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1 Introduction

Over the past ten years kernel methods such as Support Vec-
tor Machines and Gaussian Processes have become a staple
for modern statistical estimation and machine learning. The
groundwork for this field was laid in the second half of the
20th century by Vapnik and Chervonenkis (geometrical for-
mulation of an optimal separating hyperplane, capacity mea-
sures for margin classifiers), Mangasarian (linear separation
by a convex function class), Aronszajn (Reproducing Kernel
Hilbert Spaces), Aizerman, Braverman, and Rozonoér (non-
linearity via kernel feature spaces), Arsenin and Tikhonov
(regularization and ill-posed problems), and Wahba (regular-
ization in Reproducing Kernel Hilbert Spaces).

However, it took until the early 90s until positive definite
kernels became a popular and viable means of estimation.
Firstly this was due to the lack of sufficiently powerful hard-
ware, since kernel methods require the computation of the so-
called kernel matrix, which requires quadratic storage in the
number of data points (a computer of at least a few megabytes
of memory is required to deal with 1000+ points). Secondly,
many of the previously mentioned techniques lay dormant or
existed independently and only recently the (in hindsight ob-
vious) connections were made to turn this into a practical
estimation tool. Nowadays, a variety of good reference books
exist and anyone serious about dealing with kernel methods
is recommended to consult one of the following works for fur-
ther information [15, 5, 8, 12]. Below, we will summarize the
main ideas of kernel method and support vector machines,
building on the summary given in [13].

2 Learning from Data

One of the fundamental problems of learning theory is the
following: suppose we are given two classes of objects. We
are then faced with a new object, and we have to assign it to
one of the two classes. This problem, referred to as (binary)
pattern recognition, can be formalized as follows: we are given
empirical data

(x1, y1), . . . , (xm, ym) ∈ X × {±1}, (1)

and we want to estimate a decision function f : X → {±1}.
Here, X is some nonempty set from which the patterns xi

are taken, usually referred to as the domain; the yi are called
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labels or targets. A good decision function will have the prop-
erty that it generalizes to unseen data points, achieving a
small value of the risk

R[f ] =
∫

1
2
|f(x)− y| dP(x, y). (2)

In other words, on average over an unknown distribution P
which is assumed to generate both training and test data,
we would like to have a small error. Here, the error is mea-
sured by means of the zero-one loss function c(x, y, f(x)) :=
1
2 |f(x) − y|. The loss is 0 if (x, y) is classified correctly, and
1 otherwise.

It should be emphasized that so far, the patterns could be
just about anything, and we have made no assumptions on X
other than it being a set endowed with a probability measure
P (note that the labels y may, but need not depend on x in
a deterministic fashion). Moreover, (2) does not tell us how
to find a function with a small risk. In fact, it does not even
tell us how to evaluate the risk of a given function, since the
probability measure P is assumed to be unknown.

We therefore introduce an additional type of structure, per-
taining to what we are actually given — the training data.
Loosely speaking, to generalize, we want to choose y such
that (x, y) is in some sense similar to the training examples
(1). To this end, we need notions of similarity in X and in
{±1}. Characterizing the similarity of the outputs {±1} is
easy: in binary classification, only two situations can occur:
two labels can either be identical or different. The choice of
the similarity measure for the inputs, on the other hand, is a
deep question that lies at the core of the problem of machine
learning.

One of the advantages of kernel methods is that the learning
algorithms developed are quite independent of the choice of
the similarity measure. This allows us to adapt the latter to
the specific problems at hand without the need to reformulate
the learning algorithm itself.

3 Kernels

Let us consider a symmetric similarity measure of the form

k : X × X → R, where (x, x′) 7→ k(x, x′),

that is, a function that, given two patterns x and x′, returns
a real number characterizing their similarity. The function k
is often called a kernel.
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3.1 Kernels as Similarity Measures

General similarity measures of this form are rather difficult to
study. Let us therefore start from a particularly simple case,
the dot product 〈x,x′〉, and generalize it subsequently.

The geometric interpretation of the canonical dot product
is that it computes the cosine of the angle between the vectors
x and x′, provided they are normalized to length 1. Moreover,
it allows computation of the length (or norm) of a vector x
as

‖x‖ =
√
〈x,x〉. (3)

Being able to compute dot products amounts to being able to
carry out all geometric constructions that can be formulated
in terms of angles, lengths and distances. However, this is
not really sufficiently general to deal with many interesting
problems.

• First, we have deliberately not made the assumption that
the patterns actually exist in a dot product space (they
could be any kind of object). We therefore first need to
represent the patterns as vectors in some dot product
space H, called the feature space using a map

Φ : X → H where x 7→ x := Φ(x). (4)

Note that we use a boldface x to denote the vectorial
representation of x in the feature space.

• Second, even if the original patterns lie in a dot prod-
uct space, we may still want to consider more general
similarity measures obtained by applying the map (4).

Embedding the data into H via Φ has two main benefits.
First, it allows us to deal with the patterns geometrically,
and thus lets us study learning algorithms using linear algebra
and analytic geometry. Second, it lets us define a similarity
measure from the dot product in H,

k(x, x′) := 〈x,x′〉 = 〈Φ(x),Φ(x′)〉 . (5)

The freedom to choose the mapping Φ enables us to design a
large variety of similarity measures and learning algorithms.

3.2 Examples of Kernels

So far, we have used the kernel notation as an abstract simi-
larity measure. We now give some concrete examples of ker-
nels, mainly for the case where the inputs xi are already taken
from a dot product space. The role of the kernel then is to
implicitly change the representation of the data into another
(usually higher dimensional) feature space. One of the most
common kernels used is the polynomial one,

k(x, x′) = 〈x, x′〉d , where d ∈ N. (6)

It corresponds to a feature space spanned by all products
of order d of input variables, i.e., all products of the form
[x]i1 · . . . · [x]id

. Hence the dimension of this space is O(Nd),
but using the kernel to evaluate dot products, this does not
affect us. Another popular choice is the Gaussian kernel

k(x, x′) = exp
(
−‖x− x′‖2

2 σ2

)
, (7)

with a suitable width σ > 0. Examples of more sophisticated
kernels, defined not on dot product spaces but on discrete ob-
jects such as strings, are the string matching kernels proposed
by [16] and [7].

In general, there are several ways of deciding whether a
given function k qualifies as a valid kernel. One way is to ap-
peal to Mercer’s theorem. This classical result of functional
analysis states that the kernel of a positive definite integral
operator can be diagonalized in terms of an eigenvector ex-
pansion with nonnegative eigenvalues. From the expansion,
the feature map Φ can explicitly be constructed. Another ap-
proach exploits the fact that k is the kernel of a Reproducing
Kernel Hilbert Space. See [12] for references and details.

4 Support Vector Classifiers

Statistical Learning Theory shows that it is imperative to
restrict the set of functions from which f is chosen to one that
has a capacity suitable for the amount of available training
data. It provides bounds on the test error, depending on
both the empirical risk and the capacity of the function class.
The minimization of these bounds leads to the principle of
structural risk minimization [15].

Support Vector Machines (SVM) can be considered an ap-
proximate implementation of this principle, by trying to min-
imize a combination of the training error (or empirical risk),

Remp[f ] =
1
m

m∑
i=1

1
2
|f(xi)− yi|, (8)

and a capacity term derived for the class of hyperplanes in a
dot product space H [15],

〈w,x〉+ b = 0 where w ∈ H, b ∈ R, (9)

corresponding to decision functions

f(x) = sgn (〈w,x〉+ b). (10)

4.1 Hard Margin Solution

Consider first problems which are linearly separable. There
exists a unique optimal hyperplane [15], distinguished by the
maximum margin of separation between any training point
and the hyperplane. It is the solution of

maximize
w∈H,b∈R

min {‖x− xi‖ |x ∈ H, 〈w,x〉+ b = 0, i = 1, . . . ,m} .

Moreover, the capacity of the class of separating hyperplanes
can be shown to decrease with increasing margin. The latter
is the basis of the statistical justification of the approach; in
addition, it is computationally attractive, since we will show
below that it can be constructed by solving a quadratic pro-
gramming problem for which efficient algorithms exist.

One can see from Figure 1 that in order to construct the
optimal hyperplane, we need to solve

minimize
w∈H,b∈R

1
2
‖w‖2

subject to yi(〈w,xi〉+ b) ≥ 1 for all i = 1, . . . ,m.
(11)

Note that the constraints ensure that f(xi) will be +1 for
yi = +1, and −1 for yi = −1.1

1One might argue that for this to be the case, we don’t actually need
the constraint “≥ 1”. However, without it, it would not be meaningful
to minimize the length of w: to see this, imagine we wrote “> 0” instead
of “≥ 1.” Now assume that the solution is (w, b). Let us rescale this
solution by multiplication with some 0 < λ < 1. Since λ > 0, the
constraints are still satisfied. Since λ < 1, however, the length of w has
decreased. Hence (w, b) cannot be the minimizer of (11).
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Figure 1: A binary classification toy problem: separate balls
from diamonds. The optimal hyperplane is shown as a solid
line. The problem being separable, there exists a weight vec-
tor w and a threshold b such that yi(〈w,xi〉 + b) > 0 (i =
1, . . . ,m). Rescaling w and b such that the point(s) closest to
the hyperplane satisfy | 〈w,xi〉+b| = 1, we obtain a canonical
form (w, b) of the hyperplane, satisfying yi(〈w,xi〉 + b) ≥ 1.
Note that in this case, the margin (the distance of the closest
point to the hyperplane) equals 1/‖w‖. This can be seen by
considering two points x1,x2 on opposite sides of the margin,
that is, 〈w,x1〉+b = 1, 〈w,x2〉+b = −1, and projecting them
onto the hyperplane normal vector w/‖w‖ (from [12]).

The constrained optimization problem (11) is dealt with by
introducing Lagrange multipliers αi ≥ 0 (α := (α1, . . . , αm))
and a Lagrangian

L(w, b,α) =
1
2
‖w‖2 −

m∑
i=1

αi (yi(〈xi,w〉+ b)− 1) . (12)

L has a saddle point in w, b and α at the optimal solution of
the primal optimization problem. This means that it should
be minimized with respect to the primal variables w and b
and maximized with respect to the dual variables αi. Further-
more, the product between constraints and Lagrange multi-
pliers in L vanish at optimality, that is

αi(yi(〈xi,w〉+ b)− 1) = 0 for all i = 1, . . . ,m. (13)

To minimize w.r.t. the primal variables, we require

∂

∂b
L(w, b,α) = −

m∑
i=1

αiyi = 0 (14)

∂

∂w
L(w, b,α) = w −

m∑
i=1

αiyixi = 0 (15)

The solution thus has an expansion (15) in terms of a subset of
the training patterns, namely those patterns with non-zero αi,
called Support Vectors (SVs). Often, only few of the training
examples actually end up being SVs.

By the Karush-Kuhn-Tucker conditions (13) known from
optimization theory, the SVs lie on the margin (cf. Figure 1)
— this can be exploited to compute b once the αi have been
found. All remaining training examples (xj , yj) are irrelevant:
their constraint yj(〈w,xj〉+ b) ≥ 1 could just as well be left
out. In other words, the hyperplane is completely determined
by the patterns closest to it.

By substituting (14) and (15) into the Lagrangian (12), one
eliminates the primal variables w and b, arriving at the so-
called dual optimization problem, which is the problem usually

solved in practice:

maximize
α∈Rm

m∑
i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjKij

subject to αi ≥ 0 for all i = 1, . . . ,m and
m∑

i=1

αiyi = 0.

(16)
where Kij := 〈xi,xj〉. Using (15), the decision function (10)
can thus be written as

f(x) = sgn

(
m∑

i=1

yiαi 〈x,xi〉+ b

)
, (17)

where b is computed via (13). For details, see [15, 5, 12, 8].

4.2 The Kernel Trick

We now have all the tools to describe SVMs. Everything
above was formulated in a dot product space, which we think
of as the feature space H (see (4)). To express the formulae
in terms of the input patterns in X , we employ (5) and re-
place 〈x,x′〉 by k(x,x′) wherever it occurs. This substitution,
which is sometimes referred to as the kernel trick, was used
by Boser et al. [3] to develop nonlinear SVMs. Now f can be
rewritten as

f(x) = sgn

(
m∑

i=1

yiαik(x, xi) + b

)
. (18)

Furthermore, in the quadratic program (16) the definition of
Kij becomes Kij = k(xi,xj). Figure 2 shows a toy example.

Figure 2: Example of an SV classifier found using a radial
basis function kernel k(x, x′) = exp(−‖x− x′‖2). Circles and
points are two classes of training examples; the middle line is
the decision surface; the outer lines precisely meet the con-
straint of (11). Note that the SVs found by the algorithm
(sitting on the dotted constraint lines) are not centers of clus-
ters, but examples which are critical for the given classifica-
tion task (from [13]).
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4.3 Soft Margin Solution

In practice, a separating hyperplane may not exist, e.g., if
a high noise level causes a large overlap of the classes. To
accommodate this case, one introduces slack variables ξi ≥ 0
for all i = 1, . . . ,m in order to relax the constraints of (11) to

yi(〈w,xi〉+ b) ≥ 1− ξi for all i = 1, . . . ,m. (19)

A classifier that generalizes well is then found by controlling
both the classifier capacity (via ‖w‖) and the sum of the
slacks

∑
i ξi. The latter can be shown to provide an upper

bound on the number of training errors.
One possible realization of such a soft margin classifier is

obtained by minimizing the objective function

1
2
‖w‖2 + C

m∑
i=1

ξi (20)

subject to the constraints on ξi and (19), where the constant
C > 0 determines the trade-off between margin maximiza-
tion and training error minimization. This again leads to the
problem of maximizing (16), subject to modified constraint
where the only difference from the separable case is an upper
bound C on the Lagrange multipliers αi.

Another realization uses the more natural ν-
parametrization. In it, the parameter C is replaced by
a parameter ν ∈ (0, 1] which can be shown to provide lower
and upper bounds for the fraction of examples that will
be SVs and those that will have non-zero slack variables,
respectively. Its dual can be shown to consist in maximizing
the quadratic part of (16), subject to

0 ≤ αi ≤ 1/(νm),
∑

i

αiyi = 0, and
∑

i

αi = 1.

5 Discussion

5.1 Extensions

The applicability of the “kernel trick” extends significantly
beyond the classification setting and in recent years a large
number of kernel algorithms have been proposed to solve as
diverse tasks as the estimation of the support (or, more gen-
erally, quantiles) of a distribution, of a regression function,
or of a nonlinear manifold. Below we give a brief overview of
the most popular methods:

Regression: Just as classification can be formulated as a
quadratic optimization problem, so can regression. Here,
the maximum margin condition is replaced by the re-
quirement of finding the flattest function which performs
a regression within ε deviation from the observations.

Principal Component Analysis: It can be extended to
nonlinear settings by replacing PCA in input space by
a feature space representation. The final algorithm con-
sists of solving an eigenvector problem for the kernel ma-
trix.
Similar modifications can be carried out to obtain nonlin-
ear versions of projection pursuit, e.g., via sparse kernel
feature analysis.

Independent Component Analysis: Recently, an algo-
rithm was suggested in [2] to find independent compo-
nents via a modification of canonical correlation analysis.
This is currently an active topic of research and it is likely
to lead to novel criteria for factorizing distributions.

Quantiles of a Distribution: In this problem one at-
tempts to find sets such that the probability of data
occurring outside this set is controlled. This is done
by ensuring that the set contains a certain fraction of
the training data while at the same time keeping the set
“simple” (where simplicity is determined by an SVM-
style regularization term). This can be done also for
high-dimensional problems, and one can show that it can
be cast as a classification problem with only one class.
Kernel extensions exist.

Estimation of Manifolds: Here one aims at finding
smooth manifolds which approximate a dataset. Again,
one can find an optimization problems similar to the SV
optimization problem (i.e., a regularization term plus a
misprediction cost) and generate a kernel expansion.

These and many more kernel methods plus the corresponding
references can be found in [12].

5.2 Implementations

An initial weakness of SVMs was that the size of the quadratic
programming problem scaled with the number of SVs. This
was due to the fact that in (16), the quadratic part contained
at least all SVs — the common practice was to extract the SVs
by going through the training data in chunks while regularly
testing for the possibility that patterns initially not identified
as SVs become SVs at a later stage. This procedure is referred
to as chunking ; note that without chunking, the size of the
matrix in the quadratic part of the objective function would
be m×m, where m is the number of all training examples.

What happens if we have a high-noise problem? In this
case, many of the slack variables ξi become nonzero, and all
the corresponding examples become SVs. For this case, de-
composition algorithms were proposed, based on the observa-
tion that not only can we leave out the non-SV examples (the
xi with αi = 0) from the current chunk, but also some of the
SVs, especially those that hit the upper boundary (αi = C).
The chunks are usually dealt with using quadratic optimizers.
Several public domain SV packages and optimizers are listed
on http://www.kernel-machines.org.

5.3 Empirical Results and Applications

Modern SVM implementations made it possible to train on
some rather large problems. Success stories include the 60,000
example MNIST digit recognition benchmark (with record re-
sults), as well as problems in text categorization and bioinfor-
matics, where two main areas of application are worth men-
tioning:

Firstly there are classification and gene selection problems
in DNA microarray analysis. Given the high dimensionality
of the data to begin with, the use of kernels is not advisable in
this case. Instead, a linear classifier with a suitable penalty on
the expansion coefficients favoring sparse expansions is found.
See [4, 6] for further details and references. Finding suitable
variable selection criteria is an active area of research.

Secondly, sequence analysis can often be cast into the form
of a classification problem, requiring the design of custom
tailored kernels for this purpose. Such research has led to
excellent results (see [9, 7? , 16, 14, 10] and the references
therein for further details).

5.4 Conclusion

During the last few years, SVMs and other kernel meth-
ods have rapidly advanced into the standard toolkit of tech-
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niques for machine learning and high-dimensional data anal-
ysis. This was probably due to a number of advantages com-
pared to neural networks, such as the absence of spurious lo-
cal minima in the optimization procedure, the fact that there
are only few parameters to tune, enabling fast deployment in
applications, the modularity in the design, where various ker-
nels can be combined with a number of different learning al-
gorithms, and the excellent performance on high-dimensional
data.
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