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1 INTRODUCTION

IT is common practice to preprocess data by extracting linear or
nonlinear features. In many such feature extraction techniques, one
has a criterion assessing the quality of a single feature which ought
to be optimized. For additional features, one often uses the same
quality criterion, but enforces additional constraints with respect to
the formerly found features. The most well-known feature
extraction technique in this framework is principal component
analysis, PCA (e.g., [1]). However, PCA is a linear technique and
cannot capture nonlinear structure in a data set. Therefore,
nonlinear generalizations have been proposed, among them,
kernel PCA [2], which computes the principal components of the
data set mapped nonlinearly into some high-dimensional feature
space F . This work generalizes what has been done for kernel PCA
to a more general setting. We will first recall how to use prior
information for extracting meaningful features in a linear setting
leading us to the Rayleigh coefficient. In a second step, which is the
main contribution of this work, we propose a nonlinear variant of
the Rayleigh coefficient and discuss regularization approaches and
implementation issues.

1.1 Linear Features and Rayleigh Coefficients

Often, one has prior information available that can be used to
formulate quality criteria or, probably even more common, the
features are extracted for a certain purpose, e.g., for subsequently
training some classifier. For instance, we might know that the
examples are corrupted by noise or that there are invariance
transformations under which a classification should not change.
The concepts of known noise or transformation invariance are
closely related: both can be interpreted as causing a change in a
feature, which should be avoided. Clearly, invariance alone is

never a sufficient condition for a good feature, as we could simply
take the constant feature. What one would like to obtain is a
feature, which is as invariant as possible while still covering as
much of the information necessary for describing the data’s
properties of interest.

A classical and well-known technique that solves this type of
problem, considering only one linear feature, is the maximization
of the so called Rayleigh coefficient (e.g., [3])

JðwÞ ¼ w>SIw

w>SNw
: ð1Þ

Here, w denotes the weight vector of a linear feature extractor (i.e.,
for an example x, the feature is given by the projections ðw � xÞ)
and SI , SN are symmetric matrices designed such that they
measure the desired information and the undesired noise along the
direction of w. The ratio in (1) is maximized when one covers as
much as possible of the desired information while avoiding the
undesired.

1.2 Choices for Matrices

In the following, we give some common choices for the matrices SI
and SN leading to well-known algorithms. To this end, let X ¼
fx1; . . . ;x‘g be our training sample and, where appropriate,
X1 [ X 2 ¼ X ;X1 \ X 2 ¼ ;, two subclasses (with jX ij ¼ ‘i).
Principal Component Analysis. If SI is the covariance matrix

SI ¼
1

‘

X
x2X
ðxÿmÞðxÿmÞ>; m ¼ 1

‘

X
x2X

x; ð2Þ

and SN identity, we recover standard PCA.

Oriented PCA. If SI is the data covariance and SN the noise
covariance (which can be estimated analogous to (2), but over
examples sampled from the assumed noise distribution), we obtain
oriented PCA [1], which aims at finding a direction that describes
most variance in the data while avoiding known noise as well as
possible.

Fisher’s discriminant. If we look for discriminating directions for
classification, we can choose SI to measure the separability of class
centers (between class variance) and SN to measure the within
class variance. In that case, we recover the well known Fisher
discriminant (e.g., [4]) where SI and SN are given by

SI ¼ ðm2 ÿm1Þðm2 ÿm1Þ>; and

SN ¼
X
i¼1;2

X
x2X i
ðxÿmiÞðxÿmiÞ>;

mi denoting the sample mean for class i.

Invariances. To incorporate a known invariance, e.g., in oriented
PCA, one can use a matrix similar to the tangent covariance matrix
[5], [6] in the denominator of (1):

SN ¼
X
x2X
ðxÿ LtxÞðxÿ LtxÞ>; ð3Þ

for some small t > 0. Here, Lt is a 1-parameter transformation, e.g.,
a rotation. This choice for SN can be seen as a finite difference
approximation of the covariance of the tangent of Lt at point x

(details, e.g., in [7]). Using SI as in (2) and SN as in (3) in oriented
kernel PCA, we impose invariance under the local transformation
Lt (see Section 5.1 and Fig. 1 for an illustration).

Of course, we are free to combine any of these matrices to get
both, say invariance and discrimination, by setting SN to a
weighted sum of the tangent covariance matrix and the within
class scatter. Alike, we can also add several tangent covariance
matrices to impose invariances under more than just one
transformation or add different matrices describing desired
properties to compute SI .
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1.3 The Kernel Trick

In this paper, we generalize the above linear setting to a nonlinear
one. In analogy to [8], [2], [9], [10], we first map the data via a
nonlinear mapping � into some high, or even infinite dimensional
feature space F and, then, optimize (1) in F (see also [11]). To avoid
working with the mapped data explicitly (being impossible ifF is of
an infinite dimension), we introduce support vector kernel functions:
we use the well-known kernel trick [12], [13], [7]. The kernel functions
kðx; zÞ compute a dot product in a feature space F :
kðx; zÞ ¼ ð�ðxÞ � �ðzÞÞ. Formulating the algorithms in F using �
only in dot products, we can replace any occurrence of a dot product
by the kernel function k, which amounts to performing the same
linear algorithm as before, but implicitly in a kernel feature space F .
Possible choices for k that have proven useful, e.g., in support vector
machines [12], [13] or kernel PCA [2] are, e.g., Gaussian RBF,
kðx; zÞ ¼ expðÿkxÿ zk2=cÞ, or polynomial kernels, kðx; zÞ ¼ ðx � zÞd,
for some positive constants c 2 IR and d 2 IN, respectively. The latter
have the interpretation of mapping the data to the space of all
possible monomials of degree d [13]. For a choice of other kernel
functions see, e.g., [13], [11] and the references therein.

The remainder of this article is organized as follows: Section 2
demonstrates in detail, how to formulate a linear Rayleigh
coefficient such that one can obtain nonlinear generalizations.
We exemplify this transformation for Fisher’s discriminant leading
to kernel Fisher discriminants (KFD) [8], [9], [10]—other variations
are straightforward. Then, in Section 3, we introduce probabilistic
interpretations of KFD leading to different regularization ap-
proaches. We discuss algorithmic issues in Section 4, concluding
with the experiments in Section 5, and a discussion of our findings.

2 KERNELIZING THE RAYLEIGH COEFFICIENT

We will now derive kernel Fisher discriminants as an example for
the process of introducing kernels. We only consider discriminants
for two classes, but our findings generalize easily to multiple
classes (see [9], [10]).

2.1 Formulation Using Kernel Functions

Following the reasoning in Section 1.3, to optimize (1) in some
kernel feature space F , we need to find a formulation which uses
only dot products of �-images. This can be done independently for
numerator and denominator. The central observation is that, under
some mild assumptions on SI and SN ,1 every solution of w 2 F
can be written as an expansion in terms of mapped training data:

w ¼
X
x2X

�x�ðxÞ; ð4Þ

where we use x to index the expansion coefficients �. The
importance of this observation for any kernel-based learning
technique is that, in general, there is no other way to express the
solution w 2 F , either because F is too high or infinite dimen-
sional, or because we do not even know the actual feature space F
connected to a certain kernel. The use of expansion (4) makes
things tractable.2 To see that this expansion is valid, consider
symmetric operators S on the at most ‘-dimensional subspace
spanned by the �ðxiÞ in F , e.g., any matrix S, which is exclusively
constructed from the �ðxiÞ by means of linear operations.
Furthermore, let w ¼ v1 þ v2, where v1 2 spanf�ðxiÞ : i ¼
1; . . . ; ‘g and v2 ? spanf�ðxiÞ : i ¼ 1; . . . ; ‘g. Then, for any such S,

hw; Swi ¼ hðv1 þ v2Þ; Sðv1 þ v2Þi ¼ hv1; Sv1i;

using Sv2 ¼ 0 and hv; Svi ¼ hSv;vi for symmetric matrices. As v1

lies in the span of the �ðxiÞ and, by construction, the operator S
only operates on this subspace, Sv1 lies in spanf�ðxiÞg as well.
Thus, for any such quadratic form w>Sw, it is sufficient to
consider that part of w, which lies in the span of the examples, i.e.,
there exists an expansion of the form (4) for w, maximizing (1) (in
F ) (see [15]).3 Mulitplying either of the matrices proposed for S1

and SN from the left and right with the expansion (4), we can find a
formulation using only dot products.

2.2 Derivation of Kernel Fisher Discriminants

Let � be the non-linear mapping to the feature space F . To find the
linear discriminant in F (which is then nonlinear in the input
space) we need to maximize (1), but now with w 2 F and SI and
SN being the corresponding matrices in F , i.e.,

SI :¼ ðm2 ÿm1Þðm2 ÿm1Þ>;
SN :¼

X
i¼1;2

X
x2X i
ð�ðxÞ ÿmiÞð�ðxÞ ÿmiÞ> and

mi :¼ 1

‘i

X
z2X i

�ðzÞ:

We define Kx as the column corresponding to the element x in the
kernel matrix ðKÞxz ¼ kðx; zÞ, x; z 2 X . To find a formulation using
only dot-products or kernel functions kðx; zÞ ¼ ð�ðxÞ � �ðzÞÞ,
respectively, we use the expansion (4). First, using the definition
of mi and (4), we get
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Fig. 1. Comparison of first features found by kernel PCA and oriented kernel PCA (see text); from left to right: KPCA, OKPCA with rotation, and OKPCA with translation

invariance; all with Gaussian kernel. Although the data set does not contain any specific structure itself, the desired invariance can be imposed by using the appropriate

tangent matrix T.

1. These assumptions are detailed below.

2. In Boosting, one explicitly uses this mapping by employing different
techniques to deal with the dimensionality of F . See [14] for a detailed
discussion.

3. Note that the tangent covariance matrix (3) is not constructed
exclusively from the training examples in X , but also from the transforma-
tions generated by Ltx. Thus, one would have to include all Ltx into the
expansion (4). In practice, however, it might suffice to restrict the solution to
the elements in X (see also Section 4.1).



w>mi ¼
1

‘i

X
x2X

X
z2X i

�xð�ðxÞ � �ðzÞÞ

¼ 1

‘i

X
x2X

X
z2X i

�xkðx; zÞ

¼ �>�i;

ð5Þ

where we replaced the dot products of �-images by the kernel
function and defined�i :¼ 1

‘i

P
x2X i Kx. Now consider the numerator

of (1): by definition of SI and using (5), it can be rewritten as

w>SIw ¼ w>ðm2 ÿm1Þðm2 ÿm1Þ>w

¼ �>ð�2 ÿ �1Þð�2 ÿ �1Þ
>�

¼ �>M�; M :¼ ð�2 ÿ �1Þð�2 ÿ �1Þ
>:

ð6Þ

Similarly, noting that
P

x2X i Kx ¼ ‘i�i and using again (4), (5), and
the definition of mi we find for the denominator of (2):

w>SNw ¼ w>
X
i¼1;2

X
x2X i

�ðxÞ ÿmið Þ �ðxÞ ÿmið Þ>
" #

w

¼ �>
X
i¼1;2

X
x2X i

Kx ÿ �ið Þ Kx ÿ �ið Þ>
" #

�

¼ �>ðKðI ÿ v1v
>
1 ÿ v2v

>
2 ÞK>Þ�

¼ �>N�
with N :¼ KDK>

and D :¼ I ÿ v1v
>
1 ÿ v2v

>
2 ;

ð7Þ

where I is the identity matrix and vj is the vector with element
ðvjÞi ¼ 1=

ffiffiffiffi
‘j

p
if the example i belongs to class j and zero otherwise.

Combining (6) and (7), we can find the Fisher discriminant in F by
maximizing

Jð�Þ ¼ �
>M�

�>N�
: ð8Þ

Algorithms using different matrices for SI or SN are easily
obtained along the same lines. For instance, if we choose SI as
the plain covariance matrix (2) as in kernel PCA, we get as well
w>SIw ¼ �>N�, but now N simplifies to N ¼ KðI ÿ vv>ÞK>
with v being the 1=

ffiffi
‘
p

vector.
To perform Fisher’s discriminant in a kernel feature space, we

still have to maximize a Rayleigh coefficient. With our reformula-
tion, it is now a quotient in terms of expansion coefficients �, and
not in terms of w 2 F . The projection of a new example z onto w in
F can be computed by ðw � �ðzÞÞ ¼

P
x2X �xkðx; zÞ. If we are

looking for more than one feature (e.g., in oriented kernel PCA) it
is straightforward to check that their expansions are given by the
subsequent generalized Eigenvectors of (8), again in complete
analogy to the original input space algorithms.

However, one problem remains: Since already the matrix D ¼
I ÿ v1v

>
1 ÿ v2v

>
2 has only rank ‘ÿ 2, so hasN , regardless of the rank

of the kernel matrix K. Hence, there exist a vector �with �>N� ¼ 0
and (8) is not well defined anymore. While, in practice, one could deal
with that problem (e.g., minimize 1=Jð�Þ instead), this shows a
crucial problem with Fisher’s discriminants: If the number of
dimensions is large compared to the number of examples, the
problem becomes ill-posed. Especially, in the case of kernel
algorithms, we effectively work in the space spanned by all ‘
mapped training examples �ðxÞwhich are, in practice, often linearly
independent. Thus, we are estimating covariances in an ‘-dimen-
sionsal space from ‘ examples, which is, in general, ill-posed as well.
In Section 3, we will discuss how to overcome these problems by
using regularization.

2.3 KFD, Least Squares, and Quadratic Optimization

It is a well-known fact that Fisher’s discriminant for two classes is
equivalent to a least squares regression to the class labels (e.g., [3]). It

is straight forward to show that the same holds true in a feature space
F . Thus, for the two class KFD problem, one can optimize the
following:

min
�;b;�

k�k2 þ C
ð�Þ subject to : K�þ 1b ¼ yÿ �: ð9Þ

Here, 1 is the vector of all ones, y the vector of all labels, and 
ð�Þ is
an optional regularization operator which we will discuss in Section
3. For a suitable choice of 
, namely linear or quadratic, as made in
the following, this amounts to a quadratic programming (QP)
problem similar to, e.g., SVM. The offset b is introduced during the
transition from the Rayleigh coefficient to the QP problem. It can be
used as a threshold in a final classification. However, in practice, it is
advisable to estimate a better threshold (see (15)). From a
classification perspective, the QP has an appealing interpretation.
The constraints ensure that the average class distance, projected
onto the direction of discrimination, is two (for�1 labels), while the
intraclass variance is minimized, i.e., we maximize the average
margin. Contrarily, the SVM approach [12] optimizes for a large
minimal margin. Furthermore, it is apparent, that KFD bears strong
connection to a least squares (kernel-) regression. In fact, (9) has been
proposed in [16], as a “kernelized” version of ridge regression
(simply using real valued ys). Not surprising anymore, it turns out
that KFD is equivalent to a technique proposed in [17], called Least
Squares Support Vector Machines.

3 A PROBABILISTIC INTERPRETATION

Fisher’s discriminant is known to be the Bayes optimal classifier
for two normal distributions with equal covariance (i.e., KFD is
optimal for two Gaussians in feature space). This allows to draw an
interesting connection to the Relevance Vector Machine (RVM,
[18]) and Gaussian processes [19], [7], [20]. Consider a regression
onto the labels of the form ðw � �ðxÞÞ þ b, where w is given by (4).
Assuming a Gaussian noise model with variance �, the likelihood
in a latent variable model can be written as

pð�jy; �; �2Þ � exp ÿ 1

2�2

X
i

ððw � �ðxiÞÞ þ bÿ yiÞ2
 !

:

Assuming a prior pð�jCÞ over the weights with hyper-parameters
C (here, C could be a vector of, e.g., length ‘), then computing the
posterior would yield the RVM. An advantage of the
RVM approach is that all hyperparameters � and C are estimated
automatically. The drawback, however, is that one has to solve a
difficult optimization problem prone to local minima. However,
assuming the noise variance � is known (i.e., dropping terms
depending solely on �) and taking the logarithm of the posterior
pð�jy; �; �2Þpð�jCÞ, yields

min
�;b;�
k�k2 ÿ logðpð�jCÞÞ; ð10Þ

subject to the constraint in (9). Interpreting the prior as a
regularization operator 
, and introducing an appropriate com-
mon weighting factor C yields the KFD problem (9) (which has a
global solution that can be relatively easily found). This probabil-
istic interpretation has some appealing properties.

Interpretation of Outputs. The probabilistic framework reflects
the fact that the outputs produced by KFD can be interpreted as
probabilities, thus making it possible to assign a confidence to the
final classification. This is in contrast to, e.g., SVMs whose outputs
cannot directly be seen as probabilities (see [21] and references
therein).

Noise Models. In the above discussion, we assumed a Gaussian
noise model and some yet unspecified prior that corresponds to a
regularizer [22]. But one is not limited to Gaussian models.
Assuming a Laplacian noise model we would get k�k1 instead of
k�k2

2 in the objective of (10) or (9), respectively (see also, (14)). Other
typical and useful choices are the "-insensitive loss, Huber’s robust
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loss, or higher order polynomial loss functions, all inducing a
density model (see [11], [7]).

Regularization. What we have not considered yet is the
question of regularization. For instance, for KFD, a solution with
zero within class variance (i.e., �>N� ¼ 0) is very likely due to
overfitting and corresponds in terms of (9) to a zero error
regression to the labels. The way we regularize, the solution bears
strong connections to the prior pð�jCÞ chosen in the probabilistic
model developed above: e.g., choosing a zero-mean Gaussian as in
RVM and assuming that this Gaussians’ variance C is known and a
multiple of the identity would lead to a regularizer of the form

ð�Þ ¼ k�k2, i.e., in (8) we would replace N with

NC :¼ N þ CI ðC � 0Þ: ð11Þ

Crucially, choosing a single, fixed variance parameter for all �, we
do not achieve sparsity as in RVM anymore. Particularly
interesting, is the alternative of a Laplacian prior on �, which
would correspond to a l1-norm penalty on the �’s, i.e., 
ð�Þ ¼ k�k1

and the optimization problem becomes

min
�;b;�

k�k2 þ Ck�k1 subject to : K�þ 1b ¼ yÿ �; ð12Þ

leading to sparse solutions in the KFD.4 We call this particular
setting sparse KFD (SKFD) [5] (see also Laplacian Processes in [7]).
Finally, one can use other regularization type additives, e.g.,
penalizing kwk2 ¼ �>K� in analogy to SVM, inducing a regularity
dependent on the chosen kernel function [22].

4 ALGORITHMS

Having successfully formulated a Rayleigh coefficient in feature
space, we still have one major problem: while we could avoid
working explicitly in the extremely high or infinite dimensional
space F , we are now facing a problem in ‘ variables, a number
which in many practical applications would not allow to store or
manipulate ‘� ‘ matrices on a computer anymore. Furthermore,
solving, e.g., an Eigenproblem or a QP of this size is very time
consuming (Oð‘3Þ). In the following, we will propose several ways
to deal with this general problem when optimizing the Rayleigh
coefficient in feature space. The method proposed in Section 4.1 is
applicable to any choice made for the matrices SI and SN , i.e., to
any Rayleigh coefficient-based algorithm in feature space. The
other methods do only apply to KFD. While the proposed schemes
already allow to solve fairly large problems, we expect that further
improvements in terms of memory requirements and speed are
possible by applying ideas from, e.g., the literature on Gaussian
processes (see [7]). Moreover, recently a SMO style algorithm as for
SVM [23] has been proposed to solve the KFD problem [24].

4.1 Training on a Subset

To maximize (8) (or (9) for KFD), we need to solve an ‘� ‘ Eigen-
or mathematical programming problem, which might be intract-
able for large ‘. As the solutions are not sparse, one cannot directly
use techniques like chunking as it has been done for support vector
machines (see [7]). One possible solution, which is applicable to
any choice of matrices SI and SN , is to restrict the feature extractor
w to lie in a subspace, i.e., instead of expanding w by (4), we write

w ¼
Xm
i¼1

�i�ðziÞ; ð13Þ

with m� ‘ (analogous to the reduced set method of SVM, see
[25]). The examples zi, i ¼ 1; . . . ;m, could either be a subset of the
training examples X or, e.g., be estimated by some clustering
algorithm. The derivation of (8) does not change, only K is now
m� ‘ and we end up with m�m matrices for N and M .

4.2 A Sparse, Greedy Approach

Another choice would be to greedily construct a solution to (8) by
forward selection. Starting with all �’s equal to zero (i.e., an empty
expansion), one iteratively selects new examples to add to the
expansion such that the gain in the objective is maximal. In
practice, one does not need to add all examples but could stop if a
good approximate solution is reached. Clearly, such an approach is
only sensible if there is an efficient way of choosing an optimal or
close to optimal example in each iteration. For KFD, this is possible
and has been described in detail in [21], [7].

4.3 Linear Optimization

Finally, if we optimize (9) using an l1-norm regularizer (i.e., we are
doing sparse KFD (12)), and furthermore, replace the loss function
on � by an l1-norm as well, we end up with a linear program:

min
�;b;�

k�k1 þ Ck�k1 subject to : K�þ 1b ¼ yÿ �: ð14Þ

This is in analogy to linear programming machines as they
emerged in the context of SVM [26]. Such a linear program will be
very sparse in � and can be optimized extremely efficiently using a
technique called column generation (e.g., [27] and references
therein). We call this approach linear sparse KFD (LSKFD) [5].

5 EXPERIMENTS

Here, we present some experimental results to give a proof of
concept for the proposed oriented kernel PCA and the incorpora-
tion of invariances into KFD. Furthermore, we show that KFD and
some of its variants are capable of producing state-of-the-art
classification results.5

5.1 Using Prior Knowledge

A toy example (Fig. 1) shows a comparison of kernel PCA and
oriented kernel PCA, where we used the full covariance (2) as SI
and the tangent covariance (3) of 1) rotated examples and
2) examples translated along the x-axis as noise matrix SN . The
toy example shows how imposing the desired invariance yields
meaningful, invariant features.

In another experiment, we incorporated prior knowledge in KFD
using the USPS database of handwritten digits, which consists of
7; 291 training and 2; 007 test patterns, each D ¼ 256 dimensional
gray-scale images of the digits 0 . . . 9. We chose the regularized
within-class scatter (11) (C ¼ 10ÿ3, which is the optimal value found
by cross validation for the problem without invariances) as SN and
added to it a multiple � of the tangent covariance (3). As invariance
transformations, we have chosen horizontal and vertical translation,
rotation, and line thickening (see [7]), simply averaging the matrices
corresponding to each transformation. The feature was extracted by
using the restricted expansion (13), where the examples xi were
chosen to be the first 3; 000 training examples. We have chosen a
Gaussian kernel of width 0:3 �D, which is optimal for SVMs [7]. For
each class, we computed the KFD, which classifies one class against
the rest. Then, we determine the 10-class error by the winner-takes-
all scheme choosing the threshold such that the distance of each
example to the decision boundary (i.e., the margin) is maximal,
while still allowing for some errors, i.e., we solved the following
linear, simple to solve problem:

max �;b �ÿ C
X

‘
i¼1xii ð15Þ
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4. A reason for the induced sparseness is the fact that vectors far

from the coordinate axes are “larger” with respect to the l1-norm than

with respect to lp-norms (p > 1Þ. Consider the vectors ð1; 0Þ and

ð1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þ. For the two norm, kð1; 0Þk2 ¼ kð1=

ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þk2 ¼ 1, but

for the l1-norm, 1 ¼ kð1; 0Þk1 < kð1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p
Þk2 ¼

ffiffiffi
2
p

. Using an l1

regularizer, the optimal solution is always a vertex solution (or can

be expressed as such) and tends to be very sparse.
5. Basic implementations and more detailed results will be made

available on http://www.first.fraunhofer.de/~mika.



subject to:

yið�i þ bÞ � �ÿ �i and �; �i � 0 8i ¼ 1; . . . ; ‘;

where �i ¼ ðw � xiÞ is the projection of the ith training example
onto the direction of discrimination w and C trades of the size of �
against the constraint violations �i. Without invariances, i.e., � ¼ 0,
we achieved a test error of 3:7 percent, slightly better than a plain
SVM with the same kernel (4:2 percent) [7]. For � ¼ 10ÿ3, using the
averaged tangent covariance matrices as described above, led to a
very slight improvement to 3:6 percent. The performance did not
significantly improve, which can be attributed to the fact that we
used the same expansion coefficients in both cases. The tangent
covariance matrix, however, lives in a larger subspace, and indeed,
a subsequent experiment where we used 3; 000 vectors, which
were obtained by k-means clustering from a larger data set,
including the original training examples and 12; 000 virtual
examples generated by appropriate invariance transformations
(as described before), led to an error rate of 3:1 percent. We
conjecture that, with the development of optimization techniques
that allow to use a larger number of expansion coefficients, this
result can be improved by expanding into all samples, the original
training examples and the virtual examples.

5.2 Kernel Fisher Discriminant

To evaluate the performance of our KFD approaches, we
performed an extensive comparison to SVMs on the IDA
benchmark repository.6 The results in Table 1 show the average
test error and the standard deviation of the averages’ estimation,
over 100 runs with different realizations of the data sets. To
estimate the necessary parameters, we ran 5-fold cross validation
on the first five realizations of the training sets and took the
model parameters to be the median over the five estimates (see
[11] for details of the setup). Finally, to do classification, we
estimated a threshold b using (15).7 From Table 1, we see that
both SVM and the KFD variants, on average, perform equally
well. Noteworthy is the significantly higher degree of sparsity for
SKFD and particularly for LSKFD than observed for SVMs,
making, e.g., predictions much faster.

6 CONCLUSION

In the task of learning from data, it is, to a certain extent, equivalent
to have prior knowledge about, e.g., invariances or about specific
sources of noise. In the case of feature extraction, we seek features,
which are all sufficiently “noise”-invariant while still describing
“interesting” structure. For classification, we compute discriminating
features that are—at the same time—invariant with respect to
certain invariance transformations. Oriented PCA and Fisher’s
discriminant are examples of two such linear techniques, both
optimizing a Rayleigh coefficient (1). Since linear methods are often
too restricted, we used support vector kernel functions to obtain
nonlinear versions of these linear algorithms, namely, oriented kernel
PCA and kernel Fisher discriminant analysis. In our experiments,
we gave a proof of concept for the oriented kernel PCA and showed
that the kernel Fisher discriminant algorithm is competitive to other
state-of-the-art algorithms yielding sparser solutions.

Future research will focus 1) on further improvements on the
algorithmic complexity of our algorithms, which in the case of KFD
is lower than the one of RVMs, but so far larger than the one of the
SVM algorithm, and 2) on further connections between KFD and
support vector machines. Moreover, we are interested in the
analysis of the generalization performance of such algorithms,
e.g., along the lines of [30].
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and A.J. Smola, “Input Space vs. Feature Space in Kernel-Based Methods,”
IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1000-1017, Sept. 1999.

[26] T. Graepel, R. Herbrich, B. Schölkopf, A.J. Smola, P.L. Bartlett, K.-R. Müller,
K. Obermayer, and R.C. Williamson, “Classification on Proximity Data
with LP-Machines,” Proc. ICANN ’99, D. Willshaw and A. Murray, eds.,
vol. 1, pp. 304-309, 1999.
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Automatic Textual Document Categorization
Based on Generalized Instance Sets

and a Metamodel

Wai Lam, Member, IEEE, and Yiqiu Han

Abstract—We propose a new approach to text categorization known as

generalized instance set (GIS) algorithm under the framework of generalized

instance patterns. Our GIS algorithm unifies the strengths of k-NN and linear

classifiers and adapts to characteristics of text categorization problems. It focuses

on refining the original instances and constructs a set of generalized instances.

We also propose a metamodel framework based on category feature

characteristics. It has a metalearning phase which discovers a relationship

between category feature characteristics and each component algorithm.

Extensive experiments have been conducted on two large-scale document

corpora for both GIS and the metamodel. The results demonstrate that both

approaches generally achieve promising text categorization performance.

Index Terms—Text classification, instance-based learning, metamodel learning.

æ

1 INTRODUCTION

THE aim of document categorization is to assign a number of
appropriate categories to a textual document based on the content.
This categorization process has many applications such as
document routing, dissemination, or filtering [1]. A large amount
of human resources are required to carry out such categorization
task manually. The goal of automatic text categorization is to learn
a classification scheme from training examples so that the scheme
can be used to categorize unseen textual documents.

Text categorization problems possess several characteristics
different from other pattern recognition problems [4], [3]. First, text
categorization problems normally involve an extremely high
dimensional space (e.g., exceed 30,000). The features usually
represent words/terms derived from the textual content of
documents. Second, each document contains only a small number
of features despite the high dimensional space leading to a very
sparse data representation. Third, the number of potential relevant
features is very large, but only a few occur in a particular
document. Many features may simultaneously involve in several
categories. Finally, in general, the overlap between features in
documents is quite small.

We explore common properties in two families of text
categorization techniques, namely, the k-nearest-neighbor (k-NN)
algorithm and linear classifiers. We propose a new approach
known as the generalized instance set (GIS) algorithm under the
framework of generalized instance patterns [6]. Our GIS algorithm
unifies the strengths of k-NN and linear classifiers and adapts to
characteristics of text categorization problems. It focuses on
refining the original instance and constructs a set of generalized
instances. We also propose a metamodel framework based on
category feature characteristics. Category feature characteristics,
derived from the training document set, capture some inherent
properties of a particular category. Our metamodel approach has a
metalearning phase which discovers a relationship between
category feature characteristics and each component algorithm.

. The authors are with the Department of Systems Engineering and
Engineering Management, The Chinese University of Hong Kong, Shatin,
Hong Kong. E-mail: {wlam, yqhan}@se.cuhk.edu.hk.

Manuscript received 24 Aug. 2001; revised 4 Mar. 2002; accepted 31 May
2002.
Recommended for acceptance by V. Govindaraju.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 114852.

0162-8828/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


