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Abstract. We introduce a family of kernels on graphs based on the
notion of regularization operators. This generalizes in a natural way the
notion of regularization and Greens functions, as commonly used for
real valued functions, to graphs. It turns out that diffusion kernels can
be found as a special case of our reasoning. We show that the class of
positive, monotonically decreasing functions on the unit interval leads to
kernels and corresponding regularization operators.

1 Introduction

There has recently been a surge of interest in learning algorithms that operate on
input spaces X other than Rn, specifically, discrete input spaces, such as strings,
graphs, trees, automata etc.. Since kernel-based algorithms, such as Support
Vector Machines, Gaussian Processes, Kernel PCA, etc. capture the structure
of X via the kernel K : X × X 7→ R, as long as we can define an appropriate
kernel on our discrete input space, these algorithms can be imported wholesale,
together with their error analysis, theoretical guarantees and empirical success.

One of the most general representations of discrete metric spaces are graphs.
Even if all we know about our input space are local pairwise similarities between
points xi, xj ∈ X, distances (e.g shortest path length) on the graph induced
by these similarities can give a useful, more global, sense of similarity between
objects. In their work on Diffusion Kernels, Kondor and Lafferty [2002] gave
a specific construction for a kernel capturing this structure. Belkin and Niyogi
[2002] proposed an essentially equivalent construction in the context of approx-
imating data lying on surfaces in a high dimensional embedding space, and in
the context of leveraging information from unlabeled data.

In this paper we put these earlier results into the more principled framework
of Regularization Theory. We propose a family of regularization operators (equiv-
alently, kernels) on graphs that include Diffusion Kernels as a special case, and
show that this family encompasses all possible regularization operators invariant
under permutations of the vertices in a particular sense.
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Outline of the Paper: Section 2 introduces the concept of the graph Laplacian
and relates it to the Laplace operator on real valued functions. Next we define
an extended class of regularization operators and show why they have to be es-
sentially a function of the Laplacian. An analogy to real valued Greens functions
is established in Section 3.3, and efficient methods for computing such functions
are presented in Section 4. We conclude with a discussion.

2 Laplace Operators

An undirected unweighted graph G consists of a set of vertices V numbered 1 to
n, and a set of edges E (i.e., pairs (i, j) where i, j∈V and (i, j)∈E ⇔ (j, i)∈E).
We will sometimes write i ∼ j to denote that i and j are neighbors, i.e. (i, j)∈E.
The adjacency matrix of G is an n×n real matrix W , with Wij =1 if i ∼ j, and
0 otherwise (by construction, W is symmetric and its diagonal entries are zero).
These definitions and most of the following theory can trivially be extended to
weighted graphs by allowing Wij ∈ [0,∞).

Let D be an n×n diagonal matrix with Dii =
∑

j Wij . The Laplacian of G
is defined as L := D−W and the Normalized Laplacian is L̃ := D−

1
2LD−

1
2 =

I−D− 1
2WD−

1
2 . The following two theorems are well known results from spectral

graph theory [Chung-Graham, 1997]:

Theorem 1 (Spectrum of L̃). L̃ is a symmetric, positive semidefinite matrix,
and its eigenvalues λ1, λ2, . . . , λn satisfy 0 ≤ λi ≤ 2. Furthermore, the number
of eigenvalues equal to zero equals to the number of disjoint components in G.

The bound on the spectrum follows directly from Gerschgorin’s Theorem.

Theorem 2 (L and L̃ for Regular Graphs). Now let G be a regular graph
of degree d, that is, a graph in which every vertex has exactly d neighbors. Then
L = d I−W and L̃ = I− 1

dW = 1
dL. Finally, W,L, L̃ share the same eigenvectors

{vi}, where vi = λ−1
i Wvi = (d− λi)−1Lvi = (1− d−1λi)−1L̃vi for all i.

L and L̃ can be regarded as linear operators on functions f :V 7→R, or, equiv-
alently, on vectors f = (f1, f2, . . . , fn)>. We could equally well have defined L
by

〈f , Lf〉 = f>Lf = −1
2

∑
i∼j

(fi − fj)2 for all f ∈Rn, (1)

which readily generalizes to graphs with a countably infinite number of vertices.
The Laplacian derives its name from its analogy with the familiar Laplacian

operator ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ . . . + ∂2

∂x2
m

on continuous spaces. Regarding (1) as
inducing a semi-norm ‖f ‖L = 〈f , Lf〉 on Rn, the analogous expression for ∆
defined on a compact space Ω is

‖ f ‖∆ = 〈f,∆f〉 =
∫

Ω

f (∆f) dω =
∫

Ω

(∇f) · (∇f) dω . (2)

Both (1) and (2) quantify how much f and f vary locally, or how “smooth” they
are over their respective domains.
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More explicitly, when Ω = Rm, up to a constant, −L is exactly the finite
difference discretization of ∆ on a regular lattice:

∆f(x) =
m∑

i=1

∂2

∂x2
i

f ≈
m∑

i=1

∂
∂xi

f(x+ 1
2ei)− ∂

∂xi
f(x− 1

2ei)
δ

≈
m∑

i=1

f(x+ ei) + f(x− ei)− 2f(x)
δ2

=
1
δ2

m∑
i=1

(fx1,...,xi+1,...,xm + fx1,...,xi−1,...,xm − 2fx1,...,xm) = − 1
δ2

[Lf ]x1,...,xm ,

where e1, e2, . . . ,em is an orthogonal basis for Rm normalized to ‖ ei ‖ = δ,
the vertices of the lattice are at x = x1e1 + . . . + xmem with integer valued
coordinates xi∈N, and fx1,x2,...,xm

=f(x).
Moreover, both the continuous and the dis-
crete Laplacians are canonical operators on
their respective domains, in the sense that
they are invariant under certain natural
transformations of the underlying space, and
in this they are essentially unique.

�������� �������� �������� �������� �������� �������� ���������������� �������� �������� �������� �������� �������� ���������������� �������� �������� �������� �������� �������� ��������

Regular grid in two dimensions

The Laplace operator ∆ is the unique self-adjoint linear second order differ-
ential operator invariant under transformations of the coordinate system under
the action of the special orthogonal group SOm, i.e. invariant under rotations.
This well known result can be seen by using Schur’s lemma and the fact that
SOm is irreducible on Rm.

We now show a similar result for L. Here the permutation group plays a
similar role to SOm. We need some additional definitions: denote by Sn the
group of permutations on {1, 2, . . . , n} with π ∈ Sn being a specific permutation
taking i ∈ {1, 2, . . . n} to π(i). The so-called defining representation of Sn consists
of n×n matrices Ππ, such that [Ππ]i,π(i)=1 and all other entries of Ππ are zero.

Theorem 3 (Permutation Invariant Linear Functions on Graphs). Let
L be an n × n symmetric real matrix, linearly related to the n × n adjacency
matrix W , i.e. L = T[W ] for some linear operator L in a way invariant to
permutations of vertices in the sense that

Π>π T[W ]Ππ = T
[
Π>π WΠπ

]
(3)

for any π ∈ Sn. Then L is related to W by a linear combination of the follow-
ing three operations: identity; row/column sums; overall sum; row/column sum
restricted to the diagonal of L; overall sum restricted to the diagonal of W .

Proof Let
Li1i2 = T[W ]i1i2 :=

n∑
i3=1

n∑
i4=1

T i1i2i3i4 Wi3i4 (4)

with T ∈Rn4
. Eq. (3) then implies Tπ(i1)π(i2)π(i3)π(i4) = Ti1i2i3i4 for any π∈Sn.
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The indices of T can be partitioned by the equality relation on their values,
e.g. (2, 5, 2, 7) is of the partition type [ 1 3 | 2 | 4 ], since i1 = i3, but i2 6= i1, i4 6= i1
and i2 6= i4. The key observation is that under the action of the permutation
group, elements of T with a given index partition structure are taken to elements
with the same index partition structure, e.g. if i1 = i3 then π(i1) = π(i3) and
if i1 6= i3, then π(i1) 6=π(i3). Furthermore, an element with a given index index
partition structure can be mapped to any other element of T with the same
index partition structure by a suitable choice of π.

Hence, a necessary and sufficient condition for (4) is that all elements of
T of a given index partition structure be equal. Therefore, T must be a linear
combination of the following tensors (i.e. multilinear forms):

Ai1i2i3i4 = 1

B
[1,2]
i1i2i3i4

= δi1i2 B
[1,3]
i1i2i3i4

= δi1i3 B
[1,4]
i1i2i3i4

= δi1i4

B
[2,3]
i1i2i3i4

= δi2i3 B
[2,4]
i1i2i3i4

= δi2i4 B
[3,4]
i1i2i3i4

= δi3i4

C
[1,2,3]
i1i2i3i4

= δi1i2δi2i3 C
[2,3,4]
i1i2i3i4

= δi2i3δi3i4

C
[3,4,1]
i1i2i3i4

= δi3i4δi4i1 C
[4,1,2]
i1i2i3i4

= δi4i1δi1i2

D
[1,2][3,4]
i1i2i3i4

= δi1i2δi3i4 D
[1,3][2,4]
i1i2i3i4

= δi1i3δi2i4 D
[1,4][2,3]
i1i2i3i4

= δi1i4δi2i3

E
[1,2,3,4]
i1i2i3i4

= δi1i2δi1i3δi1i4 .

The tensor A puts the overall sum in each element of L, while B[1,2] returns the
the same restricted to the diagonal of L.

SinceW has vanishing diagonal,B[3,4], C [2,3,4], C [3,4,1],D[1,2][3,4] andE[1,2,3,4]

produce zero. Without loss of generality we can therefore ignore them.
By symmetry of W , the pairs (B[1,3], B[1,4]), (B[2,3], B[2,4]), (C [1,2,3], C [4,1,2])

have the same effect on W , hence we can set the coefficient of the second member
of each to zero. Furthermore, to enforce symmetry on L, the coefficient of B[1,3]

and B[2,3] must be the same (without loss of generality 1) and this will give the
row/column sum matrix (

∑
k Wik) + (

∑
k Wkl).

Similarly, C [1,2,3] and C [4,1,2] must have the same coefficient and this will
give the row/column sum restricted to the diagonal: δij [(

∑
k Wik) + (

∑
k Wkl)].

Finally, by symmetry of W , D[1,3][2,4] and D[1,4][2,3] are both equivalent to
the identity map.

The various row/column sum and overall sum operations are uninteresting from
a graph theory point of view, since they do not heed to the topology of the graph.
Imposing the conditions that each row and column in L must sum to zero, we
recover the graph Laplacian. Hence, up to a constant factor and trivial additive
components, the graph Laplacian (or the normalized graph Laplacian if we wish
to rescale by the number of edges per vertex) is the only “invariant” differential
operator for givenW (or its normalized counterpart W̃ ). Unless stated otherwise,
all results below hold for both L and L̃ (albeit with a different spectrum) and we
will, in the following, focus on L̃ due to the fact that its spectrum is contained
in [0, 2].
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3 Regularization

The fact that L induces a semi-norm on f which penalizes the changes between
adjacent vertices, as described in (1), indicates that it may serve as a tool to
design regularization operators.

3.1 Regularization via the Laplace Operator

We begin with a brief overview of translation invariant regularization operators
on continuous spaces and show how they can be interpreted as powers of ∆. This
will allow us to repeat the development almost verbatim with L̃ (or L) instead.

Some of the most successful regularization functionals on Rn, leading to
kernels such as the Gaussian RBF, can be written as [Smola et al., 1998]

〈f, Pf〉 :=
∫
|f̃(ω)|2 r(‖ω‖2) dω = 〈f, r(∆)f〉 . (5)

Here f ∈ L2(Rn), f̃(ω) denotes the Fourier transform of f , r(‖ω‖2) is a function
penalizing frequency components |f̃(ω)| of f , typically increasing in ‖ω‖2, and
finally, r(∆) is the extension of r to operators simply by applying r to the
spectrum of ∆ [Dunford and Schwartz, 1958]

〈f, r(∆)f ′〉 =
∑

i

〈f, ψi〉 r(λi) 〈ψi, f
′〉

where {(ψi, λi)} is the eigensystem of ∆. The last equality in (5) holds because
applications of ∆ become multiplications by ‖ω‖2 in Fourier space. Kernels are
obtained by solving the self-consistency condition [Smola et al., 1998]

〈k(x, ·), Pk(x′, ·)〉 = k(x, x′) . (6)

One can show that k(x, x′) = κ(x− x′), where κ is equal to the inverse Fourier
transform of r−1(‖ω‖2). Several r functions have been known to yield good
results. The two most popular are given below:

r(‖ω‖2) k(x, x′) r(∆)

Gaussian RBF exp
(
σ2

2
‖ω‖2

)
exp

(
− 1

2σ2
‖x− x′‖2

) ∞∑
i=0

σ2i

i!
∆i

Laplacian RBF 1 + σ2‖ω‖2 exp
(
− 1
σ
‖x− x′‖

)
1 + σ2∆

In summary, regularization according to (5) is carried out by penalizing f̃(ω)
by a function of the Laplace operator. For many results in regularization theory
one requires r(‖ω‖2) →∞ for ‖ω‖2 →∞.

3.2 Regularization via the Graph Laplacian

In complete analogy to (5), we define a class of regularization functionals on
graphs as

〈f , Pf〉 := 〈f , r(L̃)f〉 . (7)
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Fig. 1. Regularization function r(λ). From left to right: regularized Laplacian (σ2 = 1),
diffusion process (σ2 = 1), one-step random walk (a = 2), 4-step random walk (a = 2),
inverse cosine.

Here r(L̃) is understood as applying the scalar valued function r(λ) to the eigen-
values of L̃, that is,

r(L̃) :=
m∑

i=1

r(λi) viv
>
i , (8)

where {(λi,vi)} constitute the eigensystem of L̃. The normalized graph Lapla-
cian L̃ is preferable to L, since L̃’s spectrum is contained in [0, 2]. The obvious
goal is to gain insight into what functions are appropriate choices for r.

– From (1) we infer that vi with large λi correspond to rather uneven functions
on the graph G. Consequently, they should be penalized more strongly than
vi with small λi. Hence r(λ) should be monotonically increasing in λ.

– Requiring that r(L̃) � 0 imposes the constraint r(λ) ≥ 0 for all λ ∈ [0, 2].
– Finally, we can limit ourselves to r(λ) expressible as power series, since the

latter are dense in the space of C0 functions on bounded domains.

In Section 3.5 we will present additional motivation for the choice of r(λ) in the
context of spectral graph theory and segmentation. As we shall see, the following
functions are of particular interest:

r(λ) = 1 + σ2λ (Regularized Laplacian) (9)

r(λ) = exp
(
σ2/2λ

)
(Diffusion Process) (10)

r(λ) = (aI − λ)−1 with a ≥ 2 (One-Step Random Walk) (11)

r(λ) = (aI − λ)−p with a ≥ 2 (p-Step Random Walk) (12)

r(λ) = (cosλπ/4)−1 (Inverse Cosine) (13)

Figure 1 shows the regularization behavior for the functions (9)-(13).

3.3 Kernels

The introduction of a regularization matrix P = r(L̃) allows us to define a
Hilbert space H on Rm via 〈f, f〉H := 〈f , Pf〉. We now show that H is a
reproducing kernel Hilbert space.
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Theorem 4. Denote by P ∈Rm×m a (positive semidefinite) regularization ma-
trix and denote by H the image of Rm under P . Then H with dot product
〈f, f〉H := 〈f , Pf〉 is a Reproducing Kernel Hilbert Space and its kernel is
k(i, j) =

[
P−1

]
ij
, where P−1 denotes the pseudo-inverse if P is not invertible.

Proof Since P is a positive semidefinite matrix, we clearly have a Hilbert space
on PRm. To show the reproducing property we need to prove that

f(i) = 〈f, k(i, ·)〉H. (14)

Note that k(i, j) can take on at most m2 different values (since i, j ∈ [1 : m]).
In matrix notation (14) means that for all f ∈ H

f(i) = f>PKi,: for all i ⇐⇒ f> = f>PK. (15)

The latter holds if K = P−1 and f ∈ PRm, which proves the claim.

In other words, K is the Greens function of P , just as in the continuous case. The
notion of Greens functions on graphs was only recently introduced by Chung-
Graham and Yau [2000] for L. The above theorem extended this idea to arbitrary
regularization operators r̂(L̃).

Corollary 1. Denote by P = r(L̃) a regularization matrix, then the correspond-
ing kernel is given by K = r−1(L̃), where we take the pseudo-inverse wherever
necessary. More specifically, if {(vi, λi)} constitute the eigensystem of L̃, we have

K =
m∑

i=1

r−1(λi) viv
>
i where we define 0−1 ≡ 0. (16)

3.4 Examples of Kernels

By virtue of Corollary 1 we only need to take (9)-(13) and plug the definition
of r(λ) into (16) to obtain formulae for computing K. This yields the following
kernel matrices:

K = (I + σ2L̃)−1 (Regularized Laplacian) (17)

K = exp(−σ2/2L̃) (Diffusion Process) (18)

K = (aI − L̃)p with a ≥ 2 (p-Step Random Walk) (19)

K = cos L̃π/4 (Inverse Cosine) (20)

Equation (18) corresponds to the diffusion kernel proposed by Kondor and Laf-
ferty [2002], for which K(x, x′) can be visualized as the quantity of some sub-
stance that would accumulate at vertex x′ after a given amount of time if we
injected the substance at vertex x and let it diffuse through the graph along
the edges. Note that this involves matrix exponentiation defined via the limit
K = exp(B) = limn→∞(I+B/n)n as opposed to component-wise exponentiation
Ki,j = exp(Bi,j).
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Fig. 2. The first 8 eigenvectors of the normalized graph Laplacian corresponding to the
graph drawn above. Each line attached to a vertex is proportional to the value of the
corresponding eigenvector at the vertex. Positive values (red) point up and negative
values (blue) point down. Note that the assignment of values becomes less and less
uniform with increasing eigenvalue (i.e. from left to right).

For (17) it is typically more efficient to deal with the inverse of K, as it
avoids the costly inversion of the sparse matrix L̃. Such situations arise, e.g., in
Gaussian Process estimation, where K is the covariance matrix of a stochastic
process [Williams, 1999].
Regarding (19), recall that (aI − L̃)p =
((a−1)I+W̃ )p is up to scaling terms equiv-
alent to a p-step random walk on the graph
with random restarts (see Section A for de-
tails). In this sense it is similar to the dif-
fusion kernel. However, the fact that K in-
volves only a finite number of products of
matrices makes it much more attractive for
practical purposes. In particular, entries in
Kij can be computed cheaply using the fact
that L̃ is a sparse matrix. A nearest neighbor graph.

Finally, the inverse cosine kernel treats lower complexity functions almost
equally, with a significant reduction in the upper end of the spectrum. Figure 2
shows the leading eigenvectors of the graph drawn above and Figure 3 provide
examples of some of the kernels discussed above.

3.5 Clustering and Spectral Graph Theory

We could also have derived r(L̃) directly from spectral graph theory: the eigen-
vectors of the graph Laplacian correspond to functions partitioning the graph
into clusters, see e.g., [Chung-Graham, 1997, Shi and Malik, 1997] and the ref-
erences therein. In general, small eigenvalues have associated eigenvectors which
vary little between adjacent vertices. Finding the smallest eigenvectors of L̃ can
be seen as a real-valued relaxation of the min-cut problem.3

For instance, the smallest eigenvalue of L̃ is 0, its corresponding eigenvector
is D

1
2 1n with 1n := (1, . . . , 1) ∈ Rn. The second smallest eigenvalue/eigenvector

pair, also often referred to as the Fiedler-vector, can be used to split the graph

3 Only recently, algorithms based on the celebrated semidefinite relaxation of the min-
cut problem by Goemans and Williamson [1995] have seen wider use [Torr, 2003] in
segmentation and clustering by use of spectral bundle methods.
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Fig. 3. Top: regularized graph Laplacian; Middle: diffusion kernel with σ = 5, Bottom:
4-step random walk kernel. Each figure displays Kij for fixed i. The value Kij at vertex
i is denoted by a bold line. Note that only adjacent vertices to i bear significant value.

into two distinct parts [Weiss, 1999, Shi and Malik, 1997], and further eigenvec-
tors with larger eigenvalues have been used for more finely-grained partitions of
the graph. See Figure 2 for an example.

Such a decomposition into functions of increasing complexity has very de-
sirable properties: if we want to perform estimation on the graph, we will wish
to bias the estimate towards functions which vary little over large homogeneous
portions 4. Consequently, we have the following interpretation of 〈f, f〉H. As-
sume that f =

∑
i βivi, where {(vi, λi)} is the eigensystem of L̃. Then we can

rewrite 〈f, f〉H to yield

〈f , r(L̃)f〉 =

〈∑
i

βivi,
∑

j

r(λj)vjv
>
j

∑
l

βlvl

〉
=

∑
i

β2
i r(λi). (21)

This means that the components of f which vary a lot over coherent clusters
in the graph are penalized more strongly, whereas the portions of f , which are
essentially constant over clusters, are preferred. This is exactly what we want.

3.6 Approximate Computation

Often it is not necessary to know all values of the kernel (e.g., if we only observe
instances from a subset of all positions on the graph). There it would be wasteful
to compute the full matrix r(L)−1 explicitly, since such operations typically scale
with O(n3). Furthermore, for large n it is not desirable to compute K via (16),
that is, by computing the eigensystem of L̃ and assembling K directly.
4 If we cannot assume a connection between the structure of the graph and the values

of the function to be estimated on it, the entire concept of designing kernels on
graphs obviously becomes meaningless.



10 Alexander Smola and Risi Kondor

Instead, we would like to take advantage of the fact that L̃ is sparse, and con-
sequently any operation L̃α has cost at most linear in the number of nonzero ele-
ments of L̃, hence the cost is bounded by O(|E|+n). Moreover, if d is the largest
degree of the graph, then computing Lpei costs at most |E |

∑p−1
i=1 (min(d+1, n))i

operations: at each step the number of non-zeros in the rhs decreases by at most
a factor of d+1. This means that as long as we can approximate K = r−1(L̃) by
a low order polynomial, say ρ(L̃) :=

∑N
i=0 βiL̃

i, significant savings are possible.
Note that we need not necessarily require a uniformly good approximation

and put the main emphasis on the approximation for small λ. However, we need
to ensure that ρ(L̃) is positive semidefinite.

Diffusion Kernel: The fact that the series r−1(x) = exp(−βx) =
∑∞

m=0(−β)m xm

m!
has alternating signs shows that the approximation error at r−1(x) is bounded
by (2β)N+1

(N+1)! , if we use N terms in the expansion (from Theorem 1 we know that

‖L̃‖ ≤ 2). For instance, for β = 1, 10 terms are sufficient to obtain an error of
the order of 10−4.

Variational Approximation: In general, if we want to approximate r−1(λ) on
[0, 2], we need to solve the L∞([0, 2]) approximation problem

minimize
β,ε

ε subject to

∣∣∣∣∣
N∑

i=0

βiλ
i − r−1(λ)

∣∣∣∣∣ ≤ ε ∀ λ ∈ [0, 2] (22)

Clearly, (22) is equivalent to minimizing supL̃ ‖ρ(L̃)− r−1(L̃)‖, since the matrix
norm is determined by the largest eigenvalues, and we can find L̃ such that the
discrepancy between ρ(λ) and r−1(λ) is attained. Variational problems of this
form have been studied in the literature, and their solution may provide much
better approximations to r−1(λ) than a truncated power series expansion.

4 Products of Graphs

As we have already pointed out, it is very expensive to compute K for arbitrary
r̂ and L̃. For special types of graphs and regularization, however, significant
computational savings can be made.

4.1 Factor Graphs

The work of this section is a direct extension of results by Ellis [2002] and
Chung-Graham and Yau [2000], who study factor graphs to compute inverses of
the graph Laplacian.

Definition 1 (Factor Graphs). Denote by (V,E) and (V ′, E′) the vertices V
and edges E of two graphs, then the factor graph (Vf , Ef ) := (V,E)⊗ (V ′, E′) is
defined as the graph where (i, i′)∈Vf if i∈V and i′∈V ′; and ((i, i′), (j, j′)) ∈ Ef

if and only if either (i, j)∈E and i′=j′ or (i′, j′)∈E′ and i=j.
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For instance, the factor graph of two rings is a torus. The nice property of factor
graphs is that we can compute the eigenvalues of the Laplacian on products very
easily (see e.g., Chung-Graham and Yau [2000]):

Theorem 5 (Eigenvalues of Factor Graphs). The eigenvalues and eigen-
vectors of the normalized Laplacian for the factor graph between a regular graph
of degree d with eigenvalues {λj} and a regular graph of degree d′ with eigenvalues
{λ′l} are of the form:

λfact
j,l =

d

d+ d′
λj +

d′

d+ d′
λ′l (23)

and the eigenvectors satisfy ej,l
(i,i′) = ej

ie
′l
i′ , where ej is an eigenvector of L̃ and

e′l is an eigenvector of L̃′.

This allows us to apply Corollary 1 to obtain an expansion of K as

K = (r(L))−1 =
∑
j,l

r−1(λjl) ej,l
(
ej,l

)>
. (24)

While providing an explicit recipe for the computation of Kij without the need
to compute the full matrix K, this still requires O(n2) operations per entry,
which may be more costly than what we want (here n is the number of vertices
of the factor graph).

Two methods for computing (24) become evident at this point: if r has a
special structure, we may exploit this to decompose K into the products and
sums of terms depending on one of the two graphs alone and pre-compute these
expressions beforehand. Secondly, if one of the two terms in the expansion can
be computed for a rather general class of values of r(x), we can pre-compute this
expansion and only carry out the remainder corresponding to (24) explicitly.

4.2 Product Decomposition of r(x)

Central to our reasoning is the observation that for certain r(x), the term 1
r(a+b)

can be expressed in terms of a product and sum of terms depending on a and b
only. We assume that 1

r(a+ b)
=

M∑
m=1

ρn(a)ρ̃n(b). (25)

In the following we will show that in such situations the kernels on factor graphs
can be computed as an analogous combination of products and sums of kernel
functions on the terms constituting the ingredients of the factor graph. Before
we do so, we briefly check that many r(x) indeed satisfy this property.

exp(−β(a+ b)) = exp(−βa) exp(−βb) (26)

(A− (a+ b)) =
(
A

2
− a

)
+

(
A

2
− b

)
(27)

(A− (a+ b))p =
p∑

n=0

(
p

n

) (
A

2
− a

)n (
A

2
− b

)p−n

(28)

cos
(a+ b)π

4
= cos

aπ

4
cos

bπ

4
− sin

aπ

4
sin

bπ

4
(29)
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In a nutshell, we will exploit the fact that for products of graphs the eigenvalues
of the joint graph Laplacian can be written as the sum of the eigenvalues of the
Laplacians of the constituent graphs. This way we can perform computations on
ρn and ρ̃n separately without the need to take the other part of the the product
of graphs into account. Define

km(i, j) :=
∑

l

ρl

(
dλl

d+ d′

)
el
ie

l
j and k̃m(i′, j′) :=

∑
l

ρ̃l

(
dλl

d+ d′

)
ẽl
i′ ẽ

l
j′ . (30)

Then we have the following composition theorem:

Theorem 6. Denote by (V,E) and (V ′, E′) connected regular graphs of degrees
d with m vertices (and d′, m′ respectively) and normalized graph Laplacians
L̃, L̃′. Furthermore denote by r(x) a rational function with matrix-valued exten-
sion r̂(X). In this case the kernel K corresponding to the regularization operator
r̂(L) on the product graph of (V,E) and (V ′, E′) is given by

k((i, i′), (j, j′)) =
M∑

m=1

km(i, j)k̃m(i′, j′) (31)

Proof Plug the expansion of 1
r(a+b) as given by (25) into (24) and collect terms.

From (26) we immediately obtain the corollary (see Kondor and Lafferty [2002])
that for diffusion processes on factor graphs the kernel on the factor graph is
given by the product of kernels on the constituents, that is k((i, i′), (j, j′)) =
k(i, j)k′(i′, j′).

The kernels km and k̃m can be computed either by using an analytic solution
of the underlying factors of the graph or alternatively they can be computed
numerically. If the total number of kernels kn is small in comparison to the
number of possible coordinates this is still computationally beneficial.

4.3 Composition Theorems

If no expansion as in (31) can be found, we may still be able to compute ker-
nels by extending a reasoning from [Ellis, 2002]. More specifically, the following
composition theorem allows us to accelerate the computation in many cases,
whenever we can parameterize (r̂(L + αI))−1 in an efficient way. For this pur-
pose we introduce two auxiliary functions

Kα(i, j) :=
(
r̂

(
d

d+ d′
L+

αd′

d+ d′
I

))−1

=
∑

l

(
r

(
dλl + αd′

d+ d′

))−1

el(i)el(j)

G′α(i, j) := (L′ + αI)−1 =
∑

l

1
λl + α

el(i)el(j). (32)

In some cases Kα(i, j) may be computed in closed form, thus obviating the need
to perform expensive matrix inversion, e.g., in the case where the underlying
graph is a chain [Ellis, 2002] and Kα = Gα.
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Theorem 7. Under the assumptions of Theorem 6 we have

K((j, j′), (l, l′)) =
1

2πi

∫
C

Kα(j, l)G′−α(j′, l′)dα =
∑

v

Kλv (j, l)ev
j′ev

l′ (33)

where C ⊂ C is a contour of the C containing the poles of (V ′, E′) including 0.

For practical purposes, the third term of (33) is more amenable to computation.
Proof From (24) we have

K((j, j′), (l, l′)) =
∑
u,v

(
r

(
dλu + d′λv

d+ d′

))−1

eu
j e

u
l e

v
j′ev

l′ (34)

=
1

2πi

∫
C

∑
u

(
r

(
dλu + d′α

d+ d′

))−1

eu
j e

u
l

∑
v

1
λv − α

ev
j′ev

l′dα

Here the second equality follows from the fact that the contour integral over
a pole p yields

∫
C

f(α)
p−αdα = 2πif(p), and the claim is verified by checking the

definitions of Kα and G′α. The last equality can be seen from (34) by splitting
up the summation over u and v.

5 Conclusions

We have shown that the canonical family of kernels on graphs are of the form
of power series in the graph Laplacian. Equivalently, such kernels can be char-
acterized by a real valued function of the eigenvalues of the Laplacian. Special
cases include diffusion kernels, the regularized Laplacian kernel and p-step ran-
dom walk kernels. We have developed the regularization theory of learning on
graphs using such kernels and explored methods for efficiently computing and
approximating the kernel matrix.
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A Link Analysis

Rather surprisingly, our approach to regularizing functions on graphs bears re-
semblance to algorithms for scoring web pages such as PageRank [Page et al.,
1998], HITS [Kleinberg, 1999], and randomized HITS [Zheng et al., 2001]. More
specifically, the random walks on graphs used in all three algorithms and the
stationary distributions arising from them are closely connected with the eigen-
system of L and L̃ respectively.

We begin with an analysis of PageRank. Given a set of web pages and links
between them we construct a directed graph in such a way that pages correspond
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to vertices and edges correspond to links, resulting in the (nonsymmetric) matrix
W . Next we consider the random walk arising from following each of the links
with equal probability in addition to a random restart at an arbitrary vertex with
probability ε. This means that the probability distribution over states follows the
discrete time evolution equation

p(t+ 1) =
[
εI + (1− ε)WD−1

]
p(t) (35)

where D is a diagonal matrix with Dii =
∑

j Wij and p is the vector of proba-
bilities of being on a certain page. The PageRank is then determined from the
stationary distribution of p. Clearly the largest eigenvalue/eigenvector pair of[
εI + (1− ε)WD−1

]
will determine the stationary distribution p(∞), and the

contribution of the other eigenvectors decays geometrically (one may conjecture
that in practice only few iterations are needed).

Now consider the same formalism in the context of a 1-step random walk
(11): here one computes aI − L̃ = (a − 1)I +D−

1
2WD−

1
2 . Rescaling by 1

a and
setting ε = 1−a

a yields a matrix with the same spectrum as the linear difference
equation (35). Furthermore, for all eigenvectors vi of εI + (1− ε)WD−1 we can
find eigenvectors of aI − L̃ of the form D−

1
2 vi.

The main difference, however, is that while graphs arising from web pages
are directed (following the direction of the link), which leads to asymmetric W ,
the graphs we studied in this paper are all undirected, leading to symmetric W
and L, L̃. We can now view the assignment of a certain PageRank to a page,
as achieved via the stationary distribution of the random walk, as a means of
finding a “simple” function on the graph of web pages.

In HITS [Kleinberg, 1999] one uses the concept of hubs and authorities to
obtain a ranking between web pages. Given the graph G, as represented by W ,

one seeks to find the largest eigenvalue of the matrix M :=
[

0 W
W> 0

]
, which

can be shown to be equivalent to finding singular value decomposition of W
[Zheng et al., 2001] (the latter is also used if we wish to perform latent semantic
indexing on the matrixW ). More specifically, with {vi, λi} being the eigensystem
of WW> (we assume that the eigenvalues are sorted in increasing order), one
uses v2

mj as the weight of page j.
This setting was modified by Zheng et al. [2001] to accommodate for a larger

subspace (Subspace HITS), which renders the system more robust with respect
to small perturbations. More specifically, they use

∑m
i=1 g(λi)v2

ij for some mono-
tonically increasing function g(λ) to assess the relevance of page j. The latter,
however, is identical to the diagonal entry of g(W ). Note the similarity to 7,
where we used an essentially rescaled version of W to determine the complex-
ity of the functions under consideration. More specifically, if for regular graphs
of order d we set g(λ) = 1

r(1−λ/d) we can see that the HITS rank assigned to
pages j is simply the “length” of the corresponding page in ”feature space” as
given by Kii. In other words, pages with a high HITS rank correspond to unit
vectors which are considered simple with respect to the regularizer induced by
the underlying graph.
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