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Generalization Performance of Regularization
Networks and Support Vector Machines Via
Entropy Numbers of Compact Operators

Robert C. WilliamsonMember, IEEEAlex J. Smola, and Bernhard Schoélkopf

Abstract—We derive new bounds for the generalization error machines, like most kernel-based methods, possess the nice
of kernel machines, such as support vector machines and related property of defining the feature map in a manner that allows
regularization networks by obtaining new bounds on their cov- s computation implicitly at little additional computational

ering numbers. The proofs make use of a viewpoint that is appar- t O . | lies to simil lqorith h
ently novel in the field of statistical learning theory. The hypoth- cosl. Lurreasoning also applies 1o similar aigorithms such as

esis class is described in terms of a linear operator mapping from regularization networks [16] or certain unsupervised learning
a possibly infinite-dimensional unit ball in feature space into a fi- algorithms [41]. Let us now take a closer look at SV machines.
nite-dimensional space. The covering numbers of the class are thenCentral to them are two ideas: capacity control by maximizing

determin_ed via the entropy numbers of the operator. These num- margins, and the use of nonlinear kernel functions.
bers, which characterize the degree of compactness of the operator,

can be bounded in terms of the eigenvalues of an integral operator .
induced by the kernel function used by the machine. As a conse- A- Capacity Control

quence, we are able to theoretically explain the effect of the choice  |n order to perform pattern recognition using linear hyper-

of kernel fun_ctlon on the generalization performance of support planes, often a maximum margin of separation between the

vector machines. . . L .
classes is sought, as this leads to good generalization ability

_Index Terms—Covering numbers, e-entropy, kernel methods,  jqenendent of the dimensionality [55], [53], [43]. It can be
linear operators, metric entropy, statistical learning theory, h that f ble training dat
support vector (SV) machines. shown that for separable training data

(‘Tlv y1)7 (RS (mnm yrn) S Rd X {:l:]-} (1)
. INTRODUCTION

. . . this is achieved by minimizingjw||> subject to the constraints
N this paper we give new bounds on the covering numbers

for kermnel machines. This leads to improved bounds /(é:i’oﬁ]]?utclt)i)oftrlwé(;\rtélésliﬁé .fz)?r:{ and somé € R. The
their generalization performance. Kernel machines perform a
mapping from input space into a feature space (see, e.g., [1], f(x) = sgr({w, x) +b). 2)
[34]), construct regression functions or decision boundaries
based on this mapping, and use constraints in feature spaceSionilarly, a linear regression
capacity control. Support vector (SV) machines, which have
recently been proposed as a new class of learning algorithms f(x) ={w, )+ 3)
solving problems of pattern recognition, regression estimation, i
and operator inversion [53] are a well-known example of thkan e estimated from data
class. We will use SV machines as our model of choice to (@ ) (@ ) € RY x R 4)
show how bounds on the covering numbers can be obtained. L Y1)y o \my Ym

We outline the relatively standard methods one can th%)/ finding the flattest function which approximates the data
use to hence bound their generalization performance. {thin some margin of error: in this case, one minimizes|,
subject to| f(x;) — y,;| < e, where the parameter> 0 plays
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reproducing kernel Hilbert spade (see, e.g., [40]) such that The remainder of the paper is organized as follows. We start

computes the dot product if, i.e., by introducing notation and definitions (Section Il). Section IV
formulates generalization error bounds in terms of covering
k2, y) = (2(z), 2(¥))r- (®)  numbers. Section V contains the main result bounding entropy

Given any algorithm which can be expressed in terms of dBlgm_bers in terms of the spectrum of a given kernel: The results
products exclusively, one can thus construct a nonlinear versiBri1iS Paper rest on a connection between covering numbers
of it by substituting a kernel for the dot product. Examples ¢} function classes and entropy numbers of suitably defined
such machines include SV pattern recognition [10], SV regre%perators. In part.|cular, we de”"e, an upper pound on the
sion estimation [53], and kernel principal component analy<f1troPY numbers in terms of the size of the weight vector in
[41]. feature space and the eigenvalues of the kernel used. Segtlon \
By using the kernel trick for SV machines, the maximuniOWs how to make use of kemnels sucti@s, y) = ==y
margin idea is thus extended to a large variety of nonlinear fufhich do not have a discrete spectrum. Section VIl presents
tion classes (e.g., radial basis function networks, polynomffMe results on the entropy numbers obtained for given rates

networks, neural networks), which in the case of regression &.decay of eigenvalues and Section VIIl shows how to extend
timation comprise functions written as kernel expansions 1€ results to several dimensions. The concluding section
(Section IX) indicates how the various results in the paper

m . .
can be glued together in order to obtain overall bounds on
f(z) = Zaik(mﬂ" z)+b ®) the generalization error. All of the examples we provide for
=t the calculation of eigenvalues are for translation-invariant
with o; € R, j = 1, ..., m. It has been noticed that differentkernels (i.e., convolutional kernels); this is merely for conve-

kernels can be characterized by their regularization propertiisnce—the general theory is not restricted to such kernels.
[48]: SV machines are regularization networks minimizing thgey new results are labeled as propositions.

regularized risk We do not present a single master generalization error the-
A orem for four key reasons: 1) the only novelty in the paper lies

2 . . .
Rieg[f] = Remp[f] + §||Pf|| in the computation of covering numbers themselves; 2) the par-

] o __ ticular statistical result one needs to use depends on the specific
(with & regularization parameter > 0, and a regularization yroplem situation; 3) many of the results obtained are in a form
operatorP) over Fhe set of functions of the form (6), provide hich, while quite amenable to ready computation on a com-
thatk and P> are interrelated by puter, do not provide much direct insight by merely looking at

_ them, except perhaps in the asymptotic sense; and, finally, 4)
k(zs, 2) = ((Pk)(®s, ), (Pk)(®@:, -))- some applications (such as classification) where further quanti-
To this endf is chosen as a Green’s function8f P whereP* ties like margins are estimated in a data dependent fashion, need
is the adjoint ofP. an additional luckiness argument [44] to apply the bounds.

This provides insight into the regularization properties of SV Thus, although our goal has been theorems, we are ultimately
kernels. However, it does not completely settle the issue of hd@rced to resort to a computer to make use of our results. This
to select a kernel for a given learning problem, and how usingsanot necessarily a disadvantage—it is both a strength and a
specific kernel might influence the performance of an SV maveakness of structural risk minimization (SRM) [56] that a good

chine. generalization error bound is both necessary and sufficient to
_ make the method work well. In [20], some more explicit for-
C. Outline of the Paper mulas based on the present work and more suitable for SRM

In the present work, we show that properties of the spectrife developed.
of the kernel can be used to make statements about the general-
ization error of the associated class of learning machines. Unlike [l. DEFINITIONS AND NOTATION

in previous SV learning studies, the kernel is no longer merely ag, e N, R? denotes thel-dimensional space of vectors
means of broadening the class of functions used, e.g., by making. .. ’xd)T_ We define space’ as follows: as vector

a nonseparable dataset separable in a feature space nonlin%%es they are identical B, in addition, they are endowed
related to input space. Rather, we now view it as a constructiyg, p-r;orms: for0 < p < 0 ’ '

handle by which we can control the generalization error.

A key feature of the present paper is the manner in which d 1p
we directly bound the covering numbers of interest rather || ¢ == |||, = Z|xj|p ;
than making use of a combinatorial dimension (such as the i =

Vapnik—Chervonenkis (VC) dimension or the fat-shattering

dimension) and subsequent application of a general redaitp = oo

relating such dimensions to covering numbers. We bound

covering numbers directly by viewing the values induced by [&]lea, = [l@]loo = jnax il

the relevant class of functions as the image of a unit ball under a o

particular compact operator. A general overview of the methdtbte that a different normalization of thtg norm is used in
is given in Section II. some papers in learning theory (e.g., [51]). Box p < oo,
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¢, = £3°. We use the shorthand sequence notatioy); =
(.Z‘l, L2y . )
Givenm pointszy, ..
X = (21, ..., Tm).
SupposeF is a class of functiong: R* — R. The/?, norm
with respect taX™ of f € F is defined as

il = _max_[f(a).

=1, , 1

Likewise,

[ lexem = NCF (@) - (@)l

Given some set’ with ac-algebra, a measugeon X', some
1 < p < oo and a functionf: ¥ — R we define

e o= ([ rans)

if the integral exists and
I flleccx,m) := esssup | f(z)].
zCX

Forl < p < >0, we let
L,(X,R)y:={f: ¥ = R: ||f||LP(X7R) < oo}

We letL,(X) = L,(&X, R).

If S is a set andl a metric onS, then the:-covering number
of M C S with respect to the metrid denoted\ (¢, F, d) is
the smallest number of elements of @anover forF using the
metric d. Given a metric spac& = (.5, d) we will also write
N(e, F, E). The nth entropy number of a se/ C FE, for
n € N,Iis

en(M) :=inf{e > 0: N(¢, M, E) < n}. 7)

Let £(F, F) be the set of all bounded linear operatdrs
between the normed spacgh, || - ||g) and(F, || - ||r), i.€.,
operators such that the image of the (closed) unit ball

Ug:={xz € E:||z||g £ 1} (8)
is bounded. The smallest such bound is calle@terator norm

7] :== sup [[Tz|p. )
z€Up

The entropy numbers of an operat@tc £(L, F') are defined
as

en(T) = 6, (T(Ug)).

Note thate; (T") = ||T’||, and that,,(T') certainly is well-defined

forall n € N if T is acompact operatgri.e., if for anye > 0

there exists a finite cover &(Ux) with opene balls onX’.
Thedyadic entropy numbers of an operatane defined by

(10)

en(T) = 3 (T),  mEN. (11)
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In this paper,FF and F' will always beBanach spaced.e.,
complete normed spaces (for instanqiespaces withp > 1).

., &, € ¢¢ we use the shorthandInsome cases, they will bdilbert spacesH, i.e., Banach spaces

endowed with a dot produgt, -) i giving rise to its norm via
x|z = Az, z)u.

By log andln, we denote the logarithms to badande, re-
spectively. By:, we denote the imaginary unit= v/—1, & will
always be a kernel, antiandm will be the input dimensionality
and the number of examples

(w17 yl)? e (wrnv ym) 6 Rd X R (12)
respectively. We will map the input data into a feature space via
a mapping®. We letz := &(x).

I1l. OPERATORTHEORY METHODS FORENTROPY NUMBERS

In this section, we briefly explain the new viewpoint utilized
in the present paper. With reference to Fig. 1, consider the tra-
ditional viewpoint in statistical learning theory. One is given a
class of functions”, and the generalization performance attain-
able usingF is determined via the covering numbersfafMore
precisely, for some set, andz; € X fori =1, ..., m, define
theuniform covering numbersf the function classF on " by

N™(e, F) = N(e, F, 1X7)

sup (13)

X1, e, B CX

whereN (e, F, ¢X™) is the c-covering number off with re-
specttorX™ . (Recal X™ = (z1, ..., .,).) Many generaliza-
tion error bounds can be expressed in terma/6f(e, F). An
example is given in the following section.

The key novelty in the present work solely concerns the
manner in which the covering numbers are computed. Tradi-
tionally, appeal has been made to a result such as the so-called
Sauer’s lemma (originally due to Vapnik and Chervonenkis).
In the case of function learning, a generalization called the
VC dimension of real-valued functions, or a variation due to
Pollard (called the pseudo-dimension), or a scale-sensitive
generalization of that (called the fat-shattering dimension) is
used to bound the covering numbers. These results reduce
the computation ofV™ (e, F) to the computation of a single
“dimension-like” quantity (independent ofi). An overview
of these various dimensions, some details of their history, and
some examples of their computation can be found in [5], [6].

In the present work, we view the clagsas being induced by
an operatofl}, depending on some kernel functiénThus,F
is the image of a “base clas§’under’;. The analogy implicit
in the picture is that the quantity that matters is the number of
e-distinguishable messages obtainable at the information sink.
(Recall the equivalence up to a constant factorzdh e of
packing and covering numbers [6].) In a typical communica-
tions problem, one tries to maximize the number of distinguish-
able messages (per unittime), in order to maximize the informa-
tion transmission rate. But from the point of view of the receiver,
the decoding job is made easier #mallerthe number of dis-
tinct messages that one needs to be concerned with decoding.

Similarly, the dyadic entropy numbers of a set are defined fro@f course, this lowers the information transmission rate.) The
its entropy numbers. A very nice introduction to entropy nunsignificance of the picture is that the kernel in question is exactly
bers of operators is [13]. the kernel that is used, for example, in support vector machines.



WILLIAMSON et al. GENERALIZATION PERFORMANCE OF REGULARIZATION NETWORKS AND SUPPORT VECTOR MACHINES 2519

Information

Sink

Information
Source

g€e§ Channel

Ti(")

Measurements -

sup N(e,F,4,)

ZiyeonsEm

Mazimum
number of e-distinct
functions (messages)
at output.

Use knowledge of Ty to determine

the size of F
(.’Bl, e ,.’Em)

Measurement points, akin to time instants
in the traditional communications
channel setting.

Limitations of the channel make F
“smaller” than §G.

Traditional Learning Theory Viewpoint

Fig. 1. Schematic picture of the new viewpoint.

As a consequence, the determinatiothGf (¢, F) can be done and later entropy numbers [36] in the context of operator ideals.
in terms of properties of the operatfi. The latter thus plays a (They were unaware of Prosser’'s work—see, e.g., [11, p. 136].)
constructive role in controlling the complexity 8f and hence  Connections between the local theory of Banach spaces and
the difficulty of the learning task. We believe that the new viewdniform convergence of empirical means has been noted before
point in itself is potentially very valuable, perhaps more so thde.g., [35]). More recently, Gurvits [21] has obtained a result
the specific results in the paper. A further exploitation of the nexelating the Rademacher type of a Banach space to the fat-shat-
viewpoint can be found in [62], [61], [49], [47]. tering dimension of linear functionals on that space and hence
We conclude this section with some historical remarks.  via the key result in [4] to the covering numbers of the induced
The concept of the metric entropy of a set has been aroutidss. We will make further remarks concerning the relationship
for some time. It seems to have been introduced by Pontria¢netween Gurvits’ approach and ours in [60]; for now, let us just
and Schnirelmann [37] and was studied in detail by Kolmogorawte that the equivalence of the type of an operator (or of the
and others [27] (see also, e.g., [32, Ch. 15]). The use of metsijgace it maps to), and the rate of decay of its entropy numbers
entropy to say something about linear operators was developad been (independently) shown by Kolchinskiy[25], [26] and
independently by several people. Prosser [38] appears to hBefant and Junge [15], [23]. Note that the exact formulation of
been the first to make the idea explicit. He determined the effaheir results differs. Kolchinskiy was motivated by probabilistic
of an operator’s spectrum on its entropy numbers. In particularoblems not unlike ours.
he proved a number of results concerning the asymptotic rate
of decrease of the entropy numbers in terms of the asymptotic
behavior of the eigenvalues. A similar result is actually implicity, GeNERALIZATION BOUNDS VIA UNIFORM CONVERGENCE
in Shannon’s famous paper [42, Sec. 22], where he considered
the effect of different convolution operators on the entropy of an The generalization performance of learning machines can be
ensemble. Prosser’s paper [38] led to a handful of papers (dee)nded via uniform convergence results as in [57], [56]. A re-
e.g., [39], [22], [3], [29]) which studied various convolutionakent review can be found in [5]; see also [30]. The key thing
operators. A connection between Prosserentropy of an op- about these results is the role of the covering numbers of the hy-
erator and Kolmogorov's-entropy of a stochastic process wagothesis class—the focus of the present paper. Results for both
shown in [2]. Independently, another group of mathematiciantassification and regression are now known. For the sake of
including Carl and Stephani [13] studied covering numbers [52bncreteness, we quote below a result suitable for regression
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which was proved in [4]. For results on classifier performance 2) Suppose that for som&, C > 0, [ satisfies the “approx-

in terms of covering numbers see [8]. Let imate Lipschitz condition”
1) 1(&) = 1(¢) <max(C|¢ = &', O),
P.(f) = <E> Zf(-'l'z) €3] () < x(Cl§ = ¢ ?
< forall¢, & ela—b,b—a] (19)
denote theempirical mearof f on the sample, ..., . then for alle > C/C
We make use of the following due to Alon, Ben-David, Cesa-
Bianchi, and Haussler [4]. max N(e, U zm)
Zme(X X [a, b))
Lemma 1: Let F be a class of functions from" into [0, 1] < Flym o7 20
and letP be a distribution ove/’. Then, for alle > 0 and all Xglg)x(m N( [ °°) - (20)
m > %

-« Proof: We show that, for any sequen&g’ of (z, ) pairs
in X x [a, b] and any functiong andy, if the restrictions off
P P.(fy—-P ¢ D m D 4
g {?‘QE () (N> F} andg to X™ are close, then the restrictionsigfand/, to Z
€ %2 T are close. Thus, given a coverBfx~ we can construct a cover
<12m-E [N (gv 7 b )} T (1) of Iz~ that is no bigger. For case 1) we get

where Pr denotes the probability with respect to the sample Kz
xy, ..., &, drawn independent and identically distributred = Ug(z;) —y;) — U flz) —y;
(i.i.d.) from P, andE the expectation with respect to a second m z_:l (9(@5) = u3) = 1 (@5) = vi)

sampleX"" = (Z1, ..., Fam) also drawn i.i.d. fromP. L
In order to use this lemma, one usually makes use of the fact < Z [o(=5) —wj) = 1(F (=) — wj)
that for anyP =t
L 1
E[N (e, F, X )} < N™(e, F). (15) < Ezclg(l‘j)—f(l‘j)l
j=1
The above result can be used to give a generalization error re- B %"
sult by applying it to the loss-function-induced class. The fol- - E”g( ) = F(X )l
lowing lemma, which is an improved version of [9, Lemma 17], < C||g(5(m) _ f(j(m)n%.

is useful in this regard (a similar result appears in [6]).

) ) In the second case we proceed similarly
Lemma 2: Let F be a set of functions from&’ to [a, b] with

a<b,a beR, andl:R — [0, o) aloss function. Let 1|l
il l N ) =1 Y g
X" = (21 ) - ; (g9(z;) —w;) = U(f(25) — vy)
2 = (@i, yi) cZ .
2" = (21, ..., Zm) < EZ max(|g(z;) — f(z;)], C/C)
lilz, = U{f(®;) —y; =t
ey = U ’Zn 2 <Ce, fore>CJC. O
lflzm == (lf|zj )j:l
lrlzr = {ylzm: J € 7} The second case can be useful when the exact form of the
and cost function is not known, happens to be discontinuous, or is
Ne, lzn) = Ne, lr|zm, gfom)_ badly behaved in some other way. Applying the result above to

. polynomial loss leads to the following corollary.
Then the following two statements hold.

Corollary 3: Let the assumptions be as above in Lemma 2.

1) Supposé satisfies the Lipschitz condition Then for loss functions of type

o=y ehHele-¢|, forall¢, ¢ e€la—b, b—al. (16
©-1¢)<Cle—¢ & ¢el ED =t with gt oy
Then for alle > 0 p
max N(e, l|z) we haveC = (b — )Y, in particularC = (b — a) for p = 2
Zme (X x[a, U])™ and, therefore,
€
< max N (=, Flx=, ") @17
= Xmexm (C Ix ) (17) max  N(e I|;) < max N #, Fle |- (22)
zEX™ (b—a)r—t

and 2E(X x[a, b])™

One can readily combine the uniform convergence results with
chggif;bbm N(e Ulzn) the above results to get overall bounds on generalization per-
- formance. We do not explicitly do this here since the particular
S leﬂg){m N( y Flxm, & ) - (18) uniform convergence result needed depends on the exact setup
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of the learning problem. A typical uniform convergence result 1) (\;(T)); € &1 forj=1,2, ..

takes the form 2) 1h; € Loo(X) andsup; [|[]|L.. < oo;
pm {Sljlcp |Re1np(f) _ R(f)| > 6} 3) k(mv y):J%:N)‘ﬂ/}J(w)z/}J(y) holds for aII(:::,y) EXXAX];

3

< el (MmN (e, ]—")e‘d m/e:(23) \(/\;kje;)e eth; iezlve.s converges absolutely and uniformly for all
whereR...,( f) is the empirical risk an@®( /) the expected risk ~ We will call a kernel satisfying the conditions of this theorem
of f € F (see, e.g., [6], [54] Even the exponent in (23) dea Mercer kernelNote that ifX’ is compact and is continuous,
pends on the setting:. In regressigican be set td, however, thent; is continuous (cf., e.g., [7, p. 270]). Alternatively,Af
in agnostic learning [24] in gener&l= 2, except if the class is is translation-invariant, thes; are scaled cosine functions and
convex inwhich case it can be setltf81]. Since our primary in- thus continuous. Thus, the assumption thaare continuous is
terestis in determining/™ (e, F) we will not try to summarize not very restrictive.
the large body of results now available on uniform convergenceFrom statement 2) of Mercer’'s theorem there exists some
and generalization error. constanC, € Rt depending ork(-, -) such that

These generalization bounds are typically used by setting the .
right-hand side equal tand solving form = m(e, §) (which [95(@)] < Ci, forallj € Nandz € &.  (26)
is called the sample complexity). Another way to use these ndoreover, from statement 3) it follows thiage, y) corresponds

sults is as a learning curve bour@, m) where to a dot product irty, i.e.,k(z, y) = (®(z), P(y)),, with
pm (6. m) s <6 oo (27)
sup | Bemp(f) = B(f)| > &6, m) o < 6. Oz - (¢(@); = (V@)

We note here that the determinationets, ) is quite conve- [OF @ll 2 € X' In the following, we will (without loss of gener-
nient in terms of.,., the dyadic entropy number associated witR!ItY) assume the sequence(@f;); is sorted in nonincreasing

the covering numbef'™ (¢, F) in (23). Setting the right-hand Order. From the argument above, one can seedf) lives
side of (23) equal t@, we have not only in¢; but in an axis parallel parallelepiped with lengths

2Ck /A

m —ePm/ecy
6 = c(mN™(¢, Fle We remark that the measugeneed have nothing to do with
loo o m log AF™ the distribution of examples. In particular, we may consider any
= log 1 (m) - o2 % (¢, F) of the following kernels in our bounds.
= “Nog (5 ) +-525+11 < e (24) Lemma 5 (Equivalent Kernels)Denote byX’ a compact set

_ ; and byk: X% — R a Mercer kernel. Then ,for any’ and surjec-
Thus,c_(é, m_) = _mm{c: (24) holdg. Hence, _the use Ozf,, O five mapy: X’ — &, the kemelk’(z, /) == &(x(x), x(a'))

en (which will arise naturally from our techniques) is in fact 8,,q, satisfies Mercer's condition and, moreover, the eigenvalues
convenient thing to do for finding learning curves. X, and the coefficient;. of the integral operator

V. ENTROPY NUMBERS FORKERNEL MACHINES T f(z) == K (x, o) () da’ (28)
X

In the following, we will mainly consider machines where the . . o
mapping into feature space is defined by Mercer kerbsy)  ©@n be used equivalently in any applicationkof _
as they are easier to deal with using functional analytic methods_ NiS means in particular that we could construct diffeomor-
(More general kernels are considered in [47].) Such machirfddsmsx: X — X and look for the functiony such that the

have become very popular due to the success of SV machingigenvaluesy; andCy. are as small as possible.
Proof: The first part of the claim, namely, that also sat-

A. Mercer’s Theorem, Feature Spaces, and Scaling isfies Mercer’s condition, follows immediately from the con-

i p :
Our goal is to make statements about the shape of the imagé%‘f‘cnon of#’. For the second claim, note that due to the fact

the input space’ under the feature map(-). We will make use that x is surjective for any distributiop(z) on A’ there must

. . R f i
of Mercer’s theorem. The version stated below is a special c4gust an equivalent distributiopf (z) on A”. Thus, we can al

of the theorem proven in [28, p. 145]. In the following we willVaYS consider tr)e prot:lem as being onenfrom the start.
assumé.Y, ;1) to be a finite measure space, (') < o However, sincet’ andy’ were chosen arbitrarily we can opti-
’ T mize over them. O

Theorem 4 (Mercer):Supposé: € L..(X x &) is a sym-
metric kernel (thatisi(z, ') = k(2’, 2)) such that the integral
operatorly: La(X) — Lo(X)

Lemma 5 shows that the specific bounds we obtailh de-
pend ony since that will affect the);, Cy, and the(A;);. The
question of the optimat to use and how it may be chosen if one

Tef() = / EC, 0)f(y) du(y) (25) knowsP (the distribution from which the; are drawn) is not
kY considered here. In all cases considered in this paper, we will in
is positive. Lety); € Lo(X") be the eigenfunction df, associ- fact takey to be the Lebesgue measure.
ated with the eigenvalug; # 0 and normalized by{+;||z, = It will be useful to consider maps that még.t') into balls of
1. Supposey); is continuous for allj € N. Then some radiug centered at the origin. The following proposition
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shows that the class of all these maps is determined by eleméitiss means thaf := AU, will be such that®(x) C €. The
of £, and the sequence of eigenvalies);. latter can be ensured by constructiaguch that

~

Proposition 6 (Mappingb(X’) into 4;): Let S be the diag- A (xj); = (Ry a5 - xy)), with R, a; € RT  (35)

onal map whereC}, anda; are chosen with respect to a specific kernel

S: RN - RN and whereR ; := Cy||(\/A;/a;);|e,- From Proposition 6, it
S:(z;); — Sz;); = (s;2;);  withs; €R. (29) follows that all those operators for which R ; < oo will sat-
isfy (34). We call such scaling (inverse) operatadsissible.
Then$S maps®(X) into a ball of finite radiusRs centered at
the origin if and only if(s;\/A; s;); € £o. B. Entropy Numbers
Proof:

(=) Supposds \/)\—) c ¢, and let The next step is to compute the entropy numbers of the oper-
J JJ 2

ator A and use this to obtain bounds on the entropy numbers for

RZ = C||(s; VA7 < o0. kernel machines like SV machines. We will make use of the fol-
, ’ lowing theorem due to Gordon, Kdnig, and Schiitt [17, p. 226]
Foranyz € A (stated in the present form in [13, p. 17]).
1S®(2)]I7, = Z ST ()] < Z s]ACL = R%. (30)  Theorem 7:Letoy > o3 > -+ > o; > --- > 0 be a nonin-
JEN JEN creasing sequence of nonnegative numbers and let
HenceS®(X) C . Dz = (o121, 0222, ..., 054, ...) (36)
. . I3
(=) Supposés;+/A, ), is hotinf,. Hence the sequené¢d.,, )., )
with forx = (x1, z2, ..., x;, ...) € £, be the diagonal operator
N from £, into itself, generated by the sequerfeg),;, wherel <
A, = ZSJZ)\J' p < oo. Then for alln € N
1 1
j=1 sup n” i (o109 -+ - 0;)7
[ bounded. Now defi /e
is unbounded. Now define < en(D) < 6 sup n_%(o_l@ O_j)%' 37)
an() =Y SN[ ()] (31) _ _ o
= We can exploit the freedom in choosiagto minimize an en-

tropy number as the following corollary shows. This will be a

Then{la.(-)l[L,(xv) = An due to the normalization condition e, ingredient of the calculation of the covering numbers for SV
onz;. However, agi(X') < oo there exists a set’ of nonzero 3sses. as shown below.

measure such that

A R Proposition 8 (Scaling Operators)Letk: X' x X — Rbea
an(x) > ; , forallez € X. (32) Mercer kernel with eigenvalués;),. Choose:; > 0for j € N
(X)) such that v/}, /a,), € >, and define
Combining the left-hand side of (30) with (31) we obtain
) Ar(x5); — (Raajzj); (38)
I1Se(2)||z, = an(®), forall n € N and allz. with R = Cull(v/A;/a;); . Then
Sincea,, () is unbounded for a set with nonzero measure in 4y e a;\:
X, we can see tha&dd(X) ¢ £». O (Al — £) < sup 6C H (\/A:/as) , (T’) "
JC slltg

Once we know tha®(X') is contained in the parallelepiped (39)
described above we can use this result to construct a mappi _ . . o
A from the unit ball inés to an ellipsoids such tha® () C & T?]Qfs result follows immediately by identifying? and A. We

as in the following diagram (where we have slightly abused t an opt|m|ze (39.).over all possible ch0|ces.A)_fto Obt‘."‘"? the
traditional notational convention). ollowing proposition. (It turns out that the infimum is in fact

attainable [20] whetk is a Mercer kernel thus justifying writing

X —2 (X) C 4 SR, S U, Cty the inequality as we do. That is, we can minimize the right-hand
N . - side of (39).)
A .
05 g</ i (33) . Proposition 9: There exists ani defined by (35) that satis-
ies

The operatord will be useful for computing the entropy num- . )
bers of concatenations of operators. (Knowing the inverse will 4) < @) ,(\/I%C/a ) et f‘elg 6C H (\/)‘_S/as)s “
allow us to compute the forward operator, and that can be used to AT )
bound the covering numbers of the class of functions, as shown n"i(araz---a;)7.  (40)
in the next subsection.) We thus seek an operdtds — £,
such that As already described in Section |, the hypothesis that an SV

X machine generates can be expresse@as) + b where both
AroX) C Uy,. (34) w andz are defined in the feature spafe = span (®(X"))
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andb € R. The kernel trick, as introduced by [1], was therNote that the latter two inequalities follow directly from (44)
successfully employed in [10] and [14] to extend the optimaind the fact that, (R) = || R|| for all R € £(F, G).

margin hyperplane classifier to what is now known as the SV
machine. We deal with thefd” term in Section IX; for now we
consider the class

Proposition 12 (Bounds for SV Classed)et & be a Mercer
kernel, let® be induced via (27), and 16t := S~ A, where
Sgm isgivenby (41) and € R*. Let A be defined as in Propo-
Fri={fo:z— (w, z):z €S, |w| <A} CRS sition 9 and suppose; = ®(x;) for j = 1, ..., m. Then, the
entropy numbers df’ satisfy the following inequalities:
Note that7, depends implicitly ork sinceS does. m
<1 + —) 47)

We seek the™ covering numbers for the clagg, induced  €,(T) < ¢||A||A log™/? n log!/? Tog
(T) <6Ae,(A) (48)

by the kernel in terms of the parametemvhich is the inverse
of the size of the margin in feature space, or equivalently, the “»

size of the weight vector in feature space as defined by the dot , (1) < 6cA log™1/? n log!/2 <1 + - ) c(A)  (49)
product inS (see [55], and [53] for details). In the following, - log n

we will call such hypothesis classes with length constraint on théherec is defined as in Theorem 10.

weight vectors in feature spat¥ classes.et7’ be the operator  This result gives several options for boundingZ’). We shall

T = Sg=A whereA € R* and the operatof ;- is defined by see in examples later that the best inequality to use depends
on the rate of decay of the eigenvaluesiofThe result gives
effective bounds otV (e, F, ) since

en(T: be — I2) < ¢g = N™(co, Fp) < n.

with z,; € ®(X’) for all 5. The following theorem is useful when Proof: We will use the following factorization of to
computing entropy numbers in termsbfind A. It is originally upper-bound,, (7"

due to Maurey, and was extended by Carl [12] and is given in

SXWZ 4y _>£g<l>
Sgmrw = (&, w), ..., (T, W)) (41)

- Uy, Cls £l o
almost the form below by Carl and Stephani [13, p. 246]. 2 00
Theorem 10 (Maurey)Let S € £(H, £7) whereH is a Secxmy
Hilbert space. Then, there exists a constapt 0 such that for A S(a—ta(xmy
all n, m € N
1 my\1/2
en(S) < ¢S]l (n log (1 + E>) . (42) AU, C £y A L AEC

(50)

(Carl and Stephani state an additional condition, namely, thaa 145 arrow in the diagram follows from the definitionsf

n < m. Itturns out[62] that for > m, and even tighter bound g ¢4 ¢t that remainder commutes stems from the fact that since
holds, and so it is not incorrect to state it as above. It shou}gis diagonal, it is self-adjoint and so for asye S

be added that this tighter bound is of little value in learning

theory applications: it corresponds to determining ¢heov- (w, ) = (w, AA™'E) = (Aw, A'). (51)
ering number for extremely smalffor whichlog N™(¢e, ) > |nstead of computing the entropy number®f= Sz=A di-
m.) rectly, which is difficult or wasteful, as the bound 6~ does

An alternative proof of this result (given in [62]) provides &ot take into account that € £ but just makes the assump-
small explicit value for the constant:< 103. However, there is tion of # € pU,, for somep > 0, we will representl’ as

reason to believe thatshould bel.86, the constant obtainable S(a-1xm)AA. This is more efficient as we constructeidsuch
for identity maps from” into £, - _ that A~'®(X) C U, filling a larger proportion of it than
Therestatementof Theorem 10intermspf: = ¢, willbe 1 o(X) does.
useful in the following. Under the assumptions above we havé By construction of A and due to the Cauchy-Schwarz
m 1/2 inequality we have|S,_. || < 1. Thus applying Lemma
en(S) < IS <(10g n+1)"" log <1 + ﬁ)) .11 to the factorization of” and using Theorem 10 proves the
ogn

theorem. O
(43)
As we shall see in Section VII, one can give asymptotic rates
Now we can combine the bounds on entropy numbers of of decay fore,, (A). (In fact, we give nonasymptotic results with
and Sy~ to obtain bounds for SV classes. First we need thgplicitly evaluable constants.) It is thus of some interest to give
following lemma from [13, p. 11]. overall asymptotic rates of decayQf(T’) in terms of the order

Lemma 11 (Carl and Stephanilet E, F, G be Banach of ¢,,(A4). (By “asymptotic” here we mean asymptoticinthis
spacesR € £(F, G), andS € £(E, F). Then, forn,t € N corresponds to asking ha™ (¢, ) scales as — 0 for fixed

m.)
ent (1) < en(R)er(S) (44) Lemma 13 (Rate Bounds @p): Let k be a Mercer kernel
en(RS) S en(R)[|S]| (45) and supposel is the scaling operator associated with it as de-
en(RS) < e, (9| R]- (46) fined by (38).
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1) If ¢,(A)=0(log™*n) for somea >0 then for fixedm  setviaa kerznel having compact support can decay no faster than
en(T) = O(log_(a'H/Q) n). (52) Aj = Qe _J ) and thu_s if one seeks very rapid decay of eigen-
values (with concomitantly small entropy numbers), one must
2) If log e,(A) = O(log™ n) for someg > 0 then for use convolution kernels with noncompact support.
fixed m We will resolve these issues in the present section. Before
_3 doing so, let us first consider the case thapp k C [—a, a
log & (T) = O(log™" n). (53) for somesn < co. Suppose further that the data poim;»[ssatisf]y
;€ [=b,0] for all 5. If k(-, -) is a convolution kernel (i.e.,
z, y) = k(z—y, 0) which allows us to write with some abuse
notationk(z — y) := k(x — y, 0)), then the SV hypothesis
-) can be written

This Lemma shows that in the first case, Maurey’s result (Th
orem 10) allows an improvement in the exponent of the entro
number of7’, whereas in the second, it affords none (since t
entropy numbers decay so fast anyway). The Maurey result
still help in that case though for nonasymptotic

Proof: From theorem 10 we know that hi(z) = Z ajk(z, ;) Z ajky(z, ;) =: hy, (z) (57)

en(S) = O(log™ Y% n).
Now use (49), ignoring constants and assuminig fixed, split-  for v > 2(a +b) wherek, (-) is thev-periodic extension of(-)

S Do

ting the index» in the following way: (analogouslyk,(x — y) == ky(z — ¥, 0))
n=n"nd"7,  withr € (0, 1). (54) o
For the first case this yields k() = _z: k(z — jv). (58)
en(T) < en (8)emi—r(A) ]__°°
= (log™*/2 n")(log™® n!~") Thed-dimensional Fourier transform is defined by
=7 V21— 1) *(log n) V> F: Ly(RY) — Ly(R?)
=O(log™ /%) ). F[f|(w) == %/ e~ U@ ) f(2) da. (59)
In the second case we have (2m)4/2 Jga
log e, (T) Then, its inverse transform is given by
= log(T:1;20(10g_1/2 n))+(1— 'r)*'BO(IOg_’B n) L. LQ(Rd) . LQ(Rd)
= O(log™" n). (55) ) e oo
- P& = G [ @) de (60)

In a nutshell, we can always obtain rates of convergence better
than those due to Maurey’s theorem because we are not deaihgan be shown to be an isometry 6p(R?).
with arbitrary mappings into infinite-dimensional spaces. In We now relate the eigenvaluesty, to the Fourier transform
fact, for logarithmic dependency ef (7’) onn, the effect of the 0f k(-). We do so for the case df= 1 and then state the general
kernel is so strong that it completely dominates 1ig¢/n be- case later.

havior for arbitrary Hilbert spaces An example of such a kernel Lemma 14: Let k: R— R be a symmetric convolution kernel,

IS k(w, y) = exp(—(x —y)*); see Proposition 17 and also Secyg, K(w) = F[k](w) denote the Fourier transform #f.), and
tion VI for the discretization question. k., denote thes-periodical kernel derived from (also assume
thatk,, exists). Therk,, has a representation as a Fourier series
with wo := 2& and

The results presented above show that if one knows the eigen-
value sequencg),;); of a compact operator, one can bound it — V2T s
entropy numbers. While it is always possible to assume that t o) = > — Klwo)e

VI. DISCRETESPECTRA OFCONVOLUTION OPERATORS

datafed into an SV machine have bounded support, the same j=moo -
i BERY ' 27r )
cannot be said of the k2ernk(_, ); a commonly used kernel is _ Z K (jwo) cos(jwo(z—1)).
k(z, y) = exp(—(z—y)*) which has noncompact support. The o
induced integral operator (61)
(7)) = /_Oo Kz, w)f(y) dy (56) Moreover, the eigenvalues of T3, satisfyA; = v2r K (jwo)
then has a continuous spectrum (a nondenumerable infinityfof j € Z andCj, = %

eigenvalues) and, thu$;, is not compact [7, p. 267]. The ques- Proof: Clearly, the Fourier series coefficients; of k,
tion arises: can we make use of such kernels in SV machiregst (ask, exists) with
and still obtain generalization error bounds of the form devel-

oped above? Note that by a theorem of Widom [59], the eigen- 1

. X K, =—
value decay of any convolution operator defined on a compact ’ NON /2

v/2 B
eTVer L (x) dx
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and therefore, by the definition &f and the existence df (w), for radially symmetrid: and finally for the eigenfunctions;, =

we conclude (2/v)%.
1 v/2 oo Finally, it is worth explicitly noting how the choice of a dif-
Kj=— / ST e — jv) ferent bandwidth of the kernel, i.e., lettidlf) (x) := o%k(ox),
Vv —v/2 ;2" affects the eigenspectrum of the corresponding operator. We
1S v have K (") (w) = K(w/o), hence scaling a kernel hy means
=— Z e Tk (x — ju) more densely spaced eigenvalues in the spectrum of the integral
VO L e operator];
=—o0 k(o)
o ) In conclusion, in order to obtain a discrete spectrum one needs
=4/ = K(jwo). to use a periodic kernel. For a given problem, one can always

periodize a nonperiodic kernel in a way that changes the final
This and the fact that hypothesis in an arbitrarily small way. One can then make use

of the results of the present paper.

{z — y L/ 2gtiwor, jez}
VII. COVERING NUMBERS FORGIVEN DECAY RATES

forms an orthogonal basisiny([— 35, 5], C) proves (61). (Note  In this section, we will show how the asymptotic behavior of
that sincek(z) = k(—z) we concludeX (w) = K(—w).) Fur- ¢,(A: £2 — £2) , whereA is the scaling operator introduced
thermore, we are interested in real-valued basis functions faefore, depends on the eigenvalueq pf

k(z — y). The functions A similar analysis has been carried out by Prosser [38], in
order to compute the entropy numbers of integral operators.
Vola) = 1 However, all of his operators mapped irtle(X’, C). Further-
o\x):=—F

more, while our propositions are stated as asymptotic results as
5 his were, the proofs actually give nonasymptotic information
() =4/ — cos(Jwoz) and y_;(x):= \/j sin(jwox)  with explicit constants.
Y (62) Note that we need to sort the eigenvalues in a nonincreasing
manner because of the requirements in Proposition 9. If the
) . ) . eigenvalues were unsorted one could obtain far too small num-
for all j €N satisfy||y; ||z, =1, 7€ Z and form an eigensystemy o, i the geometrical mean &f, . .., A;. Many one-dimen-
of the integral operator defined by, with the corresponding sional kernels have nondegenerate systems of eigenvalues in
eigenvalues,/2m K (jw). Finally, one can see that, = \/2  which case it is straightforward to explicitly compute the geo-
by computing thenax overjeN andz € [—v/2, v/2]. O metrical means of the eigenvalues as will be shown below. Note
that while all of the examples below are for convolution kernels,
(K(jwo))jer C £, for example). The above lemma can b e, k(x, y)_; k(a:r:y), thlere |shnoth|ng_|n theh_formur:atlons of
applied whenever we can forip(-) from &(-). Clearly,k(z) = t.e proposrgons t. emselves that requires this. .W en we con-
O(a:_(H")) for somee > 0 suffices to ensure the sum in (58).s,|der.thed—d|menS|onaI case we shall see Fhat with rota‘uonally.
invariant kernels, degenerate systems of eigenvalues are generic.

converges. ) . . :
Let Us now consider how to choose Note that the Rie- lﬂ;ectg:)en VIII-B, we will show how to systematically deal with

mann-Lebesgue lemma tells us that for integrable of L ider th ial h d i
bounded variation (surely any kernel one would use would .et us consi erthe special case w ek?)f. ecays asymp-.
satisfy that assumption), one hd&(w) = O(1/w). There totically with some polynomial or expon_entlal degree. In this
is a tradeoff in choosing in that for large enoughy, K(w) nge’wﬁ.caln clhooie afsique(mxéej frc:rwhlch WT can ivalll:ate |
is a decreasing function ab (at least as fast as/w) and, §C ) €xp 'C't}/]' nw atd OlloWs, lyt € ilienya:juesdo_ a err:e
thus, by Lemma 14); = /27 K(2rj/v) is an increasing we mean the (sorted) eigenvalues of the induced integral op-

function of ». This suggests one should choose a small valﬁéatorT’“'

of v. But a smallv will lead to high empirical error (as the Proposition 16 (Polynomial Decay)Let & be a Mercer
kernel “wraps around” and its localization properties are losternel with eigenvalues; = O(j~(*+1) for somea > 0.
and largeC}. There are several approaches to picking a valdgen for anys € (0, «/2) we have

of v. One obvious one is ta priori pick someé > 0 and

=5

Thus, even thougll;, may not be compact/;, can be (if

choose the smallest such that|k(x) — k,(z)| < ¢ for all en(Aily — ) =0 (111—%4—5 n)
z € [—v/2, v/2]. Thus, one would obtain a hypothesig, (x)
uniformly within C¢ of hx(z) where3 """, |a;| < C. en(A: by — £o) =Q (111—5 n) i

Remark 15: The above Lemma can be readily extended to .
dimensions. Assumk(z) is v-periodic in each directiore = An €xample of such a kernel i) = ¢™*. The proof can be
(z1, ..., Tq)), We get found in Appendix I.

., The next theorem covers a wide range of practically used ker-
K(woj) = 2nm)> K(wollfll) (63) nels, namely, those with exponential polynomial decay in their

4
2

Aj = (27)
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eigenvalues. For instance, the Gaussian kerfel = e~* has tion onthe sphere to obtain the Fourier transform which is also
exponential quadratic decay k). The “damped harmonic os-radially symmetric (see, e.g., [50, p. 33]), namely,

cillator” kernelk(x) = ﬁ is another example, this time with

just exponential decay in its eigenvalues. FifI({lw]]) = w™ Hy[r* f(r)]((lw]]) (69)

_ Proposition 17 (Exponential-Polynomial DecayBupposé  wherer := 1 d — 1 andH, [] is the Hankel transform over the
'Sha Mercer kernel with\; = O(e™/") for somea, p > 0. positive real line. The latter is defined by
Then

I e, (A: by — £)| = © (m# n) . (64) H,[f)(w) = /0 r (), (wr) dr. (70)
See Appendix | for a proof. (A more precise, but rather mofaere, is the Bessel function of the first kind defined by
complex, calculation is given in [20].) While this theorem gives 00 (—1)ir2i
the guarantees on the learning rates of estimators using such J(r) = r”z—”z T . (71)
types of kernels (which is theoretically pleasing and leads to de- §=0 2250 +v+1)

sirable sample complexity rates), it may not always be wise to
use the theoretically obtained bounds. Instead, one should tAlge thatH, = H, ', i.e., f = H,[H,[f]] (in L) due to the
advantage of the estimates based on an analysis of the dig#@nkel inversion theorem [50].

bution of the training data since the rates obtained by the latter

may turn out to be far superior with respect to the theoretical Degenerate Systems

predictions (cf. Section VI and [61]). Computing the Fourier transform for a given kerkegives
us the continuous spectrum. As pointed out in Section VI, we
VIIl. HIGHER DIMENSIONS are interested in the discrete spectrum of integral kernels de-

. . N . __fined onX’. This means that the eigenvalues are defined on the
Things get somewhat more complicated in higher d'meB'rid woZ® With wy = 2 /v. Assumingk(z) is rotationally

sions. ForS|mpI_|C|ty, we will restrict ourselves to tranSIat'on"ni'nvariant, s0 isk (w) and, therefore, there are repeated eigen-
variant kernels in what follows. 4

: d values); = (27)z K(jwy). Consequently, we have degenera-
R v-lx—/irlﬁrs iritvéﬁ:;rgﬁfcvzﬁlj é%ﬁg;igfﬁ;fﬁé?se:?jm R® — cies in the point spectrum of the integral operator givenkby
' (or &, respectively) as aljwy with equal length will have the

L — ) = k(zn — s B — ), 65 same eigenvalue. In order to deal with this case efficiently we
(2-9) (1 =) X k(7 = ya) (65) slightly modify Theorem 7 for our purposes. The following the-

This choice will usually lead to preferred directions in inpu@rém allows proper account to be taken of the multiplicity of
space as the kernels are not rotationally invariant in general. T§{genvalues, and thus allows a more refined calculation of the

second approach consists in setting desired entropy numbers.
Proposition 18: Let (s;), € Nj' be an increasing sequence
k(z—y) = k(lz - ylle)- (65) with sy = 1 and(0;); € R™ be a nonincreasing sequence of

. . . . onnegative numbers with
This approach also leads to translationally invariant kernerfs g

which are also rotationally invariant. In the following, we
will exploit this second approach to compute regularization
operators and corresponding Green’s functions. It is quiéad let

straightforward, however, to generalize our exposition to the

rotationally asymmetric case. Now let us introduce the basic Dz = (o121, 02x2, ..., 0,34, . ..) (72)
ingredients needed for the further calculations.

0s; < 05,y forj <jando; =o,, fors,_; < j <5

83

forz = (21, 29, ..., x4, ...) € £, be the diagonal operator
A. Basic Tools from £, into itself, generated by the sequerfeg);, wherel <

. o ) < 0. Then for all N
Now introduce regularization operataFsdefined by p=ee ne

= Supn_%(alag ast)%

Ff(w)Flg](w) teN
Pf, Pg) = — " dw 67 . 1
\Pf, Pa) / P(w) ©D < e (D) <6supn” 5 (o102 - 0g,)% . (73)
tCN

supp ’(w)

for some nonnegative functidf(w) converging td for ||w|| — )
0. ltcan be shown [48] that for a kernel to be a Green’s functiope€ Appendix Il for a proof.

of PP, le., This proposition allows us to obtain a similar result to Propo-

sition 9.
(Pk(z), Pk(z — z0)) = k(zo) (68) N
Proposition 19 (Degenerate Systemd)etk: X x X — R be
we needF[k](w) = P(w). For radially symmetric functions, a Mercer kernel and let be defined by (38) with the additional
i.e., f(x) = f(|l=||l2), we can explicitly carry out the integra-restriction that the coefficients; have to match the degeneracy
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of A;,i.e.,a,; > Qs for j < 7anda; = a,, fors,_; < j <s,. Note that this result, although it may seem straightforward,
Then one can choos# such that cannot be obtained from Proposition 9 directly as theraiipe
would have to be carried out ovitrinstead of N (ry, d)).

en(Ai by — L) < inf sup 6C},
(a;);: (v/Ai/a;); €L tCN C. Bounds for Kernels if®¢
1 1 . . .
% (\/rj/aj)' 0 (avas - as,)% . (74) _Let us conclude this section with some examples of the
ille, eigenvalue sequences for kernels typically used in SV ma-

chines. These can then be used to evaluate the right-hand side
This result by itself may not appear too useful. However, itis i, Corollary 21. Recall that = ($) — 1. First we have to
fact exactly what we need for the degenerate case (it is slightympute the Fourier/Hankel transform for the kernels.
tighter than the original statement, as the supremum effectively ) ) ) )
has to be carried out only over a subsetdfFinally, we haveto ~Example 22 (Gaussian RBFsfor Gaussian radial 132a5|s
compute the degree of multiplicity that occurs for different infunctions (RBFs) ind dimensions we havé(r) = o~ %c™ 22
dexesj . For this purpose, consider shells of raditis R¢ cen- and correspondingly

tered at the origin, i.e,5¢~%, which contain a nonzero number 2

of elements oZ¢. Denote the corresponding radii byand let Flk(w) =w™ 0™ *H, {7"/6_?} (W)
n(r;, d) be the number of elements on these shells. Observe that e
n(r, d) # 0 only whenr? € N. Thus =WV

n(r, d) :=|Z2%NrS* 1| e T
N(r, d) :== > n(p, d). (75)  Example 23 (Exponential RBFs)n the case of(r) = ¢~
{0<p<r: p2CN} we obtain

The determination ofi(r, d) is a classical problem which is Flk(w) =w™"H, [r"e™"] (w)

completely solved by the use of theseries (see, e.g., [19]). .
pietely y ( 9. [19) :w7”2”+1w”a7r751ﬂ(1/+g)(a2+w2)7”7%

Theorem 20 (Occupation Numbers of Shellkgt the formal : d 1
power serie®(x) be defined by =242qr 2T <§ + 1) o ai
. . (a2 +2)5
f(z) = Z 2 =14 Qijz. (76) i.e.,inthe case of = 1 we recover the damped harmonic os-
oo =1 cillator (in the frequency domain). In general, we get a decay in
Then terms of the eigenvalues like~(“*1). Moreover, we can con-
0 ' clude from this that the Fourier transform/ofviewed itself as
Oz = n (\/77 d) z’. (T7) akernel, i.e.k(r) = (1 +72)=“F, yields the initial kernel as
j=1 its corresponding power spectrum in Fourier domain.

This theorem allows one to readily compute,, d) exactly; see ~ Example 24 (Damped Harmonic Oscillatorpnother way
Appendix IV for some Maple code to do so. (Note that whilée generalize the harmomc OSC.I||at0I’,.thIS time in a way that
there do exist closed-form asymptotic approximate formulas f8PeS not depend on the dimensionaditys to set:(r) = el
n(r, d) [19, p. 155], they are inordinately complicated and dfollowing [58, Sec. 13.6] we get
little use for our purposes.) . g
We can now construct an index of the eigenvalues which sat- FlR(w) =w™ H, {m} (w)
isfies the required ordering (at least for nonincreasing functions —w " K, (wa)
K (w)) and we get the following result. v
Proposition 21: Let k: X x X' — R be a Mercer kernel with whereK, is the Bessel function of the second kind, defined by

. ; . . ; . %see [50])
eigenvalues given by a radially symmetric nonincreasing func- -
tion on a lattice, i.e.r; = A(||4]|) with j € Z¢ and letA be K, (z) :/ =% Ut cosh(1t) dt. (79)
defined by (38) with the additional restriction that the coeffi- i 0

cientsa; have to match the degeneracy\gti.e.,a; = a([ljl)). |t is possible to upper-boundi[k] by utilizing the asymptotic
Then representation

SCLRL i [E )
() Y
J (£2)4

< i 4
- \}%f ilg 6C 2] (see, for example, [18, eq. (8.451.6)]) and we get exponential
(a5);: < ) ) decay of the eigenvalues.
2
N Using Theorem 20, Corollary 21, and Remark 15 one may
X 0~ NGoD <H a(”)nm: d)) (78) compute the entropy numbers numerically for a particular kernel
a=1 and a particular set of parameters. This may seem unsatisfactory
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from a theoretician’s point of view. However, as the ultimatis ane-cover for 7+ and thus
goal is to use the obtained bounds for model selection, it is de- 2B
sirable to obtain as tight bounds (especially in the constants) as N™(e, F*) < — N"e 7).
possible. Hence, if much more precise bounds can be obtained o ) )
by some not too expensive numerical calculation it is definitefyPServe that this will only be “noticeable” for class€swith
worthwhile to use those instead of a theoretically nice but nég"Y Slowly growing covering numbers (polynomialiyic).
sufficiently tight upper bound. The computational effort to cal- 1ake Account of the Loss Functiotising Lemma 2 for ex-
culate these quantities is typically negligible in comparison f§P'e- _ _
training the actual learning machine. Pl_ug into a Uniform Converge_nce Re_sulSee the pointers to

Notwithstanding the above, in order to give a feeling for th&i€ literature and the example in Section IV.
effect of the decay of the Fourier transform of the kernel on
the entropy numbers of thd operator, we conclude with theB' Further Work
following general result, the proof of which is in Appendix lll.  The operator-theoretic viewpoint introduced in this paper
" . . ) seems fruitful. The overall bounds for SV classes can, via a

Proposmon 25d(PoI(3i/nc_)m|aI EXponenf'fl'lf,)chaYm)- For somewhat involved argument, be considerably simplified [20].
kernelsk(-, -) in R xR® with A(w) = O(e™ witha, p > g general approach can be applied to various other learning
che entropy number of the corresponding scaling operator Sflachines such as convex combinations of basis functions and
isfies multilayer networks [47]. When combined with an appropriate

. statistical argument [45], the approach yields bounds on the

|In ¢, (A: by — £2)| = O (lnm ”) . generalization that depend strongly on the particular sample
observed [61]. The methods can also be applied to some
problems of unsupervised learning [49].

The results of the present paper hinge on the measurement of
the size of the weight vectaw by an¢, norm. In [62], we show

We have shown how to connect properties known about m4p€ €ffect of different norms for measuring the sizewogs well
pings into feature spaces with bounds on the covering numbéts Presenting a number of related results. _
Exploiting the geometric structure of the feature-space map enYV€ expect that further refinements and extensions to these
abled us to relate the properties of the kernel inducing the feat{f§nniques will continue to yield interesting results.
space to the covering numbers of the class of functions imple-

IX. CONCLUSION

mented by SV machines based on such kernels. APPENDIX |
The actual application of our results, perhaps for model selec- PROOFS OFRESULTS IN SECTION VI
tion using structural risk minimization, is somewhat involved, proof (Proposition 16): The proof uses Proposition 9.
but is certainly doable. Here, we outline one possible path. #ince A; = O(j*71) there exists somg € R* with
[20] we present an application of the results to the performang]e < pB%j~*~L.In this case, all sequencés;); = (j~%);
of SV machines for pattern classification. with 0 < 7 < « lead to an admissible scaling property. One has
A. One Way to Use the Results of this Paper <ﬂ> =8 H (7773—2) _ /3m
Choosek ando: The kernelk may be chosen for a variety Y/ ) e
of reasons, which we have nothing additional to say about here. (81)
The choice ofr should take account of the discussion in Sec- o )
tion VI. where((-) is Riemann'’s zeta function. Moreover, one can bound

Choose the Period of the Kernel: One suggested procedureC(') by
is outlined in Section VI. 1
Bounde, (A4): This can be done using Proposition 9 (for the z+v<( <1 + —) <z+1 (82)
cased = 1) or Corollary 19 or 21 for the casé > 1. Some *
examples of this sort of calculation are given in Section VII. where~ is Euler's constant. The next step is to evaluate the
Bounde,,(T): Using Theorem 12. expression
Take Account of the +B": The key observation is that )
given a classF with known N (¢, F), one can bound i\’ . .
N™(e, F*)asfollows. (HereFt := {f+b: f e F,beR}) (awaz -+ a;)7 = <H8_5> =) F =I0+1)7%.
SupposeV. is an e-cover for F and elements ofF* are
uniformly bounded byB (this implies a limit on|b| as well as (83)
a uniform bound on elements &f). Then

Gl

The Gamma functiol(z) can be bounded as follows: for
BJe Jg>1
Vii= |J Vi+ie

1
=B nj—-1< 7 In[(j+1) <lnjy. (84)
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Hence, one may boung,(A) Lemma (Summation and IntegrationRj: Supposef: R —
R is an integrable nonincreasing function. Then the following
. AR LA inequality holds for any: € Z:
en(A) > Crf inf supn™7 < +fy> iz
7€(0, @) JjeN =T .00 oo Ne)
L I flx)ydxe < fng/ flz)dx. (88)
en(A) <6CLB inf supn 7 < + 1) ezj 2. /a (=) nz::a ) a—1 (=)
7C(0, ) jeN oa—T

. S . Proof: The proof relies on the fact that
In order to avoid unneeded technicalities we will replace

Sup,eny bBY Supjer o). This is no problem when computing n+l
the upper bound, but it is an issue for the lower bound. How- fn) > / f(n)dn> f(n+1)
ever,j~% on[1, o) is within a constant factor d#~2 of its n

corresponding values on the integer domain the biggest e tg the monotonicity of and a decomposition of the integral
discrepancy being dt, 2].2 Thus, we may safely ignore the

concern. Next we compute /.oo i /.n+1
. L -3 - '
sup n_%j_é = sup P R <26 n n) . 0 n=0""
F€[L, 00) F€[L, 00) T . .
(85) The lemma is a direct consequence thereof. O

Proof (Proposition 17): Since\; = O(e~*9" ) there exists
somes € Rt with \; < #%¢=/". Similarly as before, we now
use a seriega;); = ¢~™/%". Then by applying Lemma 26 we

have that for any- € [0, «)
<A+ e B

The maximum of the argument is obtained foe 2122 hence
(85) holds for alllnn > 7, which is fine since we want to
compute bounds or,(A4) asn — oo. For the lower bounds

on ¢, (A) we obtain

[N

2 In 71)5 /N, g
j )P
=3 E e(T—a)j
< i H< 4/, =0
J lo

[MES

en(A) > Crf(2¢)7%  inf < ! +’V>
a—T

7€(0, ) T(1/p)
] 1 2 B\ sy -
> Ch 7 i
> Crf(2e)27 2 Tel(léjf(y) <a — + 7) (89)
i <2 In n) o Next, we have to apply a similar bound to the product of the first
T€(0, ) T j diagonal entries of the scaling operatbr
(1 S/2lnn\ "¢ .
=CrfB(2e)27 2 <E + ’v) < ;1 n) : (86) _ > ¢z’

, , (aras - - a;) < e ! tae
This shows thate,,(A) is always bounded from below by
Q(ln™ = n). Computation of the upper bound is slightly more

effort, since one has to evaluate

<e 2(p’_+l)jp+2(1)’—+l) .

(90)

*/2ln\? The last | lity holds singee N. N
er(4) < 6CLA  inf < 1) < n n) _(g7) Thelastinequality holds singee N. Next we compute
T7E€W0, ) \ O* — T o o
- . —Se i’ = 7 Mg 1)11)'
Clearly, for any fixedr € (0, ) we are able to obtain a rate Supmeore e B

of ¢,(A) = O(In~ 2 n), thus, the theorem follows. For prac-

tical purposes, a good approximation of ihé can be found as  Differentiation of the exponent with respectideads to
—L_ —1In(2 In n) by computing the derivative of the argument

a—T1

in (87) with respect to and dropping all terms independentof ;21— — 2 __jp-l 9= jllnp=_ L _»
7 andn. However, numerical minimization of (87) is more ad- 2p+1) 2(p+1)
visable when small values ef,( 4) are crucial. O (91)
For the proof of Proposition 17 we need the following stanyng thus
dard Lemma.
1 __ =z __» _(zy/p D) +1 s
10ne may show [61] that sup n_ e ein’ =g (BT <p_ In n) .
JCl1, 00) p
ajmrlSsupnf%(ah...,aj)% < ajyx (92)

jeEN

for that particulay* wheresup , ., is actually obtained. Hence, the maximumReplacmg the _domam fromupje,\,_ to SUPjel1, 00) IS not a
quotienta, 1 /a;, which in the present cases 5, determines the value by Problem when it comes to computing upper bo_und$rqm)-_
which the bound has to be lowered in order to obtain a true lower bound.  As for the lower bounds, again, a similar reasoning to that in the
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previous proof would have to be appliedThe proofis omitted  If this is not the case, there exists an indgxsuch that
here.) Thusg,,(A) can be bounded from below as follows:  o,,41 < 6(n)/4 < o,,. Hence the corresponding sectional

operator
ra .
en(A) > Cr3  inf Lp)l/ D; ., — £, with
re.a | pla—n)ir D, (21,22, ..., Ts,, To, 41y ---)
x C_(,Z:)l/(p+l) <]i1 In n) P = (0'1371, 02%2, -y O5,T5,, 0, 0, .. ) (98)
p

is of ranks; and the imageD,, (U,,) of the closed unit ball/,,

>Cy3  inf Lp)l/ in of ¢, is isometric to the subs@*:)(U$*)) of £7. In any case,
re(0,@) | pla —7)/P re(,a) D, (U,) is a precompact subset&f. So lety;, yo, ..., yn be
ey (p+1 s a maximal system of elements I, . (U,,) with
e (3 < In n) ’
P . lyj = wsll > 6(n)/2,  forj #7. (99)
=Cyf3 1“(11//;;) (Y <Ii1 In n) s The maximality of this system guarantees that
o p
N
93 6(n
93) D,,(Uy) € U {UJ + % Up} (100)
Hence, a lower bound on the rate ok ¢, is Q(log7T n). =t
Moreover, for the upper bound we obtain and, thusen(D;;) < 6(n)/2. In order to get an estimate for
en(D), we splitthe operatab into two partsD = (D—D, )+
I(1/p) D, ; which allows us to bound
en(A) S6CKH _inf 14+ ———
7€ (0,a) pla—7)t/r en(D) <||D = Dy, || +en(Ds,). (101)
e (VY <1i1 In n) LT (94) Using||D-D,,||=0,,4+1 <8(n)/4 and the bound ony (D,,)
p 2j(p+1) we arrive at
One could evaluate (94) numerically. However, it can be seen (D) < §6 102
that for any fixedr € (0, «) the rate oflog ¢,(A) can be vD) < 4 (). (102)

bounded byO(log7T n), which shows that the obtained ratesrhe final step is to show tha¥ < n as then by substituting in

are tight. L the definition ofé(n) into (102) yields the result. This is again
achieved by a comparison of volumes. Consider the{sgts-
APPENDIX I (§(n)/4)U,’ } as subsets of the spati¢ which is possible since
PROOF OFTHEOREM 18 y; € D, (Up) and D, (U,) = DC(U,). These sets are

Proof: The first part of the inequality follows directly Obviously pairwise-disjoint. On the other hand, we have
from Theorem 7 as it is a weaker statement than the original §(n) 8(n)
.. : n S S 5 n S 55 S5
one. We prove the second part by closely mimicking the prO(w {yﬁ_TUP] } c D! J)(Upa)—i——4 Uz c 2D¢ J)(Upg)

in [13, p. 17]. We define =1
1 1 1
&(n) :=8supn” (o102 - 0g,)% (95) (103)
teN

asé(n)/4 < o1. Now a comparison of thé-dimensional Eu-
and show that for alh there is an index; with o, ;; < @. clidean volumesrol, provides

For this purpose, choose an indesuch that. < 2%7+! and, 8(n)\™
thus,1 < 2n~1/Gi+1) Moreover, we have N <T> vol,, (U39) < 2% 0109 -+ 05,v0l,, (US7)
- (104)
PPN s;+1 . . .
T3541 < (0102 o+ 05;41) (96)  and, thereforelN < (8/6(n)) 10 - - o, . Using the defini-
because of the monotonicity 65;); and, finally, tion of 6(n) this yieldsN < n. O
o541 < 207 (00 - asj+1)5j—l+1. (97) APPENDIX Il

. _— PROOF OFPROPOSITION25
Using the definition of(n) we thus conclude, 1 < 6(n)/4.

If this happens to be the case tar, we haves, (D) < o which Proof:_ We yvlll completely ignore th.e fact that we are ac-
proves the theorem. tually dealing with a cogntable _set of e|ge_nvalues on a lattice
and replace all summations by integrals without further worry.
2As in the previous theorem, the problem reduces to bounding the quoti@f course th|s iS not accurate but Stl” will give us the correct
a;+y1/a;+ wherej™ is the variable for whickup ., is obtained. However, rates for the entropy numbers

here the quotient can only be boundedeb*y% ot Fortunately, this is of D tel — (9 4 th . f it cell. i .
lower order than the remaining terms, hence it will not changedtesof the enote /U T ( 7r/v)2 € size of a unit cell, 1.ey =

lower bounds. (v/(27))¢ the density of lattice points in frequency space as
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given in Section VI. Then we get for infinitesimal volum&® 7. This can be done by differentiating (113) with respectto

and numbers of pointéN in frequency space Define
dV = Sy_1r* tdr and, thereforedN = vSy_1r4 "t dr ;. (@+pd lun 7 (114)
(105) e p vSg
(here S, 1 denotes the volume of thé — 1-dimensional unit which leads to the optimality condition an
sphere) leading to » d .
P ) g 1 (a—7)T7 % = 2;1) Qﬁ, with 7 € (0, o] (115)
. _ = d nD
N(ry d) = 5 vSa-ar®. (108)  \hich can be solved numerically. O
We introduce a scaling operator whose eigenvalues decay like
a(w) = e~ 214" for 7 € [0, a). Itis straightforward to check APPENDIX IV

that all these values lead to both useful and admissible scaling
operators. Now we will estimate the separate terms in (78).

MAPLE CODE TO COMPUTE n(r, d)

H(gl j ~ /dN(w)%

=Sy 1v / L g2 (el
0

d
:Sd_lT}ﬁQ(a _ 7—)_%7' <—> p*l, (107)
D
Next, we have
-1 _ d
hl (n e d)) _ _4(1 111 n (108)
vSg_17§
and
N(r,d)
In(a; - a a )m - Z s
1 as N(r,d) o uSgrd j=1 J

~ dT_d/ w* ™ 1n a(w) dw
0

(1209)
= dT_d/ Wit = WP dw
0
T d
= —— P 11
2d+p ! (110)
This leads to
Sd_lvl“ (%) @
en S 6CLAA|———  inf (a—7) 2
TE[0, @)
r
R e | - = ) (111
swor(~giamn-f i) o
Computing thesup yields
rcRt
2 o
r= < M In n) (112)
TUSd—1 D

and, therefore,

Sa-rol (£) .

inf (a—7)"2
P 7|0, a)( )

™5 [((d+p)d Inn 5

Already from this expression one can observe the rate boundg]
one,. What remains to be done is to compute the infimum over

The following function can be used to computér, d):
t(m, d) = n(m?, d).

# This code defines a function t where
# t(m,d) is number of points on a sphere of
# radius “2=m from Zd
h:=n— >eval('if'(isolve(m
if(n  =0,1,2)),1):
powseries[powcreate](theta(n)=h(n)): t
coeff(convert(powseries[tpsform](
powseries[evalpow](theta
X,m +1),polynom),x,m):

“2=n,m) =NULL,0,
:=(m,d)-

d),

Note Added in Proof

Steve Smale has pointed out to us that Claim 2 of Theorem 4
due to Konig is false. This causes some of the intermediate re-
sults in the paper to be false, but not the main theorems. One can
get around the false result by redefining

Cr 1= sup sup |43 (2)].
Jj xCX

(Note that most practically used kernels still havg < ~o).
Only the “if” claim of Proposition 6 remains true (all we need
for or bounds on entropy numbers anyway). All of the upper
bounds on entropy numbers still hold as longagredefined as
above) is finite. A detailed correction can be found in Chapter 12
of B. Schdolkopf and A. Smold,earning with KernelsCam-
bridge, MA: MIT Press, 2001.
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