kernels for log-posterior 373 287 255 257 251 270
Kernels for error bars 79±61 49±43 26±27 17±16 12±9 8±5

that we want to infer from knowing (x, y) the likely value of (x′, y′) — a model
which did not couple the various yi would fail in this regard.

However, by a simple trick, we can achieve the factorization, yet still re-
tain the inference properties of the estimator: we introduce yet another layer of
dependence: rather than modelling

p(X)
�� X

p(θ|X)

p(θ|X)p(X)
�� θ

p(Y |θ)

p(Y |θ)p(θ|X)p(X)
�� Y

we assume
p(X)

�� X
p(θ|X)

p(θ|X)p(X)
�� θ

t=Kθ

p(θ|X)p(X)
�� t

p(Y |t)
p(Y |t(θ))p(θ|X)p(X)

�� Y

where p(θ|X) =
∏m

i=1 p(θi|xi) and p(Y |t(θ)) =
∏m

i=1 p(yi|ti(θ)). That is, we
moved the mixing between the various yi into the design matrix K. Note that
there is no requirement that K be positive semidefinite. In fact, any arbitrary
matrix would do. However, for practical purposes we will typically choose some
function k with Kij = k(xi, xj).

Before we go into the technical details, let us give some motivation as to
why the complexity of an estimate can depend on the locations where data
occurs, since we are effectively updating our prior assumptions about t after
observing the data placement. Note that we do not modify our prior assumptions
based on the targets yi, but rather as a result of the distribution of patterns xi:
Different input distribution densities might for instance correspond to different
assumptions regarding the smoothness of the function class to be estimated. For
example, it might be be advisable to favor smooth functions in areas where data
are scarce, and allow more complicated functions where observations abound.
We might not care about smoothness at all in regions where there is little or no
chance of patterns occurring: In the problem of handwritten digit recognition,



Bayesian Kernel Methods 101

we do not (and should not) care about the behavior of the estimator on inputs
x looking like faces.

The specific benefit of this strategy is that it provides us with a correspon-
dence between linear programming regularization [43, 2, 65, 6] and Bayesian
priors over function spaces, by analogy to regularization in Reproducing Kernel
Hilbert Spaces and Gaussian Processes.12

5.1 Examples of Factorizing Priors

Let us now study some of the priors factorizing in coefficient space. By construc-
tion we have

p(t|X) =
1
Z

exp

(
−

m∑

i=1

γ(θi)

)
, where ti =

m∑

i=1

θik(xi, x). (97)

Here γ(θi) is chosen such that exp(−γ(θ)) is integrable, Z is the corresponding
normalization term, and xi ∈ X. Examples of priors that depend on the locations
xi include

γ(θ) = 1− ep|θ| with p > 0 (feature selection prior), (98)
γ(θ) = θ2 (weight decay prior), (99)
γ(θ) = |θ| (Laplacian prior). (100)

The prior given by (98) was introduced in [5, 14] and is log-concave. While the
latter characteristic is unfavorable in general, since the corresponding optimiza-
tion problem exhibits many local minima, the negative log-posterior becomes
strictly concave if we choose Laplacian noise (equivalent to the L1 loss in regres-
sion). By a basic result from convex analysis [57] this means that the optimum
occurs at one of the extreme points, which makes optimization more feasible.

Eq. (99) describes the popular weight decay prior used in Bayesian Neural
Networks [40, 45, 46]. It assumes that the coefficients are independently nor-
mally distributed. We relax the assumption of a common normal distribution in
Section 6 and introduce individual (hyper)parameters si. The resulting prior,

p(θ|X, s) = (2π)− m
2

(
m∏

i=1

si

) 1
2

exp

(
−1

2

m∑

i=1

siθ
2
i

)
, (101)

leads to the construction of the Relevance Vector Machine [73] and very sparse
function expansions.

Finally, the assumption underlying the Laplacian prior (100) is that only
very few basis functions will be nonzero. The specific form of the prior is why
we will call such estimators Laplacian Processes. This prior has two significant
advantages over (98): It leads to convex optimization problems, and the integral
12 We thank Carl Magnus Rasmussen for discussions and suggestions.



102 A.J. Smola and B. Schölkopf

∫
p(θ)dθ is finite and thus allows normalization (this is not the case for (98),

which is why we call the latter an improper prior).
The Laplacian prior corresponds to the regularization functional employed

in sparse coding approaches, such as wavelet dictionaries [6], coding of natu-
ral images [48], independent component analysis [37], and linear programming
regression [66, 65].

In the following, we focus on (100). It is straightforward to see that the MAP
estimate can be obtained by minimizing the negative log posterior, which is given
(up to constant terms) by

−
m∑

i=1

ln p(yi|f(xi), xi) +
m∑

i=1

|θi|. (102)

Depending on ln p(yi|ti(θ)), we may formulate the minimization of (102) as a
linear or quadratic program.

5.2 Samples from the Prior

In order to illustrate our reasoning, and to show that such priors correspond
to useful distributions over t, we generate samples from the prior distribution.
As in Gaussian processes, smooth kernels k correspond to smooth priors. This
is not surprising: As we show in the next section (Theorem 5), there exists a
corresponding Gaussian process for every kernel k and every distribution p(x).

The obvious advantage, however, is that we need not worry about Mercer’s
condition for k but can take any arbitrary function k(x, x′) to generate a Lapla-
cian process. We draw samples from the following three kernels,

k(x, x′) = e− ‖x−x′‖2

2σ2 Gaussian RBF kernel, (103)

k(x, x′) = e− ‖x−x′‖
σ Laplacian RBF kernel, (104)

k(x, x′) = tanh(θ〈x, x′〉+ ϑ) Neural Networks kernel. (105)

While (103) and (104) are also valid kernels for Gaussian Process estimation,
(105) does not satisfy Mercer’s condition13. Figure 10 gives sample realizations
from the corresponding process. The use of (105) is impossible for GP priors,
unless we diagonalize the matrix K explicitly and render it positive definite by
replacing λi with |λi|. This is a very costly procedure (see also [61, 24]) as it
involves computing the eigensystem of K.

5.3 Estimation

Since one of the aims of using a Laplacian prior on the coefficients θi is to achieve
sparsity of the expansion, it does not appear sensible to use a Bayesian averaging
13 The covariance matrix K has to be positive definite at all times. An analogous

application of the theory of conditionally positive definite kernels would be possible
as well. There one simply assumes a Gaussian Process prior on a linear subspace of
the yi.



Bayesian Kernel Methods 103

Fig. 10. Left Column: Grayscale plots of the realizations of several Laplacian Pro-
cesses. The black dots represent data points. Right Column: 3D plots of the same
samples of the process. We used 400 data points sampled at random from [0, 1]2 using
a uniform distribution. Top to bottom: Gaussian kernel (103) (σ2 = 0.1), Laplacian
kernel (104) (σ = 0.1), and Neural Networks kernel (105) (θ = 10, ϑ = 1). Note that
the Laplacian kernel is significantly less smooth than the Gaussian kernel, as with a
Gaussian Process with Laplacian kernels. Moreover, observe that the Neural Networks
kernel corresponds to a non-stationary process; that is, its covariance properties are
not translation invariant.



104 A.J. Smola and B. Schölkopf

scheme to compute the mean of the posterior distribution, since such a scheme
leads to mostly nonzero coefficients. Instead we seek to obtain the mode of the
distribution (the MAP estimate) only.

As already pointed out in the previous section, finding the mode need not
give an exact solution, since mode and mean do not coincide for Laplacian reg-
ularization (recall Figure 3). Nonetheless, the MAP estimate is computationally
attractive, since if both − ln p(ξi) and γ(θi) are convex, the optimization problem
has a unique minimum.

By assumption we can write the joint density in Y, t, θ as follows:

p(Y, t, θ|X) = p(Y |t(θ))p(θ|X) (106)

=

[
m∏

i=1

p(yi|ti(θ))p(θi)

]
where t(θ) = Kθ (107)

∝
[

m∏

i=1

p(yi|ti(θ)) exp (−γ(θi))

]
(108)

Here we exploited the fact that the prior factorizes and that the data is generated
iid. Maximization of (106) is equivalent to minimizing the negative log posterior
which leads to

minimize
m∑

i=1

− ln p(yi|ti) +
m∑

i=1

γ(θi),

subject to t = Kθ

(109)

For − log p(ξi) = |ξi| + c and γ(θi) = |θi|, this leads to a linear program and
the solution can be readily used as a MAP estimate for Laplacian processes (a
similar reasoning holds for soft margin loss functions). Likewise for Gaussian
noise, we obtain a quadratic program with a simple objective function but a
dense set of constraints, by analogy to Basis Pursuit [6].

5.4 Confidence Intervals for Gaussian Noise

One of the key advantages of Bayesian modeling is that we can obtain explicit
confidence intervals for the predictions, provided the assumptions made regard-
ing the priors and distribution are satisfied. Even for Gaussian noise, however,
no explicit meaningful expansion using the MAP estimate αMAP is possible,
since γ(θi) = |θi| is non-differentiable at 0 (otherwise we could make a quadratic
approximation at θi = 0). Nonetheless, a slight modification permits computa-
tionally efficient approximation of such error bounds.

The modification consists of dropping all variables θi for which θMAP,i = 0
from the expansion (this renders the distribution flatter and thereby overesti-
mates the error), and replacing all remaining variables by linear approximations
(we replace |θi| by sgn (θMAP,i) θi).

In other words, we assume that variables with zero coefficients do not influ-
ence the expansion, and that the signs of the remaining variables do not change.



Bayesian Kernel Methods 105

This is a sensible approximation since for large sample sizes, which Laplacian
processes are designed to address, the posterior is strongly peaked around its
mode. Thus the contribution of − log p(θ) = ‖θ‖1 + c around θMAP can be
considered to be approximately linear.

Denote by θM the vector of nonzero variables, obtained by deleting all entries
where θMAP,i = 0, by s the vector with elements ±1 such that ‖θMAP‖1 = s�θM ,
and by KM the matrix generated from K by removing the columns corresponding
to θMAP,i = 0. Then the posterior (now written in terms of θ for convenience)
can be approximated as

p(θM |X, Y ) ≈ 1
Z

exp

(
− 1

2σ2

m∑

i=1

(yi −KMθM )2
)

exp
(−s�θM

)
. (110)

Collecting linear and quadratic terms, we see that

θM ∼ N(θMAP, (K�
MKM )−1), where θMAP = (K�

MKM )−1(K�
My + σ2s).

(111)

The equation for θMAP follows from the conditions on the optimal solution of
the quadratic programming problem (109), or directly from maximizing (106)
(after s is fixed). Hence predictions at a new point x are approximately normally
distributed, with

y(x) = N
(
k�

MθM ,
(
σ2 + k�

M

(
K�

MKM

)−1
kM

))
, (112)

where kM := (k(x1, x), . . . , k(xM , x)) and only xi with nonzero θMAP,i are con-
sidered (thus M ≤ m). The additional σ2 stems from the fact that we have
additive Gaussian noise of variance σ2 in addition to the Laplacian process.
Equation (112) is still expensive to compute, but it is much cheaper to invert
Σ�

MΣM than a dense square matrix Σ (since θMAP may be very sparse). In ad-
dition, greedy approximation methods (as described for instance in Section 4.4)
or column generation techniques [1] could be used to render the computation of
(112) numerically more efficient.

5.5 An Equivalent Gaussian Process

We conclude this section with a proof that in the large sample size limit, there ex-
ists a Gaussian Process for each kernel expansion with a prior on the coefficients
θi. For the purpose of the proof, we have to slightly modify the normalization
condition on f : That is, we assume

yi(θ) = m− 1
2

m∑

i=1

θik(xi, x), (113)

where θi ∼ 1
Z exp(−γ(θ)). For large sample size, i.e., m → ∞, the following

theorem holds.



106 A.J. Smola and B. Schölkopf

Theorem 5 (Convergence to Gaussian Process). Denote by θi indepen-
dent random variables (we do not require identical distributions on θi) with unit
variance and zero mean. Furthermore, assume that there exists a distribution
p(x) on X with according to which a sample {x1, . . . , xm} is drawn, and that
k(x, x′) is bounded on X × X. Then the random variable y(x) given by (113)
converges for m → ∞ to a Gaussian process with zero mean and covariance
function

k̃(x, x′) =
∫

X

k(x, x̄)k(x′, x̄)p(x̄)dx̄. (114)

This means that instead of a Laplacian process prior, we could use any other
factorizing prior on the expansion coefficients θi and in the limit still obtain an
equivalent stochastic process.

Proof. To prove the first part, we need only check is that y(x) and any linear
combination

∑
j y(xj) (for arbitrary x′

j ∈ X) converge to a normal distribution.
By application of a theorem of Cramér [8], this is sufficient to prove that y(x)
is distributed according to a Gaussian Process.

The random variable y(x) is a sum of m independent random variables with
bounded variance (since k(x, x′) is bounded on X × X). Therefore in the limit
m → ∞, by virtue of the Central Limit Theorem (e.g., [8]), we have y(x) ∼
N(0, σ2(x)) for some σ2(x) ∈ R. For arbitrary x′

j ∈ X, linear combinations of
y(x′

j) also have Gaussian distributions since

n∑

j=1

βiyi = m− 1
2

m∑

i=1

θi

n∑

j=1

βjk(xi, xj), (115)

which allows the application of the Central Limit Theorem to the sum since the
inner sum

∑n
j=1 βjk(xi, xj) is bounded for any xi. It also implies

∑n
j=1 βjyj ∼

N(0, σ2) for m → ∞ and some σ2 ∈ R, which proves that y(x) is distributed
according to a Gaussian Process.

To show (114), first note that y(x) has zero mean. Thus the covariance func-
tion for finite m can be found as expectation with respect to θ,

Eθ[y(x)y(x′)] = Eθ



 1
m

m∑

i,j=1

θiθjk(xi, x)k(xj , x
′)



 =
1
m

m∑

i=1

k(xi, x)k(xj , x
′),

(116)

since the θi are independent and have zero mean. This expression, however,
converges to the Riemann integral over X with the density p(x) as m → ∞.
Thus

E[y(x)y(x′)] −→
m→∞

∫

X

k(x, x̄)k(x′, x̄)p(x̄)dx̄, (117)

which completes the proof.



Bayesian Kernel Methods 107

6 Relevance Vector Machines and Deconvolution

One of the problems with the probabilistic model introduced in (97) is that it may
lead to somewhat intractable optimization problems, in particular if the negative
log posterior γ(θ) is not convex. However, such functions γ may correspond
to useful statistical assumptions on the distribution of coefficients in function
expansions.

6.1 Turning Priors into Hyperpriors

Recently, Tipping [73] proposed a method to circumvent the numerical problems
inherent in using a certain set of γ(θ) via deconvolution. Before presenting the
specific choices [73] makes for the sake of sparse function expansions, we present
the general principle, since it can be extended to priors on coefficients and like-
lihood terms alike, using ideas from [20]. The method works as follows: Assume
we have a prior

p(θi|si) =
√

si

2π
exp

(
−1

2
siθ

2
i

)
, (118)

that is si plays the role of a hyperprior and θi ∼ N(0, s−1
i ). Here, given si, we

can use well studied methods for inference with a Gaussian prior to perform the
required estimation steps. Quite often we will be able to perform exact inference,
given the hyperparameters si. Key is the suitable choice of p(si), since clearly

p(θi) =
∫

p(θi|si)p(si)dsi =
∫ √

si

2π
exp

(
−1

2
siθ

2
i

)
p(si)dsi. (119)

This means that given some p(θi) we may be able to find some p(si) such that
(119) holds. A hyperprior p(si) with a large weight at si = 0 is desirable since
this leads to a of the distribution of θi around 0. A parameter transformation in
the integral β = 1

2s2
i

yields

p(θi) =
∫

exp(−βθi)(8π)− 1
2 β−1p

(
(2β)− 1

2 )
)

dβ. (120)

That is, p(θi) is the Laplace Transform of (8π)− 1
2 β−1p

(
(2β)− 1

2 )
)

and corre-
spondingly p(si) is given by the inverse Laplace Transform of p(θi) and suitable
variable changes. This fact allows us to match up priors p(θi) and corresponding
hyperpriors p(si) in a fairly automatic fashion.

In particular, we assume a normal distribution over θi with adjustable vari-
ance. The latter is then determined with a hyperparameter that has its most
likely value at 0; This prior is expressed analytically as

Normal Hyperprior: We begin with a normal distribution on p(si), that is

p(si) =
1

2πω2 exp
(
− 1

2ω2 s2
i

)
. (121)



108 A.J. Smola and B. Schölkopf

Performing a Laplace transform leads to

p(θi) =
1

2πθi
BesselK0

(√
8

θi

)
, (122)

where BesselK is the modified Bessel function of the second kind [79]. See
Figure 11 for more properties of this function.

0 2 4 6 8 10
0

2

4

6

8

10
x 10

4 Density p(x)

0 2 4 6 8 10
−15

−10

−5

0

5

10

15
− log p(x)

Fig. 11. p(θi) for a normal hyperprior. Left: p(θi); Right: − log p(θi). Note the sharp
peak at θi = 0 and the almost linear increase afterwards.

Γ -Hyperprior: Tipping [73] used the Gamma hyperprior to design the Rele-
vance Vector Machine. Here

p(si) = Γ (si|a, b) :=
sa−1

i ba exp(−sib)
Γ (a)

for si > 0. (123)

For non-informative (flat in logspace) priors, one typically chooses a = b =
10−4. This leads to a polynomial prior which is given by

p(θi) ∝ exp
(
− (a + 1/2) ln

(
b +

θ2
i

2

))
=

(
b +

θ2
i

2

)−(a+1/2)

. (124)

Note that (123) is heavily peaked for si → 0. For regression, a similar as-
sumption is made concerning the amount of additive Gaussian noise σ2; thus
p(σ̄2) = 1/σ̄2 or p(σ̄2) = Γ (σ̄2|c, d) where typically c = d = 10−4. Note that
the priors are imposed on the inverse of σ and σ̄. Figure 12 depicts the
scaling behavior for non-informative priors.

Further choices are possible and can be obtained by consulting tables of Legendre
transformations, such as in [23].



Bayesian Kernel Methods 109

0 2 4 6 8 10
0

5

10

15

20

25

30

35
Density p(x)

0 2 4 6 8 10
−4

−3

−2

−1

0

1

2
− log p(x)

Fig. 12. p(θi) for a Gamma hyperprior (a = b = 10−4). Left: p(θi); Right: − log p(θi).
Note that here the distribution is much less peaked around 0 and observe the sublinear
increase in the negative log density.

6.2 Further Expansions

A similar approach can be used to transform arbitrary p(θi) into Laplacian
distributions and a suitable hyperprior. Again, the connection is made via the
Laplace transform, however this time by using p(si) directly rather than by
reparameterizing with the inverse argument, as done in (120):

p(θi) =
∫

exp(−βθi)
1
2β

p(β)dβ. (125)

This means that the Laplace transform of 1
si

p(si) yields the effective prior and
vice versa. While a Laplacian distribution may not be quite as desirable as a
normal distribution (it will typically lead to the solution of a linear program
rather than a simple matrix inversion), it is likely to be nonetheless favorable to
a direct attempt at computing the mode of the distribution.

Finally, it is worth noting that we can employ the same methods that we
used to obtain a normal distribution in θi can be used to transform p(yi|ti) into
normal distributions combined with a hyperprior:

p(yi|ti) =
∫

σi√
2π

exp
(
−1

2
σi(yi − ti)2

)
p(σi)dσi. (126)

The ensuing considerations are completely analogous to the ones in the previ-
ous chapter. We will come back to (126) when dealing with general factorizing
estimation problems.

6.3 Regression with Hyperparameters

As before, we begin with the simple case of regression with additive Gaus-
sian noise, that is Y |t ∼ N(0, σ2). We know that θ ∼ N(0, S−1) where



110 A.J. Smola and B. Schölkopf

S := diag(s1, . . . , sm). Therefore t = Kθ satisfies t ∼ N(0, K�S−1K) and
finally Y ∼ N(0, K�S−1K + σ21). Consequently we obtain

p(Y |s, σ) = (2π)− m
2 |Σ̃|− 1

2 exp
(
−1

2
Y �Σ̃−1Y

)
, (127)

where Σ̃ = K�S−1K + σ21. If we wish to determine p(Y ′|Y, s, σ), we need an
estimate of s′

i. Assuming that all s′
i = 0, the use of the matrix inversion formula

plus the application of the Sherman-Morrison-Woodbury formula yields

Y ′|Y, s, σ ∼ N(µ′, Σ′). (128)

where

µ′ = (K ′)�S−1K(σ21 + K�S−1K)−1Y and (129)
Σ′ = σ21 + (K ′)�(S + σ−2KK�)−1K ′. (130)

This follows directly from Example 1. For K ′ = K, i.e., estimation on the training
set, the above equations reduce to

µ = K�S−1K(σ21 + K�S−1K)−1Y = σ−2K(σ−2K�K + S)−1K�Y. (131)

Since elimination of s, σ2 by integration is impossible, we resort, as many times
before, to the approximation of maximizing the joint density

p(Y, s, σ) = p(Y |s, σ)
m∏

i=1

p(si)p(σ). (132)

Assuming a gamma prior not only on si but also on σ, the negative logarithm
of (132) can be written as

− ln p(Y, s, σ) =
1
2

[
ln

∣∣σ1 + KS−1K�∣∣ + Y � (
σ1 + KS−1K�)−1

Y
]

−
m∑

i=1

(a ln si − bsi)− c lnσ2 + dσ2 + const. (133)

Of course, if we set a = b = c = d = 0 (flat prior) the terms in (133) vanish and
we are left with maximizing the parameters over an improper prior. Note the
similarity to logarithmic barrier methods in constrained optimization, for which
constrained minimization problems are transformed into unconstrained problems
by adding logarithms of the constraints to the initial objective function. In other
words, the Gamma distribution can be viewed as a positivity constraint on the
hyperparameters si and σ2.

Differentiating (133) and setting the corresponding terms to 0 leads to the
update rules [73]

si =
1− siΞii

µ2
i

, (134)



Bayesian Kernel Methods 111

where µ is given by (131) and Ξ := (σ−2KK�+S)−1. The quantity 1−siΞii is a
measure of the degree to which the corresponding parameter θi is “determined”
by the data [40]. Likewise we obtain

σ2 =
‖y −Kµ‖2

m∑
i=1

siΞii

. (135)

It turns out that many of the parameters si tend to infinity during the optimiza-
tion process. This means that the corresponding distribution of θi is strongly
peaked around 0, and we may drop these variables from the optimization pro-
cess. This speeds up the process as the minimization progresses.

It seems wasteful to first consider the full set of possible functions k(xi, x),
and only then weed out the functions not needed for prediction. We could instead
use a greedy method for building up predictors, similar to the greedy strategy
employed in Gaussian Processes (Section 4.4). This is the approach in [73], which
proposes the following algorithm. After initializing the predictor with a single
basis function (the bias, for example), we test whether each new basis function
yields an improvement. The latter is achieved by guessing a large initial value si,
and performing one update step. If (134) leads to an increase of si, we reject the
corresponding basis function, otherwise we retain it in the optimization process.

6.4 Classification

For classification, we follow a scheme similar to that in Section 3.5. In order to
keep matters simple, we only consider the binary classification case. Specifically,
we carry out logistic regression by using (14) as a model for the distribution of
labels yi ∈ {±1}. As in regression, we use a kernel expansion, this time for the
latent variables t = Kθ. The negative log density in Y,θ conditioned on s, X is
given by

− ln p(Y,θ|s, X) =
m∑

i=1

− ln p(yi|ti(θ))−
m∑

i=1

ln p(θi|si) + const. where t = Kθ.

(136)

Unlike in regression, however, we cannot minimize (136) explicitly and have to
resort to approximate methods, such as the Laplace approximation (see Sec-
tion 4.1). Computing the first and second derivatives of (136) and using the
definitions (70) and (71) yields

∂θ [− ln p(θ|y, s)] = Kc + Sθ, (137)
∂2

θ [− ln p(θ|y, s)] = K�CK + S. (138)

This allows us to obtain a MAP estimate of p(θ|y, s) by iterative application of
(69), and we obtain an update rule for θ in a manner analogous to (72);

θnew = θold − (K�CK + S)−1(Kc + Sθold) = (K�CK + S)−1K(CKθold − c).
(139)



112 A.J. Smola and B. Schölkopf

If the iteration scheme converges, it will converge to the minimum of the negative
log posterior. We next have to provide an iterative method for updating the
hyperparameters s (note that we do not need σ2). Since we cannot integrate out θ
explicitly (we had to resort to an iterative method even to obtain the mode of the
distribution), it is best to use the Gaussian approximation obtained from (138).
This gives an approximation of the value of the posterior distribution p(s|y) and
allows us to apply the update rules developed for regression in classification.
Setting µ = θMAP and Ξ = (K�CK + S)−1, we can use (134) to optimize si.
See [73] for further detail and motivation.

7 Summary

In this paper, we presented an overview over some of the more common tech-
niques of Bayesian estimation, namely Gaussian Processes and the Relevance
Vector Machine, and a novel method: Laplacian Processes. Due to the wealth of
existing concepts and algorithms developed in Bayesian statistics, it is impossible
to give a comprehensive treatment in a single paper. Instead, such a goal would
merit writing a book in its own right. We refer the reader to [46, 26, 63, 40, 77, 81]
and references therein for further detail.

Topics We Left Out: We did not discuss Markov-Chain Monte Carlo meth-
ods and their application to Bayesian Estimation [45, 54] as an alternate way
of performing Bayesian inference. These work by sampling from the posterior
distribution rather than computing an approximation of the mode.

On the model side, the maximum entropy discrimination paradigm [64, 7,
30] is a worthy concept in its own right, powerful enough to spawn a whole
family of new inference algorithms both with [30] and without [34] kernels. The
main idea is to seek the least informative estimate for prediction purposes. In
addition, rather than requiring that a specific function satisfy certain constraints,
we require only that the distribution satisfy the constraints on average.

Methods such as the Bayes-Point machine [27] and Kernel Billiard [59, 58]
can also be used for estimation purposes. The idea behind these methods is to
“play billiard” in version space and average over the existing trajectories. The
version space is the set of all separating hyperplanes for which the empirical
risk vanishes or is bounded by some previously chosen constant. Proponents of
this strategy claim rapid convergence due to the good mixing properties of the
dynamical system.

Finally, we left the field of graphical models (see for instance [71, 32, 36, 35]
and the references therein) completely untouched. These algorithms model the
dependency structure between different random variables in a rather explicit
fashion and use efficient approximate inference techniques to solve the optimiza-
tion problems. It is not clear yet, how to combine graphical models with kernels.

Key Issues: Topics covered in this paper include deterministic and approximate
methods for Bayesian inference, with an emphasis on the Maximum a Posteriori



Bayesian Kernel Methods 113

(MAP) estimate and the treatment of hyperparameters. As a side-effect, one can
observe that the minimization of regularized risk is closely related to approximate
Bayesian estimation.

One of the first consequences of this link is the connection between Gaussian
Processes and Support Vector Machines. While the former are defined in terms
of correlations between random variables, the latter are derived from smooth-
ness assumptions regarding the estimate and feature space considerations. This
connection also allows one to exchange uniform convergence statements and
Bayesian error bounds between both types of reasoning.

As a side effect, this connection also gives rise to a new class of prior, namely
those corresponding to �1 regularization and linear programming machines. Since
the coefficients θi then follow a Laplacian distribution, we name the correspond-
ing stochastic process a Laplacian Process. This new point of view allows the
derivation of error bars for the estimates in a way that is not easily possible in
a statistical learning theory framework. It turns out that this leads to a data
dependent prior on the function space.

Finally, the Relevance Vector Machine introduces individual hyperparame-
ters for the distributions of the coefficients θi. This makes certain optimization
problems tractable (matrix inversion) that otherwise would have remained infea-
sible (MAP estimate with the Student-t distribution as a prior). We expect that
the technique of representing complex distributions by a normal distribution
cum hyperprior is also a promising approach for other estimation problems.

Taking a more abstract view, we expect a convergence between different
estimation algorithms and inference principles derived from risk minimization,
Bayesian estimation, and Minimum Description Length concepts. Laplacian Pro-
cesses and the Relevance Vector Machine are two examples of such convergence.
We hope that more such methods will follow in the next few years.

References

1. K. P. Bennett, A. Demiriz, and J. Shawe-Taylor. A column generation algorithm
for boosting. In P. Langley, editor, Proceedings of the International Conference on
Machine Learning, San Francisco, 2000. Morgan Kaufmann Publishers.

2. K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software, 1:23–34, 1992.

3. C. M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
1995.

4. C. M. Bishop and M. E. Tipping. Variational relevance vector machines. In
Proceedings of 16th Conference on Uncertainty in Artificial Intelligence UAI’2000,
pages 46–53, 2000.

5. P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization
and support vector machines. In J. Shavlik, editor, Proceedings of the International
Conference on Machine Learning, pages 82–90, San Francisco, California, 1998.
Morgan Kaufmann Publishers. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-
03.ps.Z.

6. S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
Siam Journal of Scientific Computing, 20(1):33–61, 1999.



114 A.J. Smola and B. Schölkopf

7. T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley and
Sons, New York, 1991.

8. H. Cramér. Mathematical Methods of Statistics. Princeton University Press, 1946.
9. L. Csató and M. Opper. Sparse representation for Gaussian process models. In

T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 444–450. MIT Press, 2001.

10. A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from In-
complete Data via the EM Algorithm. Journal of the Royal Statistical Society B,
39(1):1–22, 1977.

11. S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth. Hybrid Monte Carlo.
Physics Letters B, 195:216–222, 1995.

12. S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tation. Technical report, IBM Watson Research Center, New York, 2000.

13. R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, New York,
1989.

14. G. Fung and O. L. Mangasarian. Data selection for support vector machine clas-
sifiers. In Proceedings of KDD’2000, 2000. also: Data Mining Institute Technical
Report 00-02, University of Wisconsin, Madison.

15. A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data Analysis.
Chapman and Hall, London, 1995.

16. M. Gibbs and D. J. C. Mackay. Variational Gaussian process classifiers. Technical
report, Cavendish Laboratory, Cambridge, UK, 1998.

17. M. N. Gibbs. Bayesian Gaussian Methods for Regression and Classification. PhD
thesis, University of Cambridge, 1997.

18. Mark Gibbs and David J. C. Mackay. Efficient implementation of Gaussian pro-
cesses. Technical report, Cavendish Laboratory, Cambridge, UK, 1997. available
at http://wol.ra.phy.cam.ac.uk/mng10/GP/.

19. P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
1981.

20. F. Girosi. Models of noise and robust estimates. A.I. Memo 1287, Artificial Intel-
ligence Laboratory, Massachusetts Institute of Technology, 1991.

21. D. Goldfarb and K. Scheinberg. A product-form cholesky factorization method for
handling dense columns in interior point methods for linear programming. Tech-
nical report, IBM Watson Research Center, Yorktown Heights, 2001.

22. G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, Baltimore, MD, 3rd edition, 1996.

23. I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products. Aca-
demic Press, New York, 1981.

24. T. Graepel, R. Herbrich, P. Bollmann-Sdorra, and K. Obermayer. Classification
on pairwise proximity data. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors,
Advances in Neural Information Processing Systems 11, pages 438–444, Cambridge,
MA, 1999. MIT Press.

25. D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-
CRL-99-10, Computer Science Department, UC Santa Cruz, 1999.

26. R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
2002.

27. Ralf Herbrich, Thore Graepel, and Colin Campbell. Bayes point machines: Esti-
mating the Bayes point in kernel space. In Proceedings of IJCAI Workshop Support
Vector Machines, pages 23–27, 1999.

28. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
Cambridge, 1985.



Bayesian Kernel Methods 115

29. P. J. Huber. Robust statistics: a review. Annals of Statistics, 43:1041, 1972.
30. T. Jaakkola, M. Meila, and T. Jebara. Maximum entropy discrimination. Technical

Report AITR-1668, Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, 1999.

31. T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in
Neural Information Processing Systems 11, pages 487–493, Cambridge, MA, 1999.
MIT Press.

32. T. S. Jaakkola and M. I. Jordan. Computing upper and lower bounds on likelihoods
in untractable networks. In Proceedings of the 12th Conference on Uncertainty in
AI. Morgan Kaufmann Publishers, 1996.

33. W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the
Fourth Berkeley Symposium on Mathematics, Statistics and Probability, volume 1,
pages 361–380, Berkeley, 1960. University of California Press.

34. T. Jebara and T. Jaakkola. Feature selection and dualities in maximum entropy
discrimination. In Uncertainty In Artificial Intelligence, 2000.

35. M. I. Jordan and C. M. Bishop. An Introduction to Probabilistic Graphical Models.
MIT Press, 2002.

36. M. I. Jordan, Z. Gharamani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. In Learning in Graphical Models, volume
M.I. Jordan, pages 105–162. Kluwer Academic, 1998.

37. M. S. Lewicki and T. J. Sejnowski. Learning nonlinear overcomplete representa-
tions for efficient coding. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors,
Advances in Neural Information Processing Systems 10, pages 556–562, Cambridge,
MA, 1998. MIT Press.

38. D. G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-
Wesley, Reading, MA, 1973.

39. H. Lütkepohl. Handbook of Matrices. John Wiley and Sons, Chichester, 1996.
40. D. J. C. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Computation

and Neural Systems, California Institute of Technology, Pasadena, CA, 1991.
41. D. J. C. MacKay. The evidence framework applied to classification networks.

Neural Computation, 4(5):720–736, 1992.
42. S. Mallat and Z. Zhang. Matching Pursuit in a time-frequency dictionary. IEEE

Transactions on Signal Processing, 41:3397–3415, 1993.
43. O. L. Mangasarian. Linear and nonlinear separation of patterns by linear program-

ming. Operations Research, 13:444–452, 1965.
44. B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM Journal

of Computing, 25(2):227–234, 1995.
45. R. Neal. Priors for infinite networks. Technical Report CRG-TR-94-1, Dept. of

Computer Science, University of Toronto, 1994.
46. R. Neal. Bayesian Learning in Neural Networks. Springer, 1996.
47. Radford M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.

Technical report, Dept. of Computer Science, University of Toronto, 1993. CRG-
TR-93-1.

48. B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381:607–609, 1996.

49. M. Opper and O. Winther. Mean field methods for classification with Gaussian
processes. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in
Neural Information Processing Systems 11, pages 309–315, Cambridge, MA, 1999.
MIT Press.



116 A.J. Smola and B. Schölkopf

50. M. Opper and O. Winther. Gaussian processes and SVM: mean field and leave-
one-out. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors,
Advances in Large Margin Classifiers, pages 311–326, Cambridge, MA, 2000. MIT
Press.

51. J. Platt. Probabilities for SV machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–73,
Cambridge, MA, 2000. MIT Press.

52. T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201–
209, 1975.

53. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C: The Art of Scientific Computing (2nd ed.). Cambridge University
Press, Cambridge, 1992. ISBN 0-521-43108-5.

54. C. Rasmussen. Evaluation of Gaussian Processes and Other Methods for Non-
Linear Regression. PhD thesis, Department of Computer Science, University of
Toronto, 1996. ftp://ftp.cs.toronto.edu/pub/carl/thesis.ps.gz.

55. G. Rätsch, S. Mika, and A.J. Smola. Adapting codes und embeddings for poly-
chotomies. In Neural Information Processing Systems, volume 15. MIT Press, 2002.
to appear.

56. B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, 1996.

57. R. T. Rockafellar. Convex Analysis, volume 28 of Princeton Mathematics Series.
Princeton University Press, 1970.

58. P. Ruján and M. Marchand. Computing the Bayes kernel classifier. In A. J. Smola,
P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 329–347, Cambridge, MA, 2000. MIT Press.

59. Pál Ruján. Playing billiards in version space. Neural Computation, 9:99–122, 1997.
60. B. Schölkopf, S. Mika, C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and

A. Smola. Input space vs. feature space in kernel-based methods. IEEE Transac-
tions on Neural Networks, 10(5):1000–1017, 1999.

61. B. Schölkopf, A. Smola, and K.-R. Müller. Kernel principal component analysis.
In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods—Support Vector Learning, pages 327–352. MIT Press, Cambridge, MA,
1999.

62. B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,
MA, 2002.

63. M. Seeger. Bayesian methods for support vector machines and Gaussian processes.
Master’s thesis, University of Edinburgh, Division of Informatics, 1999.

64. J. Skilling. Maximum Entropy and Bayesian Methods. Cambridge University Press,
1988.

65. A. Smola, B. Schölkopf, and G. Rätsch. Linear programs for automatic accuracy
control in regression. In Ninth International Conference on Artificial Neural Net-
works, Conference Publications No. 470, pages 575–580, London, 1999. IEE.

66. A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin,
1998. GMD Research Series No. 25.

67. A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 619–625. MIT Press, 2001.

68. A. J. Smola and B. Schölkopf. Sparse greedy matrix approximation for machine
learning. In P. Langley, editor, Proceedings of the International Conference on
Machine Learning, pages 911–918, San Francisco, 2000. Morgan Kaufmann Pub-
lishers.



Bayesian Kernel Methods 117

69. A.J. Smola and S.V.N. Vishwanathan. Cholesky factorization for rank-k modifi-
cations of diagonal matrices. SIAM Journal of Matrix Analysis, 2002. submitted.

70. C. Soon-Ong, A.J. Smola, and R.C. Williamson. Superkernels. In Neural Infor-
mation Processing Systems, volume 15. MIT Press, 2002. to appear.

71. D. J. Spiegelhalter and S. L. Lauritzen. Sequential updating of conditional proba-
bilities on directed graphical structures. Networks, 20:579–605, 1990.

72. J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer, New York,
second edition, 1993.

73. M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211–244, 2001.

74. V. Tresp. A Bayesian committee machine. Neural Computation, 12(11):2719–2741,
2000.

75. V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.
76. V. Vapnik, S. Golowich, and A. Smola. Support vector method for function ap-

proximation, regression estimation, and signal processing. In M. C. Mozer, M. I.
Jordan, and T. Petsche, editors, Advances in Neural Information Processing Sys-
tems 9, pages 281–287, Cambridge, MA, 1997. MIT Press.

77. G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Re-
gional Conference Series in Applied Mathematics. SIAM, Philadelphia, 1990.

78. C. Watkins. Dynamic alignment kernels. CSD-TR-98- 11, Royal Holloway, Uni-
versity of London, Egham, Surrey, UK, 1999.

79. G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge University
Press, Cambridge, UK, 2 edition, 1958.

80. C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in
Graphical Models. Kluwer Academic, 1998.

81. C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In Micheal Jordan, editor, Learning and Inference
in Graphical Models, pages 599–621. MIT Press, 1999.

82. C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural
Information Processing Systems 8, pages 514–520, Cambridge, MA, 1996. MIT
Press.

83. Christoper K. I. Williams and Matthias Seeger. Using the Nystrom method to
speed up kernel machines. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors,
Advances in Neural Information Processing Systems 13, pages 682–688, Cambridge,
MA, 2001. MIT Press.

84. Christopher K. I. Williams and David Barber. Bayesian classification with Gaus-
sian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI, 20(12):1342–1351, 1998.

85. T. Zhang. Some sparse approximation bounds for regression problems. In Proc.
18th International Conf. on Machine Learning, pages 624–631. Morgan Kaufmann,
San Francisco, CA, 2001.


	Introduction
	Bayesics
	Maximum Likelihood and Bayes Rule
	Examples of Maximum Likelihood Estimation
	Inference
	Likelihood, Priors, and Hyperpriors

	Gaussian Processes
	Correlated Observations
	Definitions and Basic Notions
	Simple Hypotheses
	Regression
	Classification
	Adjusting Hyperparameters for Gaussian Processes

	Implementation of Gaussian Processes
	Laplace Approximation
	Variational Methods
	Approximate Solutions for Gaussian Process Regression
	Solutions on Subspaces
	Implementation Issues
	Hardness and Approximation Results
	Experimental Evidence

	Laplacian Processes
	Examples of Factorizing Priors
	Samples from the Prior
	Estimation
	Confidence Intervals for Gaussian Noise
	An Equivalent Gaussian Process

	Relevance Vector Machines and Deconvolution
	Turning Priors into Hyperpriors
	Further Expansions
	Regression with Hyperparameters
	Classification

	Summary

