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Generalization Performance of Regularization
Networks and Support Vector Machines Via

Entropy Numbers of Compact Operators
Robert C. Williamson, Member, IEEE, Alex J. Smola, and Bernhard Schölkopf

Abstract—We derive new bounds for the generalization error
of kernel machines, such as support vector machines and related
regularization networks by obtaining new bounds on their cov-
ering numbers. The proofs make use of a viewpoint that is appar-
ently novel in the field of statistical learning theory. The hypoth-
esis class is described in terms of a linear operator mapping from
a possibly infinite-dimensional unit ball in feature space into a fi-
nite-dimensional space. The covering numbers of the class are then
determined via the entropy numbers of the operator. These num-
bers, which characterize the degree of compactness of the operator,
can be bounded in terms of the eigenvalues of an integral operator
induced by the kernel function used by the machine. As a conse-
quence, we are able to theoretically explain the effect of the choice
of kernel function on the generalization performance of support
vector machines.

Index Terms—Covering numbers, -entropy, kernel methods,
linear operators, metric entropy, statistical learning theory,
support vector (SV) machines.

I. INTRODUCTION

I N this paper we give new bounds on the covering numbers
for kernel machines. This leads to improved bounds on

their generalization performance. Kernel machines perform a
mapping from input space into a feature space (see, e.g., [1],
[34]), construct regression functions or decision boundaries
based on this mapping, and use constraints in feature space for
capacity control. Support vector (SV) machines, which have
recently been proposed as a new class of learning algorithms
solving problems of pattern recognition, regression estimation,
and operator inversion [53] are a well-known example of this
class. We will use SV machines as our model of choice to
show how bounds on the covering numbers can be obtained.
We outline the relatively standard methods one can then
use to hence bound their generalization performance. SV
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machines, like most kernel-based methods, possess the nice
property of defining the feature map in a manner that allows
its computation implicitly at little additional computational
cost. Our reasoning also applies to similar algorithms such as
regularization networks [16] or certain unsupervised learning
algorithms [41]. Let us now take a closer look at SV machines.
Central to them are two ideas: capacity control by maximizing
margins, and the use of nonlinear kernel functions.

A. Capacity Control

In order to perform pattern recognition using linear hyper-
planes, often a maximum margin of separation between the
classes is sought, as this leads to good generalization ability
independent of the dimensionality [55], [53], [43]. It can be
shown that for separable training data

(1)

this is achieved by minimizing subject to the constraints
for , and some . The

decision function then takes the form

sgn (2)

Similarly, a linear regression

(3)

can be estimated from data

(4)

by finding the flattest function which approximates the data
within some margin of error: in this case, one minimizes
subject to , where the parameter plays
the role of the margin, albeit not in the space of the inputs, but
in that of the outputs .

In both cases, generalizations for the nonseparable or nonre-
alizable case exist, using various types of cost functions [14],
[53], [46].

B. Nonlinear Kernels

In order to apply the above reasoning to a rather general
class ofnonlinearfunctions, one can use kernels computing dot
products in high-dimensional spaces nonlinearly related to input
space [1], [10]. Under certain conditions on a kernel, to be
stated below (Theorem 4), there exists a nonlinear mapinto a
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reproducing kernel Hilbert space(see, e.g., [40]) such that
computes the dot product in, i.e.,

(5)

Given any algorithm which can be expressed in terms of dot
products exclusively, one can thus construct a nonlinear version
of it by substituting a kernel for the dot product. Examples of
such machines include SV pattern recognition [10], SV regres-
sion estimation [53], and kernel principal component analysis
[41].

By using the kernel trick for SV machines, the maximum
margin idea is thus extended to a large variety of nonlinear func-
tion classes (e.g., radial basis function networks, polynomial
networks, neural networks), which in the case of regression es-
timation comprise functions written as kernel expansions

(6)

with , . It has been noticed that different
kernels can be characterized by their regularization properties
[48]: SV machines are regularization networks minimizing the
regularized risk

(with a regularization parameter , and a regularization
operator ) over the set of functions of the form (6), provided
that and are interrelated by

To this end, is chosen as a Green’s function of where
is the adjoint of .

This provides insight into the regularization properties of SV
kernels. However, it does not completely settle the issue of how
to select a kernel for a given learning problem, and how using a
specific kernel might influence the performance of an SV ma-
chine.

C. Outline of the Paper

In the present work, we show that properties of the spectrum
of the kernel can be used to make statements about the general-
ization error of the associated class of learning machines. Unlike
in previous SV learning studies, the kernel is no longer merely a
means of broadening the class of functions used, e.g., by making
a nonseparable dataset separable in a feature space nonlinearly
related to input space. Rather, we now view it as a constructive
handle by which we can control the generalization error.

A key feature of the present paper is the manner in which
we directly bound the covering numbers of interest rather
than making use of a combinatorial dimension (such as the
Vapnik–Chervonenkis (VC) dimension or the fat-shattering
dimension) and subsequent application of a general result
relating such dimensions to covering numbers. We bound
covering numbers directly by viewing the values induced by
the relevant class of functions as the image of a unit ball under a
particular compact operator. A general overview of the method
is given in Section III.

The remainder of the paper is organized as follows. We start
by introducing notation and definitions (Section II). Section IV
formulates generalization error bounds in terms of covering
numbers. Section V contains the main result bounding entropy
numbers in terms of the spectrum of a given kernel. The results
in this paper rest on a connection between covering numbers
of function classes and entropy numbers of suitably defined
operators. In particular, we derive an upper bound on the
entropy numbers in terms of the size of the weight vector in
feature space and the eigenvalues of the kernel used. Section VI
shows how to make use of kernels such as
which do not have a discrete spectrum. Section VII presents
some results on the entropy numbers obtained for given rates
of decay of eigenvalues and Section VIII shows how to extend
the results to several dimensions. The concluding section
(Section IX) indicates how the various results in the paper
can be glued together in order to obtain overall bounds on
the generalization error. All of the examples we provide for
the calculation of eigenvalues are for translation-invariant
kernels (i.e., convolutional kernels); this is merely for conve-
nience—the general theory is not restricted to such kernels.
Key new results are labeled as propositions.

We do not present a single master generalization error the-
orem for four key reasons: 1) the only novelty in the paper lies
in the computation of covering numbers themselves; 2) the par-
ticular statistical result one needs to use depends on the specific
problem situation; 3) many of the results obtained are in a form
which, while quite amenable to ready computation on a com-
puter, do not provide much direct insight by merely looking at
them, except perhaps in the asymptotic sense; and, finally, 4)
some applications (such as classification) where further quanti-
ties like margins are estimated in a data dependent fashion, need
an additional luckiness argument [44] to apply the bounds.

Thus, although our goal has been theorems, we are ultimately
forced to resort to a computer to make use of our results. This
is not necessarily a disadvantage—it is both a strength and a
weakness of structural risk minimization (SRM) [56] that a good
generalization error bound is both necessary and sufficient to
make the method work well. In [20], some more explicit for-
mulas based on the present work and more suitable for SRM
are developed.

II. DEFINITIONS AND NOTATION

For , denotes the -dimensional space of vectors
. We define spaces as follows: as vector

spaces, they are identical to , in addition, they are endowed
with -norms: for

for

Note that a different normalization of the norm is used in
some papers in learning theory (e.g., [51]). For ,
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. We use the shorthand sequence notation
.

Given points , we use the shorthand
.

Suppose is a class of functions . The norm
with respect to of is defined as

Likewise,

Given some set with a -algebra, a measureon , some
and a function we define

if the integral exists and

For , we let

We let .
If is a set and a metric on , then the -covering number

of with respect to the metric denoted is
the smallest number of elements of an-cover for using the
metric . Given a metric space we will also write

. The th entropy number of a set , for
, is

(7)

Let be the set of all bounded linear operators
between the normed spaces and , i.e.,
operators such that the image of the (closed) unit ball

(8)

is bounded. The smallest such bound is called theoperator norm

(9)

Theentropy numbers of an operator are defined
as

(10)

Note that , and that certainly is well-defined
for all if is acompact operator, i.e., if for any
there exists a finite cover of with open balls on .

Thedyadic entropy numbers of an operatorare defined by

(11)

Similarly, the dyadic entropy numbers of a set are defined from
its entropy numbers. A very nice introduction to entropy num-
bers of operators is [13].

In this paper, and will always beBanach spaces, i.e.,
complete normed spaces (for instance,spaces with ).
In some cases, they will beHilbert spaces , i.e., Banach spaces
endowed with a dot product giving rise to its norm via

.
By and , we denote the logarithms to baseand , re-

spectively. By , we denote the imaginary unit , will
always be a kernel, andand will be the input dimensionality
and the number of examples

(12)

respectively. We will map the input data into a feature space via
a mapping . We let .

III. OPERATORTHEORY METHODS FORENTROPYNUMBERS

In this section, we briefly explain the new viewpoint utilized
in the present paper. With reference to Fig. 1, consider the tra-
ditional viewpoint in statistical learning theory. One is given a
class of functions , and the generalization performance attain-
able using is determined via the covering numbers of. More
precisely, for some set , and for , define
theuniform covering numbersof the function class on by

(13)

where is the -covering number of with re-
spect to . (Recall .) Many generaliza-
tion error bounds can be expressed in terms of . An
example is given in the following section.

The key novelty in the present work solely concerns the
manner in which the covering numbers are computed. Tradi-
tionally, appeal has been made to a result such as the so-called
Sauer’s lemma (originally due to Vapnik and Chervonenkis).
In the case of function learning, a generalization called the
VC dimension of real-valued functions, or a variation due to
Pollard (called the pseudo-dimension), or a scale-sensitive
generalization of that (called the fat-shattering dimension) is
used to bound the covering numbers. These results reduce
the computation of to the computation of a single
“dimension-like” quantity (independent of ). An overview
of these various dimensions, some details of their history, and
some examples of their computation can be found in [5], [6].

In the present work, we view the classas being induced by
an operator depending on some kernel function. Thus,
is the image of a “base class”under . The analogy implicit
in the picture is that the quantity that matters is the number of
-distinguishable messages obtainable at the information sink.

(Recall the equivalence up to a constant factor ofin of
packing and covering numbers [6].) In a typical communica-
tions problem, one tries to maximize the number of distinguish-
able messages (per unit time), in order to maximize the informa-
tion transmission rate. But from the point of view of the receiver,
the decoding job is made easier thesmallerthe number of dis-
tinct messages that one needs to be concerned with decoding.
(Of course, this lowers the information transmission rate.) The
significance of the picture is that the kernel in question is exactly
the kernel that is used, for example, in support vector machines.
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Fig. 1. Schematic picture of the new viewpoint.

As a consequence, the determination of can be done
in terms of properties of the operator. The latter thus plays a
constructive role in controlling the complexity of and hence
the difficulty of the learning task. We believe that the new view-
point in itself is potentially very valuable, perhaps more so than
the specific results in the paper. A further exploitation of the new
viewpoint can be found in [62], [61], [49], [47].

We conclude this section with some historical remarks.
The concept of the metric entropy of a set has been around

for some time. It seems to have been introduced by Pontriagin
and Schnirelmann [37] and was studied in detail by Kolmogorov
and others [27] (see also, e.g., [32, Ch. 15]). The use of metric
entropy to say something about linear operators was developed
independently by several people. Prosser [38] appears to have
been the first to make the idea explicit. He determined the effect
of an operator’s spectrum on its entropy numbers. In particular,
he proved a number of results concerning the asymptotic rate
of decrease of the entropy numbers in terms of the asymptotic
behavior of the eigenvalues. A similar result is actually implicit
in Shannon’s famous paper [42, Sec. 22], where he considered
the effect of different convolution operators on the entropy of an
ensemble. Prosser’s paper [38] led to a handful of papers (see,
e.g., [39], [22], [3], [29]) which studied various convolutional
operators. A connection between Prosser’s-entropy of an op-
erator and Kolmogorov’s-entropy of a stochastic process was
shown in [2]. Independently, another group of mathematicians
including Carl and Stephani [13] studied covering numbers [52]

and later entropy numbers [36] in the context of operator ideals.
(They were unaware of Prosser’s work—see, e.g., [11, p. 136].)

Connections between the local theory of Banach spaces and
uniform convergence of empirical means has been noted before
(e.g., [35]). More recently, Gurvits [21] has obtained a result
relating the Rademacher type of a Banach space to the fat-shat-
tering dimension of linear functionals on that space and hence
via the key result in [4] to the covering numbers of the induced
class. We will make further remarks concerning the relationship
between Gurvits’ approach and ours in [60]; for now, let us just
note that the equivalence of the type of an operator (or of the
space it maps to), and the rate of decay of its entropy numbers
has been (independently) shown by Kolchinskiy[25], [26] and
Defant and Junge [15], [23]. Note that the exact formulation of
their results differs. Kolchinskiy was motivated by probabilistic
problems not unlike ours.

IV. GENERALIZATION BOUNDS VIA UNIFORM CONVERGENCE

The generalization performance of learning machines can be
bounded via uniform convergence results as in [57], [56]. A re-
cent review can be found in [5]; see also [30]. The key thing
about these results is the role of the covering numbers of the hy-
pothesis class—the focus of the present paper. Results for both
classification and regression are now known. For the sake of
concreteness, we quote below a result suitable for regression
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which was proved in [4]. For results on classifier performance
in terms of covering numbers see [8]. Let

denote theempirical meanof on the sample .
We make use of the following due to Alon, Ben-David, Cesa-

Bianchi, and Haussler [4].

Lemma 1: Let be a class of functions from into
and let be a distribution over . Then, for all and all

(14)

where denotes the probability with respect to the sample
drawn independent and identically distributred

(i.i.d.) from , and the expectation with respect to a second
sample also drawn i.i.d. from .

In order to use this lemma, one usually makes use of the fact
that for any

(15)

The above result can be used to give a generalization error re-
sult by applying it to the loss-function-induced class. The fol-
lowing lemma, which is an improved version of [9, Lemma 17],
is useful in this regard (a similar result appears in [6]).

Lemma 2: Let be a set of functions from to with
, , and a loss function. Let

and

Then the following two statements hold.

1) Suppose satisfies the Lipschitz condition

for all (16)

Then for all

(17)

and

(18)

2) Suppose that for some , satisfies the “approx-
imate Lipschitz condition”

for all (19)

then for all

(20)

Proof: We show that, for any sequence of pairs
in and any functions and , if the restrictions of
and to are close, then the restrictions ofand to
are close. Thus, given a cover of we can construct a cover
of that is no bigger. For case 1) we get

In the second case we proceed similarly

for

The second case can be useful when the exact form of the
cost function is not known, happens to be discontinuous, or is
badly behaved in some other way. Applying the result above to
polynomial loss leads to the following corollary.

Corollary 3: Let the assumptions be as above in Lemma 2.
Then for loss functions of type

with (21)

we have , in particular for
and, therefore,

(22)

One can readily combine the uniform convergence results with
the above results to get overall bounds on generalization per-
formance. We do not explicitly do this here since the particular
uniform convergence result needed depends on the exact setup
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of the learning problem. A typical uniform convergence result
takes the form

(23)

where is the empirical risk and the expected risk
of (see, e.g., [6], [54] Even the exponent in (23) de-
pends on the setting:. In regression,can be set to, however,
in agnostic learning [24] in general , except if the class is
convex in which case it can be set to[31]. Since our primary in-
terest is in determining we will not try to summarize
the large body of results now available on uniform convergence
and generalization error.

These generalization bounds are typically used by setting the
right-hand side equal toand solving for (which
is called the sample complexity). Another way to use these re-
sults is as a learning curve bound where

We note here that the determination of is quite conve-
nient in terms of , the dyadic entropy number associated with
the covering number in (23). Setting the right-hand
side of (23) equal to, we have

(24)

Thus, : (24) holds . Hence, the use of or
(which will arise naturally from our techniques) is in fact a

convenient thing to do for finding learning curves.

V. ENTROPY NUMBERS FORKERNEL MACHINES

In the following, we will mainly consider machines where the
mapping into feature space is defined by Mercer kernels
as they are easier to deal with using functional analytic methods.
(More general kernels are considered in [47].) Such machines
have become very popular due to the success of SV machines.

A. Mercer’s Theorem, Feature Spaces, and Scaling

Our goal is to make statements about the shape of the image of
the input space under the feature map . We will make use
of Mercer’s theorem. The version stated below is a special case
of the theorem proven in [28, p. 145]. In the following we will
assume to be a finite measure space, i.e., .

Theorem 4 (Mercer):Suppose is a sym-
metric kernel (that is, ) such that the integral
operator

(25)

is positive. Let be the eigenfunction of associ-
ated with the eigenvalue and normalized by
. Suppose is continuous for all . Then

1) for ;

2) and ;

3) holds for all ;

where the series converges absolutely and uniformly for all
.

We will call a kernel satisfying the conditions of this theorem
aMercer kernel.Note that if is compact and is continuous,
then is continuous (cf., e.g., [7, p. 270]). Alternatively, if
is translation-invariant, then are scaled cosine functions and
thus continuous. Thus, the assumption thatare continuous is
not very restrictive.

From statement 2) of Mercer’s theorem there exists some
constant depending on such that

for all and (26)

Moreover, from statement 3) it follows that corresponds
to a dot product in , i.e., with

(27)

for all . In the following, we will (without loss of gener-
ality) assume the sequence of is sorted in nonincreasing
order. From the argument above, one can see that lives
not only in but in an axis parallel parallelepiped with lengths

.
We remark that the measureneed have nothing to do with

the distribution of examples. In particular, we may consider any
of the following kernels in our bounds.

Lemma 5 (Equivalent Kernels):Denote by a compact set
and by a Mercer kernel. Then ,for any and surjec-
tive map , the kernel
also satisfies Mercer’s condition and, moreover, the eigenvalues

and the coefficient of the integral operator

(28)

can be used equivalently in any application of.
This means in particular that we could construct diffeomor-

phisms and look for the function such that the
eigenvalues and are as small as possible.

Proof: The first part of the claim, namely, that also sat-
isfies Mercer’s condition, follows immediately from the con-
struction of . For the second claim, note that due to the fact
that is surjective for any distribution on there must
exist an equivalent distribution on . Thus, we can al-
ways consider the problem as being one onfrom the start.
However, since and were chosen arbitrarily we can opti-
mize over them.

Lemma 5 shows that the specific bounds we obtainwill de-
pend on since that will affect the and the . The
question of the optimal to use and how it may be chosen if one
knows (the distribution from which the are drawn) is not
considered here. In all cases considered in this paper, we will in
fact take to be the Lebesgue measure.

It will be useful to consider maps that map into balls of
some radius centered at the origin. The following proposition
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shows that the class of all these maps is determined by elements
of and the sequence of eigenvalues .

Proposition 6 (Mapping into ): Let be the diag-
onal map

with (29)

Then maps into a ball of finite radius centered at
the origin if and only if .

Proof:
( ) Suppose and let

For any

(30)

Hence .
( ) Suppose is not in . Hence the sequence
with

is unbounded. Now define

(31)

Then due to the normalization condition
on . However, as there exists a set of nonzero
measure such that

for all (32)

Combining the left-hand side of (30) with (31) we obtain

for all and all

Since is unbounded for a set with nonzero measure in
, we can see that .

Once we know that is contained in the parallelepiped
described above we can use this result to construct a mapping

from the unit ball in to an ellipsoid such that
as in the following diagram (where we have slightly abused the
traditional notational convention).

(33)

The operator will be useful for computing the entropy num-
bers of concatenations of operators. (Knowing the inverse will
allow us to compute the forward operator, and that can be used to
bound the covering numbers of the class of functions, as shown
in the next subsection.) We thus seek an operator
such that

(34)

This means that will be such that . The
latter can be ensured by constructingsuch that

with (35)

where and are chosen with respect to a specific kernel
and where . From Proposition 6, it
follows that all those operators for which will sat-
isfy (34). We call such scaling (inverse) operatorsadmissible.

B. Entropy Numbers

The next step is to compute the entropy numbers of the oper-
ator and use this to obtain bounds on the entropy numbers for
kernel machines like SV machines. We will make use of the fol-
lowing theorem due to Gordon, König, and Schütt [17, p. 226]
(stated in the present form in [13, p. 17]).

Theorem 7: Let be a nonin-
creasing sequence of nonnegative numbers and let

(36)

for be the diagonal operator
from into itself, generated by the sequence , where

. Then for all

(37)

We can exploit the freedom in choosingto minimize an en-
tropy number as the following corollary shows. This will be a
key ingredient of the calculation of the covering numbers for SV
classes, as shown below.

Proposition 8 (Scaling Operators):Let be a
Mercer kernel with eigenvalues . Choose for
such that , and define

(38)

with . Then

(39)

This result follows immediately by identifying and . We
can optimize (39) over all possible choices ofto obtain the
following proposition. (It turns out that the infimum is in fact
attainable [20] when is a Mercer kernel thus justifying writing
the inequality as we do. That is, we can minimize the right-hand
side of (39).)

Proposition 9: There exists an defined by (35) that satis-
fies

(40)

As already described in Section I, the hypothesis that an SV
machine generates can be expressed as where both

and are defined in the feature space
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and . The kernel trick, as introduced by [1], was then
successfully employed in [10] and [14] to extend the optimal
margin hyperplane classifier to what is now known as the SV
machine. We deal with the “ ” term in Section IX; for now we
consider the class

Note that depends implicitly on since does.
We seek the covering numbers for the class induced

by the kernel in terms of the parameterwhich is the inverse
of the size of the margin in feature space, or equivalently, the
size of the weight vector in feature space as defined by the dot
product in (see [55], and [53] for details). In the following,
we will call such hypothesis classes with length constraint on the
weight vectors in feature spaceSV classes.Let be the operator

where and the operator is defined by

(41)

with for all . The following theorem is useful when
computing entropy numbers in terms ofand . It is originally
due to Maurey, and was extended by Carl [12] and is given in
almost the form below by Carl and Stephani [13, p. 246].

Theorem 10 (Maurey):Let where is a
Hilbert space. Then, there exists a constant such that for
all

(42)

(Carl and Stephani state an additional condition, namely, that
. It turns out [62] that for , and even tighter bound

holds, and so it is not incorrect to state it as above. It should
be added that this tighter bound is of little value in learning
theory applications: it corresponds to determining the-cov-
ering number for extremely smallfor which

.)
An alternative proof of this result (given in [62]) provides a

small explicit value for the constant: . However, there is
reason to believe thatshould be , the constant obtainable
for identity maps from into .

The restatement of Theorem 10 in terms of will be
useful in the following. Under the assumptions above we have

(43)

Now we can combine the bounds on entropy numbers of
and to obtain bounds for SV classes. First we need the
following lemma from [13, p. 11].

Lemma 11 (Carl and Stephani):Let be Banach
spaces, , and . Then, for

(44)

(45)

(46)

Note that the latter two inequalities follow directly from (44)
and the fact that for all .

Proposition 12 (Bounds for SV Classes):Let be a Mercer
kernel, let be induced via (27), and let , where

is given by (41) and . Let be defined as in Propo-
sition 9 and suppose for . Then, the
entropy numbers of satisfy the following inequalities:

(47)

(48)

(49)

where is defined as in Theorem 10.
This result gives several options for bounding . We shall

see in examples later that the best inequality to use depends
on the rate of decay of the eigenvalues of. The result gives
effective bounds on since

Proof: We will use the following factorization of to
upper-bound .

(50)

The top arrow in the diagram follows from the definition of.
The fact that remainder commutes stems from the fact that since

is diagonal, it is self-adjoint and so for any

(51)

Instead of computing the entropy number of di-
rectly, which is difficult or wasteful, as the bound on does
not take into account that but just makes the assump-
tion of for some , we will represent as

. This is more efficient as we constructedsuch
that filling a larger proportion of it than

does.
By construction of and due to the Cauchy–Schwarz

inequality we have . Thus applying Lemma
11 to the factorization of and using Theorem 10 proves the
theorem.

As we shall see in Section VII, one can give asymptotic rates
of decay for . (In fact, we give nonasymptotic results with
explicitly evaluable constants.) It is thus of some interest to give
overall asymptotic rates of decay of in terms of the order
of . (By “asymptotic” here we mean asymptotic in; this
corresponds to asking how scales as for fixed

.)

Lemma 13 (Rate Bounds on): Let be a Mercer kernel
and suppose is the scaling operator associated with it as de-
fined by (38).
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1) If for some then for fixed

(52)

2) If for some then for
fixed

(53)

This Lemma shows that in the first case, Maurey’s result (The-
orem 10) allows an improvement in the exponent of the entropy
number of , whereas in the second, it affords none (since the
entropy numbers decay so fast anyway). The Maurey result may
still help in that case though for nonasymptotic.

Proof: From theorem 10 we know that

Now use (49), ignoring constants and assumingis fixed, split-
ting the index in the following way:

with (54)

For the first case this yields

In the second case we have

(55)

In a nutshell, we can always obtain rates of convergence better
than those due to Maurey’s theorem because we are not dealing
with arbitrary mappings into infinite-dimensional spaces. In
fact, for logarithmic dependency of on , the effect of the
kernel is so strong that it completely dominates the be-
havior for arbitrary Hilbert spaces. An example of such a kernel
is ; see Proposition 17 and also Sec-
tion VI for the discretization question.

VI. DISCRETESPECTRA OFCONVOLUTION OPERATORS

The results presented above show that if one knows the eigen-
value sequence of a compact operator, one can bound its
entropy numbers. While it is always possible to assume that the
data fed into an SV machine have bounded support, the same
cannot be said of the kernel ; a commonly used kernel is

which has noncompact support. The
induced integral operator

(56)

then has a continuous spectrum (a nondenumerable infinity of
eigenvalues) and, thus, is not compact [7, p. 267]. The ques-
tion arises: can we make use of such kernels in SV machines
and still obtain generalization error bounds of the form devel-
oped above? Note that by a theorem of Widom [59], the eigen-
value decay of any convolution operator defined on a compact

set via a kernel having compact support can decay no faster than
and thus if one seeks very rapid decay of eigen-

values (with concomitantly small entropy numbers), one must
use convolution kernels with noncompact support.

We will resolve these issues in the present section. Before
doing so, let us first consider the case that
for some . Suppose further that the data pointssatisfy

for all . If is a convolution kernel (i.e.,
which allows us to write with some abuse

of notation ), then the SV hypothesis
can be written

(57)

for where is the -periodic extension of
(analogously, )

(58)

The -dimensional Fourier transform is defined by

(59)

Then, its inverse transform is given by

(60)

can be shown to be an isometry on .
We now relate the eigenvalues of to the Fourier transform

of . We do so for the case of and then state the general
case later.

Lemma 14: Let be a symmetric convolution kernel,
let denote the Fourier transform of , and

denote the -periodical kernel derived from (also assume
that exists). Then has a representation as a Fourier series
with and

(61)

Moreover, the eigenvalues of satisfy

for and .
Proof: Clearly, the Fourier series coefficients of

exist (as exists) with
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and therefore, by the definition of and the existence of ,
we conclude

This and the fact that

forms an orthogonal basis in proves (61). (Note
that since we conclude .) Fur-
thermore, we are interested in real-valued basis functions for

. The functions

and

(62)

for all satisfy , and form an eigensystem
of the integral operator defined by with the corresponding

eigenvalues . Finally, one can see that
by computing the over and .

Thus, even though may not be compact, can be (if
, for example). The above lemma can be

applied whenever we can form from . Clearly,
for some suffices to ensure the sum in (58)

converges.
Let us now consider how to choose. Note that the Rie-

mann–Lebesgue lemma tells us that for integrable of
bounded variation (surely any kernel one would use would
satisfy that assumption), one has . There
is a tradeoff in choosing in that for large enough ,
is a decreasing function of (at least as fast as ) and,
thus, by Lemma 14, is an increasing
function of . This suggests one should choose a small value
of . But a small will lead to high empirical error (as the
kernel “wraps around” and its localization properties are lost)
and large . There are several approaches to picking a value
of . One obvious one is toa priori pick some and
choose the smallest such that for all

. Thus, one would obtain a hypothesis
uniformly within of where .

Remark 15: The above Lemma can be readily extended to
dimensions. Assume is -periodic in each direction (

), we get

(63)

for radially symmetric and finally for the eigenfunctions
.

Finally, it is worth explicitly noting how the choice of a dif-
ferent bandwidth of the kernel, i.e., letting ,
affects the eigenspectrum of the corresponding operator. We
have , hence scaling a kernel bymeans
more densely spaced eigenvalues in the spectrum of the integral
operator .

In conclusion, in order to obtain a discrete spectrum one needs
to use a periodic kernel. For a given problem, one can always
periodize a nonperiodic kernel in a way that changes the final
hypothesis in an arbitrarily small way. One can then make use
of the results of the present paper.

VII. COVERING NUMBERS FORGIVEN DECAY RATES

In this section, we will show how the asymptotic behavior of
, where is the scaling operator introduced

before, depends on the eigenvalues of.
A similar analysis has been carried out by Prosser [38], in

order to compute the entropy numbers of integral operators.
However, all of his operators mapped into . Further-
more, while our propositions are stated as asymptotic results as
his were, the proofs actually give nonasymptotic information
with explicit constants.

Note that we need to sort the eigenvalues in a nonincreasing
manner because of the requirements in Proposition 9. If the
eigenvalues were unsorted one could obtain far too small num-
bers in the geometrical mean of . Many one-dimen-
sional kernels have nondegenerate systems of eigenvalues in
which case it is straightforward to explicitly compute the geo-
metrical means of the eigenvalues as will be shown below. Note
that while all of the examples below are for convolution kernels,
i.e., , there is nothing in the formulations of
the propositions themselves that requires this. When we con-
sider the -dimensional case we shall see that with rotationally
invariant kernels, degenerate systems of eigenvalues are generic.
In Section VIII-B, we will show how to systematically deal with
that case.

Let us consider the special case where decays asymp-
totically with some polynomial or exponential degree. In this
case, we can choose a sequence for which we can evaluate
(40) explicitly. In what follows, by the eigenvalues of a kernel

we mean the (sorted) eigenvalues of the induced integral op-
erator .

Proposition 16 (Polynomial Decay):Let be a Mercer
kernel with eigenvalues for some .
Then for any we have

An example of such a kernel is . The proof can be
found in Appendix I.

The next theorem covers a wide range of practically used ker-
nels, namely, those with exponential polynomial decay in their
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eigenvalues. For instance, the Gaussian kernel has
exponential quadratic decay in. The “damped harmonic os-
cillator” kernel is another example, this time with
just exponential decay in its eigenvalues.

Proposition 17 (Exponential-Polynomial Decay):Suppose
is a Mercer kernel with for some .
Then

(64)

See Appendix I for a proof. (A more precise, but rather more
complex, calculation is given in [20].) While this theorem gives
the guarantees on the learning rates of estimators using such
types of kernels (which is theoretically pleasing and leads to de-
sirable sample complexity rates), it may not always be wise to
use the theoretically obtained bounds. Instead, one should take
advantage of the estimates based on an analysis of the distri-
bution of the training data since the rates obtained by the latter
may turn out to be far superior with respect to the theoretical
predictions (cf. Section VI and [61]).

VIII. H IGHER DIMENSIONS

Things get somewhat more complicated in higher dimen-
sions. For simplicity, we will restrict ourselves to translation-in-
variant kernels in what follows.

There are two simple ways to construct kernels in
with . First one could construct kernels by

(65)

This choice will usually lead to preferred directions in input
space as the kernels are not rotationally invariant in general. The
second approach consists in setting

(65)

This approach also leads to translationally invariant kernels
which are also rotationally invariant. In the following, we
will exploit this second approach to compute regularization
operators and corresponding Green’s functions. It is quite
straightforward, however, to generalize our exposition to the
rotationally asymmetric case. Now let us introduce the basic
ingredients needed for the further calculations.

A. Basic Tools

Now introduce regularization operatorsdefined by

(67)

for some nonnegative function converging to for
. It can be shown [48] that for a kernel to be a Green’s function

of , i.e.,

(68)

we need . For radially symmetric functions,
i.e., , we can explicitly carry out the integra-

tion on the sphere to obtain the Fourier transform which is also
radially symmetric (see, e.g., [50, p. 33]), namely,

(69)

where and is the Hankel transform over the
positive real line. The latter is defined by

(70)

Here is the Bessel function of the first kind defined by

(71)

Note that , i.e., (in ) due to the
Hankel inversion theorem [50].

B. Degenerate Systems

Computing the Fourier transform for a given kernelgives
us the continuous spectrum. As pointed out in Section VI, we
are interested in the discrete spectrum of integral kernels de-
fined on . This means that the eigenvalues are defined on the
grid with . Assuming is rotationally
invariant, so is and, therefore, there are repeated eigen-
values . Consequently, we have degenera-
cies in the point spectrum of the integral operator given by
(or , respectively) as all with equal length will have the
same eigenvalue. In order to deal with this case efficiently we
slightly modify Theorem 7 for our purposes. The following the-
orem allows proper account to be taken of the multiplicity of
eigenvalues, and thus allows a more refined calculation of the
desired entropy numbers.

Proposition 18: Let be an increasing sequence
with and be a nonincreasing sequence of
nonnegative numbers with

for and for

and let

(72)

for be the diagonal operator
from into itself, generated by the sequence , where

. Then for all

(73)

See Appendix II for a proof.

This proposition allows us to obtain a similar result to Propo-
sition 9.

Proposition 19 (Degenerate Systems):Let be
a Mercer kernel and let be defined by (38) with the additional
restriction that the coefficients have to match the degeneracy
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of , i.e., for and for .
Then one can choose such that

(74)

This result by itself may not appear too useful. However, it is in
fact exactly what we need for the degenerate case (it is slightly
tighter than the original statement, as the supremum effectively
has to be carried out only over a subset of). Finally, we have to
compute the degree of multiplicity that occurs for different in-
dexes . For this purpose, consider shells of radiusin cen-
tered at the origin, i.e., , which contain a nonzero number
of elements of . Denote the corresponding radii byand let

be the number of elements on these shells. Observe that
only when . Thus

(75)

The determination of is a classical problem which is
completely solved by the use of the-series (see, e.g., [19]).

Theorem 20 (Occupation Numbers of Shells):Let the formal
power series be defined by

(76)

Then

(77)

This theorem allows one to readily compute exactly; see
Appendix IV for some Maple code to do so. (Note that while
there do exist closed-form asymptotic approximate formulas for

[19, p. 155], they are inordinately complicated and of
little use for our purposes.)

We can now construct an index of the eigenvalues which sat-
isfies the required ordering (at least for nonincreasing functions

) and we get the following result.

Proposition 21: Let be a Mercer kernel with
eigenvalues given by a radially symmetric nonincreasing func-
tion on a lattice, i.e., with and let be
defined by (38) with the additional restriction that the coeffi-
cients have to match the degeneracy of, i.e., .
Then

(78)

Note that this result, although it may seem straightforward,
cannot be obtained from Proposition 9 directly as there the
would have to be carried out over instead of .

C. Bounds for Kernels in

Let us conclude this section with some examples of the
eigenvalue sequences for kernels typically used in SV ma-
chines. These can then be used to evaluate the right-hand side
in Corollary 21. Recall that . First we have to
compute the Fourier/Hankel transform for the kernels.

Example 22 (Gaussian RBFs):For Gaussian radial basis

functions (RBFs) in dimensions we have
and correspondingly

Example 23 (Exponential RBFs):In the case of
we obtain

i.e., in the case of we recover the damped harmonic os-
cillator (in the frequency domain). In general, we get a decay in
terms of the eigenvalues like . Moreover, we can con-
clude from this that the Fourier transform of, viewed itself as
a kernel, i.e., , yields the initial kernel as
its corresponding power spectrum in Fourier domain.

Example 24 (Damped Harmonic Oscillator):Another way
to generalize the harmonic oscillator, this time in a way that
does not depend on the dimensionality, is to set .
Following [58, Sec. 13.6] we get

where is the Bessel function of the second kind, defined by
(see [50])

(79)

It is possible to upper-bound by utilizing the asymptotic
representation

(80)

(see, for example, [18, eq. (8.451.6)]) and we get exponential
decay of the eigenvalues.

Using Theorem 20, Corollary 21, and Remark 15 one may
compute the entropy numbers numerically for a particular kernel
and a particular set of parameters. This may seem unsatisfactory
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from a theoretician’s point of view. However, as the ultimate
goal is to use the obtained bounds for model selection, it is de-
sirable to obtain as tight bounds (especially in the constants) as
possible. Hence, if much more precise bounds can be obtained
by some not too expensive numerical calculation it is definitely
worthwhile to use those instead of a theoretically nice but not
sufficiently tight upper bound. The computational effort to cal-
culate these quantities is typically negligible in comparison to
training the actual learning machine.

Notwithstanding the above, in order to give a feeling for the
effect of the decay of the Fourier transform of the kernel on
the entropy numbers of the operator, we conclude with the
following general result, the proof of which is in Appendix III.

Proposition 25 (Polynomial Exponential Decay in): For
kernels in with with

the entropy number of the corresponding scaling operator sat-
isfies

IX. CONCLUSION

We have shown how to connect properties known about map-
pings into feature spaces with bounds on the covering numbers.
Exploiting the geometric structure of the feature-space map en-
abled us to relate the properties of the kernel inducing the feature
space to the covering numbers of the class of functions imple-
mented by SV machines based on such kernels.

The actual application of our results, perhaps for model selec-
tion using structural risk minimization, is somewhat involved,
but is certainly doable. Here, we outline one possible path. In
[20] we present an application of the results to the performance
of SV machines for pattern classification.

A. One Way to Use the Results of this Paper

Choose and : The kernel may be chosen for a variety
of reasons, which we have nothing additional to say about here.
The choice of should take account of the discussion in Sec-
tion VI.

Choose the Period of the Kernel: One suggested procedure
is outlined in Section VI.

Bound : This can be done using Proposition 9 (for the
case ) or Corollary 19 or 21 for the case . Some
examples of this sort of calculation are given in Section VII.

Bound : Using Theorem 12.
Take Account of the “ ”: The key observation is that

given a class with known , one can bound
as follows. (Here .)

Suppose is an -cover for and elements of are
uniformly bounded by (this implies a limit on as well as
a uniform bound on elements of). Then

is an -cover for and thus

Observe that this will only be “noticeable” for classeswith
very slowly growing covering numbers (polynomial in ).

Take Account of the Loss Function:Using Lemma 2 for ex-
ample.

Plug into a Uniform Convergence Result:See the pointers to
the literature and the example in Section IV.

B. Further Work

The operator-theoretic viewpoint introduced in this paper
seems fruitful. The overall bounds for SV classes can, via a
somewhat involved argument, be considerably simplified [20].
The general approach can be applied to various other learning
machines such as convex combinations of basis functions and
multilayer networks [47]. When combined with an appropriate
statistical argument [45], the approach yields bounds on the
generalization that depend strongly on the particular sample
observed [61]. The methods can also be applied to some
problems of unsupervised learning [49].

The results of the present paper hinge on the measurement of
the size of the weight vector by an norm. In [62], we show
the effect of different norms for measuring the size of, as well
as presenting a number of related results.

We expect that further refinements and extensions to these
techniques will continue to yield interesting results.

APPENDIX I
PROOFS OFRESULTS IN SECTION VII

Proof (Proposition 16): The proof uses Proposition 9.
Since there exists some with

. In this case, all sequences
with lead to an admissible scaling property. One has

(81)

where is Riemann’s zeta function. Moreover, one can bound
by

(82)

where is Euler’s constant. The next step is to evaluate the
expression

(83)

The Gamma function can be bounded as follows: for

(84)
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Hence, one may bound

In order to avoid unneeded technicalities we will replace
by . This is no problem when computing

the upper bound, but it is an issue for the lower bound. How-
ever, on is within a constant factor of of its
corresponding values on the integer domain, the biggest
discrepancy being at .1 Thus, we may safely ignore the
concern. Next we compute

(85)

The maximum of the argument is obtained for , hence
(85) holds for all , which is fine since we want to
compute bounds on as . For the lower bounds
on we obtain

(86)

This shows that is always bounded from below by
. Computation of the upper bound is slightly more

effort, since one has to evaluate

(87)

Clearly, for any fixed we are able to obtain a rate
of , thus, the theorem follows. For prac-
tical purposes, a good approximation of thecan be found as

by computing the derivative of the argument
in (87) with respect to and dropping all terms independent of

and . However, numerical minimization of (87) is more ad-
visable when small values of are crucial.

For the proof of Proposition 17 we need the following stan-
dard Lemma.

1One may show [61] that

a � sup n (a ; . . . ; a ) � a

for that particularj wheresup is actually obtained. Hence, the maximum
quotienta =a , which in the present case is2 , determines the value by
which the bound has to be lowered in order to obtain a true lower bound.

Lemma (Summation and Integration in): Suppose
is an integrable nonincreasing function. Then the following

inequality holds for any :

(88)

Proof: The proof relies on the fact that

due to the monotonicity of and a decomposition of the integral

The lemma is a direct consequence thereof.

Proof (Proposition 17): Since there exists
some with . Similarly as before, we now
use a series . Then by applying Lemma 26 we
have that for any

(89)

Next, we have to apply a similar bound to the product of the first
diagonal entries of the scaling operator

(90)

The last inequality holds since . Next we compute

Differentiation of the exponent with respect toleads to

(91)

and, thus,

(92)

Replacing the domain from to is not a
problem when it comes to computing upper bounds on .
As for the lower bounds, again, a similar reasoning to that in the
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previous proof would have to be applied.2 (The proof is omitted
here.) Thus, can be bounded from below as follows:

(93)

Hence, a lower bound on the rate of is .
Moreover, for the upper bound we obtain

(94)

One could evaluate (94) numerically. However, it can be seen
that for any fixed the rate of can be
bounded by , which shows that the obtained rates
are tight.

APPENDIX II
PROOF OFTHEOREM 18

Proof: The first part of the inequality follows directly
from Theorem 7 as it is a weaker statement than the original
one. We prove the second part by closely mimicking the proof
in [13, p. 17]. We define

(95)

and show that for all there is an index with .
For this purpose, choose an indexsuch that and,
thus, . Moreover, we have

(96)

because of the monotonicity of and, finally,

(97)

Using the definition of we thus conclude .
If this happens to be the case for, we have which
proves the theorem.

2As in the previous theorem, the problem reduces to bounding the quotient
a =a wherej is the variable for whichsup is obtained. However,

here the quotient can only be bounded bye . Fortunately, this is of
lower order than the remaining terms, hence it will not change therate of the
lower bounds.

If this is not the case, there exists an indexsuch that
. Hence the corresponding sectional

operator

with

(98)

is of rank and the image of the closed unit ball

of is isometric to the subset of . In any case,
is a precompact subset of. So let be

a maximal system of elements in with

for (99)

The maximality of this system guarantees that

(100)

and, thus, . In order to get an estimate for
, we split the operator into two parts

which allows us to bound

(101)

Using and the bound on
we arrive at

(102)

The final step is to show that as then by substituting in
the definition of into (102) yields the result. This is again
achieved by a comparison of volumes. Consider the sets

as subsets of the space which is possible since
and . These sets are

obviously pairwise-disjoint. On the other hand, we have

(103)

as . Now a comparison of the-dimensional Eu-
clidean volumes provides

vol

(104)
and, therefore, . Using the defini-
tion of this yields .

APPENDIX III
PROOF OFPROPOSITION25

Proof: We will completely ignore the fact that we are ac-
tually dealing with a countable set of eigenvalues on a lattice
and replace all summations by integrals without further worry.
Of course this is not accurate but still will give us the correct
rates for the entropy numbers.

Denote the size of a unit cell, i.e.,
the density of lattice points in frequency space as
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given in Section VI. Then we get for infinitesimal volumes
and numbers of points in frequency space

and, therefore,

(105)

(here denotes the volume of the -dimensional unit
sphere) leading to

(106)

We introduce a scaling operator whose eigenvalues decay like
for . It is straightforward to check

that all these values lead to both useful and admissible scaling
operators. Now we will estimate the separate terms in (78).

(107)

Next, we have

(108)

and

(109)

(110)

This leads to

(111)

Computing the yields

(112)

and, therefore,

(113)

Already from this expression one can observe the rate bounds
on . What remains to be done is to compute the infimum over

. This can be done by differentiating (113) with respect to.
Define

(114)

which leads to the optimality condition on

with (115)

which can be solved numerically.

APPENDIX IV
MAPLE CODE TO COMPUTE

The following function can be used to compute :
.

# This code defines a function t where

# t(m,d) is number of points on a sphere of

# radius 2̂=m from Z d̂

h:=n� >eval(‘if‘(isolve(m 2̂=n,m) =NULL,0,

‘if‘(n =0,1,2)),1):

powseries[powcreate](theta(n)=h(n)): t :=(m,d)-

coeff(convert(powseries[tpsform](

powseries[evalpow](theta d̂),

x,m+1),polynom),x,m):

Note Added in Proof

Steve Smale has pointed out to us that Claim 2 of Theorem 4
due to König is false. This causes some of the intermediate re-
sults in the paper to be false, but not the main theorems. One can
get around the false result by redefining

(Note that most practically used kernels still have ).
Only the “if” claim of Proposition 6 remains true (all we need
for or bounds on entropy numbers anyway). All of the upper
bounds on entropy numbers still hold as long as(redefined as
above) is finite. A detailed correction can be found in Chapter 12
of B. Schölkopf and A. Smola,Learning with Kernels, Cam-
bridge, MA: MIT Press, 2001.
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