
Journal of Machine Learning Research 3 (2002) 303-321 Submitted 11/01; Published 11/02

Minimal Kernel Classifiers

Glenn M. Fung gfung@cs.wisc.edu
Olvi L. Mangasarian olvi@cs.wisc.edu
Computer Sciences Department
University of Wisconsin
1210 West Dayton Street
Madison, WI 53706, USA

Alexander J. Smola alex.smola@anu.edu.au

Australian National University
Department of Engineering and RSISE
Canberra, ACT 0200, Australia

Editor: John Shawe-Taylor

Abstract

A finite concave minimization algorithm is proposed for constructing kernel classifiers that
use a minimal number of data points both in generating and characterizing a classifier.
The algorithm is theoretically justified on the basis of linear programming perturbation
theory and a leave-one-out error bound as well as effective computational results on seven
real world datasets. A nonlinear rectangular kernel is generated by systematically utilizing
as few of the data as possible both in training and in characterizing a nonlinear separating
surface. This can result in substantial reduction in kernel data-dependence (over 94% in six
of the seven public datasets tested on) and with test set correctness equal to that obtained
by using a conventional support vector machine classifier that depends on many more data
points. This reduction in data dependence results in a much faster classifier that requires
less storage. To eliminate data points, the proposed approach makes use of a novel loss
function, the “pound” function (·)#, which is a linear combination of the 1-norm and the
step function that measures both the magnitude and the presence of any error.

Keywords: Support Vector Machines, Sparse Kernels, Data Reduction, Concave Mini-
mization

1. Introduction

Support vector machines have come to play a very dominant role in data classification
using a kernel-based linear or nonlinear classifier (Vapnik, 2000, Cherkassky and Mulier,
1998, Schölkopf et al., 1999, Smola et al., 2000). One of the main difficulties that confront
large data classification by a nonlinear kernel is the possible dependence of the nonlinear
separating surface on the entire dataset. This creates unwieldy storage and computational
problems that may preclude the direct use of nonlinear kernels for large datasets or in
applications where a very fast classifier is required such as in on-line credit card fraud
detection.

c©2002 Glenn M. Fung, Olvi L. Mangasarian and Alexander J. Smola.

Fung, Mangasarian and Smola

For example, let A ∈ R1000×10 represent a thousand-point dataset with 10 features
characterizing each point. Then the above two difficulties translate into a nonlinear kernel
matrix of size 1000×1000 with a million entries that leads to a dense nontrivial mathematical
program. Even after solving this problem, the resulting nonlinear separating surface can
potentially depend on most of the 1000 points that need to be stored and used in each
classification of a new point. Our minimal kernel classifier method completely addresses
this difficulty by generating a nonlinear kernel-based classifier that reduces the classifier’s
data dependence by as much as 98.8%, compared to a conventional support vector machine
classifier. In other words, the classifier depends on a very small number of kernel functions.

Such “minimum description length” models (Rissanen, 1986, Blumer et al., 1987, Mitchell,
1997, p. 66), that depend on much fewer data points, often generalize as well or better than
models that depend on many more data points, and are useful for incremental and chunking
algorithms (Bradley and Mangasarian, 2000, Mangasarian and Musicant, 2002) for massive
datasets. In order to address the problem of solving huge mathematical programs, we
use RSVM (Lee and Mangasarian, 2000) to generate an initial reduced rectangular kernel
that reduces dramatically the size of the problems to be solved while preserving and often,
improving training and testing set correctness.

We briefly outline the paper now. In Section 2 we describe linear and nonlinear kernel
classifiers and how to generate them using a linear programming formulation. In Section 3
we derive leave-one-out-correctness (looc) and leave-one-out-error (looe) error bounds that
can be obtained by solving a single linear program that generates the nonlinear kernel
classifier. In Section 4, using these error bounds we propose a concave programming for-
mulation that utilizes a novel loss function x# depicted in Figure 2 that measures both the
magnitude of the error and its presence. The discontinuous concave minimization program
is solved by first smoothing it into a differentiable concave program and then using a finite
linear-programming-based successive linear approximation to solve it. Section 5 describes
our numerical test results on seven public datasets. These results indicate a major reduction
in the number of data points required to generate a rectangular kernel classifier without
any loss of testing set correctness. Section 6 concludes the paper.

We briefly describe our notation now and give some background material. All vectors
will be column vectors unless transposed to a row vector by a prime superscript ′. For a
vector x in the n-dimensional real space Rn, the step function x∗ is defined as (x∗)i = 1 if
xi > 0 else xi = 0, i = 1, . . . , n. The scalar (inner) product of two vectors x and y in the

n-dimensional real space Rn will be denoted by x′y. The p-norm of x, (
n∑

i=1

|xi|p)
1
p , will be

denoted by ‖x‖p, for 1 ≤ p < ∞, and the ∞-norm, max
1≤i≤n

|xi|, will be denoted by ‖x‖∞. For

1 ≤ p, q ≤ ∞ and 1
p + 1

q = 1, ‖x‖p and ‖x‖q are dual norms. For a matrix A ∈ Rm×n, Ai

is the ith row of A which is a row vector in Rn. A column vector of ones of arbitrary
dimension will be denoted by e. For A ∈ Rm×n and B ∈ Rn×l, the kernel K(A, B) maps
Rm×n ×Rn×l into Rm×l. In particular, if x and y are column vectors in Rn then, K(x′, y)
is a real number, K(x′, A′) is a row vector in Rm and K(A, A′) is an m × m matrix. If
Ā is an m̄ × n submatrix of A, then the rectangular m × m̄ matrix K(A, Ā′) is referred
to as a rectangular kernel. The base of the natural logarithm will be denoted by ε. For a
vector z ∈ R`, card(z0) will denote the cardinality of (i.e. the number elements in) the set

304

Minimal Kernel Classifiers

{i | zi = 0} while card(z+) will denote the cardinality of the set {i | |zi| > 0}. The symbol
:= will denote a definition.

We remark that our notation is exemplified by the nonlinear separating surface (9) and
the corresponding linear programming formulation (10) which is consistent with a large
body of previous work such as (Ferris and Munson, 2000, Fung and Mangasarian, 2000, 2001,
2002, Lee and Mangasarian, 2000, 2001, Mangasarian, 2000, Mangasarian and Musicant,
2000, 2001a,b). We relate it to the notation used by others (Vapnik, 2000, Cherkassky and
Mulier, 1998, Cristianini and Shawe-Taylor, 2000, Schölkopf et al., 1999) as follows. Our
matrix A is the matrix X, our kernel K(A, A′) is k(X, X ′), our diagonal matrix D is the
diagonal matrix Y , our error vector y is the error vector ξ, and our parameter ν is the
parameter C.

2. Linear and Nonlinear Kernel Classification

We consider the problem of classifying m points in the n-dimensional real space Rn, repre-
sented by the m× n matrix A, according to membership of each point Ai in the classes +1
or -1 as specified by a given m ×m diagonal matrix D with ones or minus ones along its
diagonal. For this problem the standard support vector machine with a linear kernel AA′

(Vapnik, 2000, Cherkassky and Mulier, 1998) is given by the following quadratic program
for some ν > 0:

min
(w,γ,y)∈Rn+1+m

νe′y + 1
2w′w

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(1)

As depicted in Figure 1, w is the normal to the bounding planes:

x′w − γ = +1
x′w − γ = −1,

(2)

and γ determines their location relative to the origin. The first plane above bounds the
class +1 points and the second plane bounds the class -1 points when the two classes are
strictly linearly separable, that is when the slack variable y = 0. The linear separating
surface is the plane

x′w = γ, (3)

midway between the bounding planes (2). If the classes are linearly inseparable then the
two planes bound the two classes with a “soft margin” determined by a nonnegative slack
variable y, that is:

x′w − γ + yi ≥ +1, for x′ = Ai and Dii = +1,
x′w − γ − yi ≤ −1, for x′ = Ai and Dii = −1.

(4)

The 1-norm of the slack variable y is minimized with weight ν in (1). The quadratic term
in (1), which is twice the reciprocal of the square of the 2-norm distance 2

‖w‖2 between the
two bounding planes of (2) in the n-dimensional space of w ∈ Rn for a fixed γ, maximizes
that distance, often called the “margin”. Figure 1 depicts the points represented by A, the
bounding planes (2) with margin 2

‖w‖2 , and the separating plane (3) which separates A+,

305

Fung, Mangasarian and Smola

the points represented by rows of A with Dii = +1, from A−, the points represented by
rows of A with Dii = −1.

x
x

x

x
x

xx
x

x

A+

*

*

*
*

*

*
* **

*
*

*

*

A-

w

Margin= 2
‖w‖2

x′w = γ − 1

x′w = γ + 1

Separating Surface: x′w = γ

Figure 1: The bounding planes (2) with margin 2
‖w‖2 , and the plane (3) separating A+, the

points represented by rows of A with Dii = +1, from A−, the points represented by

rows of A with Dii = −1.

In order to make use of fast polynomial-time linear-programming-based approaches (Ye,
1997) instead of the standard quadratic programming formulation (1) we reformulate (1) by
replacing the 2-norm by a 1-norm as follows (Bradley and Mangasarian, 1998, Mangasarian,
2000):

min
(w,γ,y)∈Rn+1+m

νe′y + ‖w‖1

s.t. D(Aw − eγ) + y ≥ e
y ≥ 0.

(5)

This reformulation in effect maximizes the margin, the distance between the two bounding
planes of Figures 1, using the different ∞-norm and results with a margin in terms of the
1-norm, 2

‖w‖1 , instead of 2
‖w‖2 (Mangasarian, 1999a). The margin between the bounding

planes (2) using a p-norm, is given by 2
‖w‖q

(Mangasarian, 1999a), where 1
p + 1

q = 1, that is
the p-norm and q-norm are dual norms for 1 ≤ p, q ≤ ∞. The mathematical program (5)
is easily converted to a linear program as follows:

306

Minimal Kernel Classifiers

min
(w,γ,y,v)∈Rn+1+m+n

νe′y + e′v

s.t. D(Aw − eγ) + y ≥ e
v ≥ w ≥ −v

y ≥ 0,

(6)

where, at a solution, v is the absolute value |w| of w.
To obtain a more general formulation of an SVM, we make a transformation of the

variable w as: w = A′Du, where u can be interpreted as an arbitrary variable in Rm (which
can be motivated by duality theory (Mangasarian, 2000)), then the SVM (5) becomes:

min
(u,γ,y)∈R2m+1

νe′y + ‖A′Du‖1

s.t. D(AA′Du− eγ) + y ≥ e
y ≥ 0.

(7)

If we now replace the linear kernel AA′ by a completely general kernel K(A, A′) and re-
place ‖A′Du‖1 by a general convex function of u, we obtain the generalized support vector
machine (GSVM) of (Mangasarian, 2000) as follows:

min
(u,γ,y)∈R2m+1

νe′y + f(u)

s.t. D(K(A, A′)Du− eγ) + y ≥ e
y ≥ 0.

(8)

The variables (u, γ) ∈ Rm+1 define the nonlinear separating surface (9) below, through
the kernel K. The function f(u) is some convex function on Rm which suppresses compo-
nents of the parameter u, while ν is some positive number that weights the classification
error e′y versus the suppression of u. Suppressing components of u is justified by the leave-
one-out-error bound (13) below. A solution of the mathematical program (8) for u and γ
leads to the nonlinear separating surface (Mangasarian, 2000):

K(x′, A′)Du = γ (9)

The linear formulation (1) of Section 2 is obtained if we let K(A, A′) = AA′, w =
A′Du and f(u) = 1

2u′DAA′Du.
Setting f(u) in (8) equal to ||u||1 leads to the following linear programming formulation:

min
(u,γ,y,v)∈Rm+1+m+m

νe′y + e′v

s.t. D(K(A, A′)Du− eγ) + y ≥ e
v ≥ u ≥ −v

y ≥ 0.

(10)

The dual (Mangasarian, 1994, p. 130) of this linear program is:

max
(t,r,s)∈Rm+n+n

e′t

s.t. DK(A, A′)′Dt −r +s = 0
−e′Dt = 0

t ≤ νe
r +s = e

t, r, s ≥ 0

(11)

307

Fung, Mangasarian and Smola

Note that, for any standard simplex algorithm (Dantzig, 1963), solution of either of the
dual linear programs (10) or (11), automatically generates a solution of the other program
at the termination of the algorithm.

We next derive our leave-one-out-correctness and leave-one-out-error bounds in terms
of a solution to the above linear programs. Note that solving a single linear program (10)
yields these bounds.

3. Leave-One-Out-Correctness (looc) and Leave-One-Out-Error (looe)
Bounds

In this section we derive a lower bound on the leave-one-out-correctness (looc) of a solution
to a support vector machine with a nonlinear kernel as well as an upper bound on the
leave-one-out-error (looe), where looc + looe = 1. Our bounds, similar to those of (Vapnik
and Chapelle, 2000, Opper and Winther, 2000, Weston and Herbrich, 2000, Jaakkola and
Haussler, 1999), are however easily and directly computable from a solution of the linear-
programming-based formulation of the support vector machine formulation (10) above and
are used as a justification for our concave minimization algorithm for a minimal kernel
classifier.

Proposition 3.1 Leave-One-Out-Correctness (looc) & Leave-One-Out-Error (looe)
Bounds Let (u, γ, y, v) be a solution of the linear program (10) and let (t, r, s) be a corre-
sponding solution of its dual (11). The leave-one-out-correctness looc is bounded below as
follows:

looc ≥ card((t ∧ u)0)
m

(12)

and the leave-one-out-error looe is bounded above as follows:

looe ≤ card((t ∨ u)+)
m

, (13)

where card((t ∧ u)0) denotes the cardinality of the set {i | ti = 0 and ui = 0}, while
card((t ∨ u)+) denotes the cardinality of the set {i | ti > 0 or ui 6= 0}.

Proof By the Karush-Kuhn-Tucker optimality conditions for (10) (Mangasarian, 1994,
p. 94) we have that:

t′(D(K(A, A′)Du− eγ) + y − e) = 0
t ≥ 0
D(K(A, A′)Du− eγ) + y − e ≥ 0
y′(νe− t) = 0
y ≥ 0
νe− t ≥ 0.

(14)

These optimality conditions lead to the following implications for i = 1, . . . , m:

yi > 0
=⇒ ti = ν > 0
=⇒ Dii(K(Ai, A

′)Du− γ)− 1 = −yi < 0.
(15)

308

Minimal Kernel Classifiers

Thus, a positive yi implies a positive multiplier ti = ν > 0 and a corresponding support
vector Ai . Hence the number of support vectors equals or exceeds card(y+), the number
of positive components of y.

To establish (12) we observe that all data points Ai for which both the corresponding
ti = 0 (i.e. Ai is not a support vector) and ui = 0 (i.e. K(A, A′i)Diiui = K(A, A′i)Dii·0 = 0),
can be thrown out of the linear program (10) without changing the solution. For all such
Ai we have by (14) that yi = 0 and hence these Ai are correctly classified points, and if
they were left out of the linear program (10) they would be correctly classified by the linear
programming solution. Hence the leave-one-out correctness can be bounded below (because
there could be other correctly classified Ai that could be thrown out also without changing
the solution) by the cardinality of Ai for which both ti = 0 and ui = 0, that is:

looc ≥ card((t ∧ u)0)
m

, (16)

which is the bound (12). Since looc + looe = 1 and

card((t ∧ u)0) + card((t ∨ u)+) = m,

it follows from (16) that

1− looe ≥ card((t ∧ u)0)
m

=
m− card((t ∨ u)+)

m
= 1− card((t ∨ u)+)

m
,

from which follows the bound (13).2
Motivated by the above bound (13) on the looe and by linear programming perturbation

theory (Mangasarian and Meyer, 1979), we present a minimal kernel algorithm that can
obtain striking test set correctness results with a minimal use of data points as well as
kernel components.

4. The Minimal Kernel Problem Formulation & Algorithm

By using an argument based on a finite perturbation of the objective function of a linear
program, we look for solutions of the linear program (10), which in general has multiple
solutions, that in addition suppress simultaneously as many components of the error of
the primal variable u as well as the dual variable t. Empirical evidence (Bradley and
Mangasarian, 1998) indicates that linear-programming-based classification problems are
amenable to feature suppression. Since we do not want to solve both the primal and dual
problems explicitly, which would be prohibitively costly for very large problems, we propose
suppressing components of the error vector y as a reasonable surrogate for suppressing
multiplier components t. The justification for this is that from the implication (15) we have
that:

{i | yi > 0} ⊆ {i | ti > 0}.
Hence:

card((t ∨ u)+)
m

≥ card((y ∨ u)+)
m

=
card((y ∨ v)+)

m
, (17)

where card((y∨u)+) denotes the cardinality of the set {i | yi > 0 or ui 6= 0}, card((y∨ v)+)
denotes the cardinality of the set {i | yi > 0 or vi > 0}, and the equality above follows from

309

Fung, Mangasarian and Smola

the fact that v = |u| at a solution of the linear program (10). We propose to minimize the
last term in (17) above instead of the actual upper bound on the looe given by the first term
in (17). This works remarkably well in reducing both data points needed and kernel size.
Consequently, we perturb the objective function of (10) by a step function (·)∗ of y and of
v = |u|, thus suppressing as many components of these variables as possible. This leads to
the following minimization problem with a concave objective function on its feasible region:

min
(u,γ,y,v)∈Rm+1+m+m

νe′y + e′v + µ(νe′y∗ + e′v∗) = νe′y# + e′v#

s.t. D(K(A, A′)Du− eγ) + y ≥ e
v ≥ u ≥ −v

y ≥ 0.

(18)

Here, the “pound” function (·)# is defined as the following loss function in terms of the
step function (·)∗:

x# = |x|+ µ|x|∗, for some µ > 0. (19)

Figure 2 depicts the shape of this loss function x#, which not only penalizes the amount
of deviation from zero, but also any deviation from zero no matter how small by an initial
penalty of µ which progresses linearly with the amount of deviation thereafter. Using linear
programming perturbation theory we can state the following result that justifies our minimal
kernel classifier algorithm.

µ

(0,0)
x

x
#
=|x| +µ|x|

*

Figure 2: The loss function x#

Proposition 4.1 Minimal Kernel as Perturbed LP For a given ν > 0 there exist µ̄ >
0, such that for all µ ∈ (0, µ̄], each solution of (18) is a solution of the linear programming

310

Minimal Kernel Classifiers

kernel problem (10) with a minimal number of nonzero components of y and u among all
its solutions.

Proof Without loss of generality we assume that the feasible region of the linear program
has no lines going to infinity in both directions and forgo the change of variables w =
w̃ − eζ, γ = γ̃ − ζ, (w̃, γ̃, ζ) ≥ 0. If we make this transformation then there are no lines in
the feasible region that go to infinity in both directions, because all the variables would be
nonnegative then.

Since the objective function of the problem (18) is concave on the feasible region and
bounded below by zero it must have a vertex solution (Rockafellar, 1970, Corollaries 32.3.3
and 32.3.4) for all nonnegative values of ν and µ.

Fix ν at some positive value and, to simplify notation and get the basic ideas across
with as little detail as possible, let the concave program (18) be represented as follows:

min
z∈S

f(z) + µg(z), (20)

where z = (u, γ, y, v), S is the polyhedral feasible region of (18), f is linear and g is concave
on S, that is:

f(z) := νe′y + e′v, g(z) := νe′y∗ + e′v∗.

Since the S has a finite number of vertices, for some decreasing sequence of positive numbers
{µ0, µ1, . . . , } ↓ 0, some fixed vertex z̄ of S will repeatedly solve the concave minimization
problem (18). Hence for any µ ∈ (0, µ0], z̄ is also a solution of (18), because:

µ = (1− λ)µi + λµi+1, for some i and some λ ∈ [0, 1],

and
f(z̄) + µg(z̄) = (1− λ)(f(z̄) + µig(z̄)) + λ(f(z̄) + µi+1g(z̄)).

Hence z̄ solves (20) for µ ∈ (0, µ0]. We will now show that z̄ also solves:

min
z∈S

f(z), (21)

which is equivalent to the linear program (10). Define

f̄ := min
z∈S

f(z) ≥ 0.

Suppose now that f(z̄) > f̄ and exhibit a contradiction. This will establish that z̄ solves
(21). Let

ε :=
f(z̄)− f̄

4
> 0 and z ∈ S with f(z) < f̄ + ε, (22)

and choose µ such that
1
µ

> max{ g(z)− g(z̄)
f(z̄)− f̄ − 2ε

,
1
µ0
}. (23)

We then have the following contradiction:

µg(z) + f̄ + ε > µg(z) + f(z) ≥ µg(z̄) + f(z̄) > µg(z) + f̄ + 2ε,

311

Fung, Mangasarian and Smola

where the first inequality follows from the last inequality of (22), the second inequality from
the fact that z̄ is a solution of (20), and the last inequality from (23). Hence z̄ solves (21)
which is equivalent to the linear program (10).

It remains to show that z̄ also minimizes g(z) as well over the set of minimizers of f on
S. That is, we have picked among all solutions of the linear program (10) that one with a
minimal number of nonzero components of y and u.

Let z be any solution of (21), that is z ∈ S and f(z) = f(z̄). Then,

µ0g(z) = µ0g(z) + f(z)− f(z) ≥ f(z) + µ0g(z)− f(z̄) ≥ f(z̄) + µ0g(z̄)− f(z̄) = µ0g(z̄).

Hence,
z̄ ∈ arg min

z∈S
{g(z) | f(z) ≤ f(z̄) = min

z∈S
f(z)}.2

Because of the discontinuity of the term e′y#, we approximate it by a concave expo-
nential on the nonnegative real line. For x ≥ 0, we approximate x# of (19) by the concave
exponential depicted in Figure 3. Thus for a vector y ≥ 0:

y# ≈ y + µ(e− ε−αy), α > 0, (24)

where ε is the base of natural logarithms. This leads to the following smooth reformulation
of problem (18):

min
(u,γ,y,v)∈Rm+1+m+m

νe′(y + µ(e− ε−αy)) + e′(v + µ(e− ε−αv))

s.t. D(K(A, A′)Du− eγ) + y ≥ e
v ≥ u ≥ −v

y ≥ 0.

(25)

It can be shown (Bradley et al., 1998a, Theorem 2.1) that an exact solution to the original
discontinuous problem (18) can be obtained by solving the above smooth problem (24) for
any sufficiently large value of α, which is typically set to 5 in our numerical computations.

We now prescribe the highly effective and finite successive linearization algorithm (SLA)
(Mangasarian, 1996, Bradley et al., 1998b, 1997, 1998a, Mangasarian, 1999b) for solving
the above problem.

Algorithm 4.2 Minimal Kernel Algorithm Start with an arbitrary (u0, γ0, y0, v0). Hav-
ing (ui, γi, yi, vi) determine the next iterate (ui+1, γi+1, yi+1, vi+1) by solving the following
linear program:

min
(u,γ,y,v)∈Rm+1+m+m

ν(e + µαε−αyi
)′(y − yi) + (e + µαε−αvi

)′(v − vi)

s.t. D(K(A, A′)Du− eγ) + y ≥ e
v ≥ u ≥ −v

y ≥ 0.

(26)

Stop when:
ν(e + µαε−αyi

)′(yi+1 − yi) + (e + ναε−αvi
)′(vi+1 − vi) = 0. (27)

312

Minimal Kernel Classifiers

µ

(0,0)
x

x
#
=|x| +µ|x|

*

x+µ(1−e−αx)

Figure 3: Loss function x# approximation by x + µ(1− εαx) on x ≥ 0.

It can be shown (Mangasarian, 1996) that this algorithm, which is essentially the repeated
solution of the linear program (10), terminates in a finite number of steps (typically 5 to
8) at a point that satisfies the necessary optimality condition that the current iterate is a
fixed point of the linearized problem.

Remark 4.3 When K(A, A′) is large, for example where m > 500, it is convenient to use
RSVM (Lee and Mangasarian, 2000) in order to utilize a smaller reduced kernel K(A, Ā′)
where Ā′ ∈ Rm̄×n and m̄ is 5%-20% of m. In all cases, however, the initial (u0, γ0, y0, v0)
were obtained using the 1-norm formulation (10).

Remark 4.4 The Minimal Kernel Algorithm 4.2 terminates at a primal solution (u, v, y, γ)
and a corresponding solution (t̃, r̃, s̃) to the dual of the last linearized problem (26). The
reduced m1 × m2 rectangular kernel K(Ām1 , Ām2) for this last linearized problem has di-
mensions corresponding to:

m1 = card(t̃+), m2 = card(u+), (28)

where:
Ām1 := {Ai | t̃i > 0} and Ām2 := {Ai | |u|i > 0}. (29)

Typically, m1 and m2 are considerably smaller than m. The number m1 is the number of the
first m constraints of the linear program (26) with positive dual multipliers at the solution
of the last linear program solved by Algorithm 4.2. The number m2 determines the number
of data points that the classifier:

K(x′, Ā′m2
)Dum2 − γ = 0, (30)

313

Fung, Mangasarian and Smola

depends on. We refer to m2 as the number of kernel support vectors. For a standard
support vector machine (1), m1 = m2. If the final linearization of (26) is re-solved with
the smaller kernel K(Ām1 , Ām2), the solution is the same as that obtained by Algorithm
4.2. However, if the standard 1-norm SVM formulation (10) is solved directly with the
reduced kernel K(Ām1 , Ā

′
m2

), then a result close to but not identical to that of Algorithm
4.2 is obtained because the objective function of (10) does not contain the linearization of
the pound function.

5. Computational Results

All our computations were performed on the University of Wisconsin Data Mining Institute
“locop1” Windows NT machine using MATLAB 6 (MATLAB, 1994-2001). The machine
utilizes a 400 Mhz Pentium II and allows a maximum of 2 Gigabytes of memory for each
process.

We tested Algorithm 4.2 on eight publicly available datasets in order to demonstrate
that the algorithm gives equally correct test set results by using a drastically reduced
kernel size compared to a kernel that uses the full dataset. A Gaussian kernel (Vapnik,
2000, Cherkassky and Mulier, 1998) was used throughout the numerical tests:

K(Ai, A
′
j) = ε−σ‖Ai−Aj‖22 ,

where σ is a positive parameter determined by using a tuning set for each dataset.

5.1 Results for the Checkerboard

The first dataset used was the Checkerboard (Ho and Kleinberg, 1996a,b) consisting of 486
black points and 514 white points taken from a 16-square checkerboard. These 1000 points
constituted the training dataset while the test set consisted of 39,601 points taken from a
uniform 199× 199 grid of points. This example was picked in order to demonstrate visually
how a small subset of the original data can achieve an accurate separation.

5.2 Results on the USPS Dataset

Figure 4 depicts the separation obtained using a reduced kernel K(Am1 , Am2) with m1 = 30
and m2 = 27. The 30 points constituting Am1 and the 27 points constituting Am2 are
depicted in Figure 4 as circles and stars respectively. The total of these points is 5.7%
of the original data and the rather accurate separating surface (30) depends merely on 27
points, that is 2.7% of the original data.

Although our algorithm is primarily intended for two-class problems, we have also ap-
plied it to the ten-category USPS (US Postal Service) dataset of hand-written numbers
(Vapnik, 2000, Bottou et al., 1994). This well-known dataset consists of 7291 training pat-
terns and 2007 testing patterns, collected from real-life zip codes. Each pattern consists of
one of the ten numbers 0 to 9 and is represented by a digital image consisting of 16 × 16
pixels, which results in a 256-dimensional input space. In our tests here we used a one-
from-the-rest approach, which led to the construction of 10 classifiers, each separating one
class from the rest. The final classification was done by selecting the class corresponding to
the classifier with the largest output value. The number of kernel support vectors reported

314

Minimal Kernel Classifiers

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4: The checkerboard classifiier depends on only 2.7% of the original data depicted as
27 stars, and is trained on only 3.0% of the original data depicted as 30 circles. The
reduced kernel here is 30 × 27 compared to an original kernel for the full dataset
of size 1, 000 × 1, 000. Running times were 109.9 seconds for the full kernel and 0.1
seconds for the reducedkernel.

in Table 1 is the total over the ten classifiers. We compare our algorithm with other kernel
reducing methods such as the Sparse Greedy Matrix Approximation (SGMA) (Smola and
Schölkopf, 2000) and the Relevance Vector Machine (RVM) (Tipping, 2000) as well as with
the standard Support Vector Machine (SVM) (Vapnik, 2000). In all the experiments in
this section a Gaussian kernel was used. Table 1 compares the number of kernel support
vectors for all these methods as well as the test set error. We note that our error rate is
somewhat higher than that of the other methods. However, our number of kernel support
vectors is the second smallest, in line with objectives of the paper. The average time to
compute each of the ten classifiers for the USPS dataset was 24.6 minutes on our Pentium
II 400MHz machine.

5.3 Results on Six Public Datasets

The next set of problems were from the University of California Irvine Repository (Murphy
and Aha, 1992) and varied in size between 297 to 8124 points, with input space dimen-

315

Fung, Mangasarian and Smola

Method No. of Kernel Support Vectors Test Error %
MKC 376 6.7%

SVM (Vapnik, 2000) 1727 4.1%
SGMA (Smola and Schölkopf, 2000) 590 *

RVM (Tipping, 2000) 316 5.1%

Table 1: Comparison of total number of kernel support vectors (in ten classifiers) and test set
error for 4 methods: Minimal Kernel Classifier (MKC), standard Support Vector
Machine (SVM), Sparse Greedy Matrix Approximation (SGMA) and Relevance
Vector Machine (RVM).
∗ No test error is reported in (Smola and Schölkopf, 2000).

sionality between 6 to 34. The purpose of the experiments was to show that the proposed
Minimal Kernel Algorithm 4.2 can achieve three objectives:

(i) It can generate a nonlinear separating surface with less than 10% of the original data.
This is a key property for incremental algorithms (Fung and Mangasarian, 2002) where
obsolete old data is retired before merging it with new incoming data.

(ii) Accuracy of ten-fold cross validation is as good or better than that of a nonlinear
classifier that depends on a much bigger subset of the original training set.

(iii) Since the reduced kernel classifier depends on a very small subset of the original
data, classification of a new point is done very quickly. This makes this method very
attractive for applications where there are time constraints on the testing procedure
or where there are storage constraints on the classifier.

The above and other results are given in Table 2 averaged over ten-fold runs for each
dataset.

6. Conclusion

When one is confronted with a complex classification problem for which a linear classifier
fails, e.g. the checkerboard example of Figure 4, one needs to resort to a nonlinear classifier.
We have addressed one of the serious computational difficulties associated with such prob-
lems when we attempt to use a nonlinear kernel classifier on a large training dataset. Such
problems result in the unwieldy explicit dependence of the nonlinear classifier on almost all
the entries of a huge dataset. By utilizing a leave-one-out error bound, we have proposed
an algorithm, based on solving a few linear programs, that generates an accurate nonlinear
kernel classifier that typically depends on less than 10% of the original data. With the ex-
ception of the multiple class USPS dataset, the nonlinear separator is as or more accurate
than classifiers using the full dataset and is much faster to evaluate, making it suitable for
fast on-line decision making. This allows us to tackle nonlinear classification problems that
hitherto were very difficult to solve. The fact that our formulation also reduces the number
of data points needed if we have to re-solve the problem, suggests promising new applica-
tions, such as incremental classification of massive datasets where only a small fraction of
the data is kept before merging it into incrementally arriving data.

316

Minimal Kernel Classifiers

Data Set Reduced MKC SVM Ten-fold Kernel Support Testing

rectangular Ten-fold test set test set vector time

m× n kernel correctness % correctness % reduction ∗∗ % reduction †%

m1 ×m2 (Ten-fold time sec.) (SV)∗ (SVM-MKC time sec.)

Ionosphere 30.2 × 15.7 94.9% 92.9% 94.6% 94.9%
351× 34 (172.3) (288.2) (3.05-0.16)

Cleveland Heart 64.6 × 7.6 85.8% 85.5 % 96.9 % 96.3 %
297× 13 (147.2) (241.0) (0.84-0.03)

Pima Indians 263.1× 7.8∗∗∗ 77.7 % 76.6 % 98.8% 98.8 %
768× 8 (303.3) (637.3) (3.95-0.05)

BUPA Liver 144.4 × 10.5 75.0 % 72.7 % 96.6% 97.5 %
345× 6 (285.9) (310.5) (0.59-0.02)

Tic-Tac-Toe 31.3× 14.3∗∗∗ 98.4 % 98.3 % 98.3% 98.2 %
958× 9 (150.4) (861.4) (6.97-0.13)
Mushroom 933.8× 47.9∗∗∗ 89.3 % oom NA NA
8124× 22 (2763.5) (NA)

Table 2: Results for six UC Irvine datasets showing the percentage of reduction achieved
over ten-fold runs. The last column gives testing time reduction resulting from
using our minimal kernel classifier (MKC) instead of a regular full kernel classifier.
The numbers m1 and m2 are averages over ten folds and refer to the dimensionality
of the reduced kernel K(Ām1 , Ām1) as explained in Remark 4.4. All linear programs
were solved using CPLEX 6.5 (CPL, 1992). NA denotes “Not Available”, while oom
denotes “out of memory”.

* Number of support vectors obtained using a standard quadratic programming support
vector machine (1).

** Comparison between the number of MKC kernel support vectors m2 defined by (28) and
the number of support vectors (SV) using the standard quadratic programming support
vector machine (1).

*** RSVM (Lee and Mangasarian, 2000) was used here in order to obtain a smaller initial
kernel for each of the Pima Indians dataset (768× 150 instead of 768× 768), the Tic-Tac-
Toe dataset (958× 96 instead of 958× 958) and the Mushroom dataset (8124× 400 instead
of 8124× 8124).

† If Tsvm is the average single fold time over ten folds testing for the standard SVM
classifier that depends on SV data points, and Tr is the average single fold time over
ten folds testing using an MKC classifier that depends only on m2 data points, then this
percentage is given by: 100× (1− Tsvm

Tr
)

317

Fung, Mangasarian and Smola

Acknowledgments

The research described in this Data Mining Institute Report 00-08, November 2000, was
supported by National Science Foundation Grants CCR-9729842, CCR-0138308 and CDA-
9623632, by Air Force Office of Scientific Research Grant F49620-00-1-0085 and by the
Microsoft Corporation. Revised July and September 2002.

References

A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Occam’s razor. Information
Processing Letters, 24:377–380, 1987.

L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller,
E. Sackinger, P. Simard, and V. Vapnik. Comparison of classifier methods: A case study
in handwriting digit recognition. In International Conference on Pattern Recognition,
pages 77–87. IEEE Computer Society Press, 1994.

P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and
support vector machines. In J. Shavlik, editor, Machine Learning Proceedings of the
Fifteenth International Conference(ICML ’98), pages 82–90, San Francisco, California,
1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear
support vector machines. Optimization Methods and Software, 13:1–10, 2000.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-03.ps.

P. S. Bradley, O. L. Mangasarian, and J. B. Rosen. Parsimonious least norm approx-
imation. Computational Optimization and Applications, 11(1):5–21, October 1998a.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-03.ps.

P. S. Bradley, O. L. Mangasarian, and W. N. Street. Clustering via concave minimiza-
tion. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, Advances in Neural In-
formation Processing Systems -9-, pages 368–374, Cambridge, MA, 1997. MIT Press.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/96-03.ps.

P. S. Bradley, O. L. Mangasarian, and W. N. Street. Feature selection via math-
ematical programming. INFORMS Journal on Computing, 10(2):209–217, 1998b.
ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-21.ps.

V. Cherkassky and F. Mulier. Learning from Data - Concepts, Theory and Methods. John
Wiley & Sons, New York, 1998.

Using the CPLEX(TM) Linear Optimizer and CPLEX(TM) Mixed Integer Optimizer (Ver-
sion 2.0). CPLEX Optimization Inc., Incline Village, Nevada, 1992.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cam-
bridge University Press, Cambridge, 2000.

318

Minimal Kernel Classifiers

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton,
New Jersey, 1963.

M. C. Ferris and T. S. Munson. Interior point methods for massive support vector machines.
Technical Report 00-05, Computer Sciences Department, University of Wisconsin, Madi-
son, Wisconsin, May 2000. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-05.ps.

G. Fung and O. L. Mangasarian. Data selection for support vector machine classification.
In R. Ramakrishnan and S. Stolfo, editors, Proceedings KDD-2000: Knowledge Discovery
and Data Mining, August 20-23, 2000, Boston, MA, pages 64–70, New York, 2000. Assco-
ciation for Computing Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-02.ps.

G. Fung and O. L. Mangasarian. Proximal support vector machine classifiers. In F. Provost
and R. Srikant, editors, Proceedings KDD-2001: Knowledge Discovery and Data Mining,
August 26-29, 2001, San Francisco, CA, pages 77–86, New York, 2001. Asscociation for
Computing Machinery. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-02.ps.

G. Fung and O. L. Mangasarian. Incremental support vector machine classification. In
H. Mannila R. Grossman and R. Motwani, editors, Proceedings of the Second SIAM Inter-
national Conference on Data Mining, Arlington, Virginia, April 11-13,2002, pages 247–
260, Philadelphia, 2002. SIAM. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/01-08.ps.

T. K. Ho and E. M. Kleinberg. Building projectable classifiers of arbitrary complexity. In
Proceedings of the 13th International Conference on Pattern Recognition, pages 880–885,
Vienna, Austria, 1996a. http://cm.bell-labs.com/who/tkh/pubs.html. Checker dataset
at: ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/checker.

T. K. Ho and E. M. Kleinberg. Checkerboard dataset, 1996b.
http://www.cs.wisc.edu/math-prog/mpml.html.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Proceedings of
the 1999 Conference on AI and Statistics, San Mateo, CA, 1999. Morgan Kaufmann.

Y.-J. Lee and O. L. Mangasarian. RSVM: Reduced support vector machines. Techni-
cal Report 00-07, Data Mining Institute, Computer Sciences Department, University
of Wisconsin, Madison, Wisconsin, July 2000. Proceedings of the First SIAM Inter-
national Conference on Data Mining, Chicago, April 5-7, 2001, CD-ROM Proceedings.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.ps.

Yuh-Jye Lee and O. L. Mangasarian. SSVM: A smooth support vector machine. Computa-
tional Optimization and Applications, 20:5–22, 2001. Data Mining Institute, University
of Wisconsin, Technical Report 99-03. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-
03.ps.

O. L. Mangasarian. Nonlinear Programming. SIAM, Philadelphia, PA, 1994.

O. L. Mangasarian. Machine learning via polyhedral concave minimization. In H. Fischer,
B. Riedmueller, and S. Schaeffler, editors, Applied Mathematics and Parallel Computing -
Festschrift for Klaus Ritter, pages 175–188. Physica-Verlag A Springer-Verlag Company,
Heidelberg, 1996. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/95-20.ps.

319

Fung, Mangasarian and Smola

O. L. Mangasarian. Arbitrary-norm separating plane. Operations Research Letters, 24:
15–23, 1999a. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-07r.ps.

O. L. Mangasarian. Minimum-support solutions of polyhedral concave programs. Optimiza-
tion, 45:149–162, 1999b. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/97-05.ps.

O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
135–146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-
reports/98-14.ps.

O. L. Mangasarian and R. R. Meyer. Nonlinear perturbation of linear programs. SIAM
Journal on Control and Optimization, 17(6):745–752, November 1979.

O. L. Mangasarian and D. R. Musicant. Robust linear and support vector regression.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(9):950–955, 2000.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/99-09.ps.

O. L. Mangasarian and D. R. Musicant. Active support vector machine classification. In
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural
Information Processing Systems 13, pages 577–583, Cambridge, MA, 2001a. MIT Press.
ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-04.ps.

O. L. Mangasarian and D. R. Musicant. Lagrangian support vector machines. Journal
of Machine Learning Research, 1:161–177, 2001b. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/00-06.ps.

O. L. Mangasarian and D. R. Musicant. Large scale kernel regression via linear pro-
gramming. Machine Learning, 46:255–269, 2002. ftp://ftp.cs.wisc.edu/pub/dmi/tech-
reports/99-02.ps.

MATLAB. User’s Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2001.
http://www.mathworks.com.

T. M. Mitchell. Machine Learning. McGraw-Hill, Boston, 1997.

P. M. Murphy and D. W. Aha. UCI machine learning repository, 1992.
www.ics.uci.edu/∼mlearn/MLRepository.html.

M. Opper and O. Winther. Gaussian processes and SVM: Mean field and leave-one-out.
In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large
Margin Classifiers, pages 311–326, Cambridge, MA, 2000. MIT Press.

J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14:1080–1100, 1986.

R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, New Jersey,
1970.

B. Schölkopf, C. Burges, and A. Smola (editors). Advances in Kernel Methods: Support
Vector Machines. MIT Press, Cambridge, MA, 1999. ISBN 0-262-19416-3.

320

Minimal Kernel Classifiers

A. Smola, P. L. Bartlett, B. Schölkopf, and J. Schuurmann (editors). Advances in Large
Margin Classifiers. MIT Press, Cambridge, MA, 2000.

Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approximation for machine
learning. In Proc. 17th International Conf. on Machine Learning, pages 911–918. Mor-
gan Kaufmann, San Francisco, CA, 2000. URL citeseer.nj.nec.com/smola00sparse.
html.

M. Tipping. The relevance vector machine. In S. A. Solla, T. K. Leen, and K.-R. Müller,
editors, Advances in Neural Information Processing Systems, volume 12, pages 652–658,
Cambridge, MA, 2000. MIT Press.

V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, second
edition, 2000.

V. N. Vapnik and O. Chapelle. Bounds on expectation for SVM. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages
261–280, Cambridge, MA, 2000. MIT Press.

J. Weston and R. Herbrich. Adaptive margin support vector machines. In A. Smola,
P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Clas-
sifiers, pages 281–295, Cambridge, MA, 2000. MIT Press.

Y. Ye. Interior Point Algorithms Theory and Analysis. John Wiley & Sons, New York,
1997.

321

