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Abstract

Many settings of unsupervised learning can be viewed as quantization problems - the min-
imization of the expected quantization error subject to some restrictions. This allows the
use of tools such as regularization from the theory of (supervised) risk minimization for
unsupervised learning. This setting turns out to be closely related to principal curves, the
generative topographic map, and robust coding.

We explore this connection in two ways: (1) we propose an algorithm for finding prin-
cipal manifolds that can be regularized in a variety of ways; and (2) we derive uniform
convergence bounds and hence bounds on the learning rates of the algorithm. In partic-
ular, we give bounds on the covering numbers which allows us to obtain nearly optimal
learning rates for certain types of regularization operators. Experimental results demon-
strate the feasibility of the approach.
Keywords: Regularization, Uniform Convergence, Kernels, Entropy Numbers, Principal
Curves, Clustering, generative topographic map, Support Vector Machines, Kernel PCA

1. Introduction

The problems of unsupervised learning are much less precisely defined than those of su-
pervised learning. Usually no explicit cost function exists by which the hypothesis can be
compared with training data. Instead, one has to make assumptions on the data, with
respect to which questions may be asked.
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• A possible problem is: “Which properties of the data can be extracted with high
confidence?” Or, in other words, which feature-extracting functions can be found
among a given class with, say, unit variance and zero mean, and moreover whose
properties will not change too much on unseen data. This leads to a feature extracting
approach of unsupervised learning. Kernel principal component analysis (Schölkopf
et al., 1998) is such an algorithm.

• Another question is: “Which properties describe the data best?” This means that
one is looking for a descriptive model of the data, thus also a (possibly quite crude)
model of the underlying probability distribution. Generative models like principal
curves (Hastie and Stuetzle, 1989), the generative topographic map (Bishop et al.,
1998), several linear Gaussian models (Roweis and Ghahramani, 1999), or also simple
vector quantizers (Bartlett et al., 1998) are examples thereof.

We will study the second type of model in the present paper. Since many problems of
unsupervised learning can be formalized in a quantization-functional setting (see section 2),
this will allow us to use techniques from regularization theory. In particular, it leads to a
natural generalization (to higher dimensionality and different criteria of regularity) of the
principal curves algorithm with a length constraint (Kégl et al., 2000), presented in section 3
together with an efficient algorithm (section 5).

We also show that regularized quantization functionals can be seen in the context of
robust coding, i.e., optimal coding in the presence of a noisy channel. This is achieved by
using an idea of Bishop (1995), who explored this connection in the context of supervised
learning. Another connection can be drawn to the generative topographic map (GTM)
(Bishop et al., 1998), which essentially differs in the choice of a regularizer and the Bayesian
probabilistic underpinning of the algorithm (section 6).

The quantization-functional approach also provides a versatile tool for stating uniform
convergence bounds. In section 7 we derive bounds on the quantization error in terms
of L∞ covering numbers for the corresponding classes of functions. By using functional
analytic tools (the details are relegated to Appendix A.1) we are able to bound the rate
of convergence by O(m−

1
2

+α) for arbitrary positive α, where m is the number of examples
seen (section 7.4). For some kernels this improves on the rate of Kégl et al. (2000).

We finish with section 8, giving some experimental results demonstrating the feasibility
of our approach and a discussion.

2. The Quantization Error Functional

The idea of the quantization error functional approach is that one tries to obtain interesting
information about the data at hand by encoding it in a compressed, yet meaningful form.
The quality of this code is assessed by the reconstruction error (the quantization error) it
causes, i.e., how close the reconstruction comes to the initial data, and the simplicity of the
device having generated the code. The latter is important, since the coding device will then
contain the information we seek to extract. Contrary to most engineering applications, we
will also allow for continuous codes. This reflects our emphasis on information extraction
by learning the coding device itself.
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Denote by X a (compact subset of a) vector space and X := {x1, . . . , xm} ⊂ X a dataset
drawn iid (independent identically distributed) from an unknown underlying probability
distribution µ(x). Moreover consider index sets Z, maps f : Z → X, and classes F of such
maps (with f ∈ F).

Here the map f is supposed to describe some basic properties of µ(x). In particular,
one seeks f such that the so-called quantization error

R[f ] :=
∫

X
min
z∈Z

c(x, f(z))dµ(x) (1)

is minimized. In this setting c(x, f(z)) is the cost function determining the error of recon-
struction. Very often one sets c(x, f(z)) = ‖x − f(z)‖2, where ‖ · ‖ denotes the Euclidean
distance. Unfortunately, the problem of minimizing R[f ] is unsolvable, as µ is generally
unknown. Hence one replaces µ by the empirical measure

µm(x) :=
1
m

m∑
i=1

δ(x− xi) (2)

and instead of (1) analyzes the empirical quantization error

Rmemp[f ] := Remp[f ] :=
∫

X
min
z∈Z

c(x, f(z))dµm(x) =
1
m

m∑
i=1

min
z∈Z

c(xi, f(z)). (3)

The general problem of minimizing (3) is ill-posed (Tikhonov and Arsenin, 1977, Morozov,
1984). Even worse - with no further restrictions on F, small values of Remp[f ] do not
guarantee small values of R[f ] either. Many problems of unsupervised learning can be cast
in the form of finding a minimizer of (1) or (3). Let us consider some practical examples.

Example 1 (Sample Mean) Define Z := {1}, f ∈ X, and F to be the set of all constant
functions. Moreover set c(x, f(z)) = ‖x− f(z)‖2. Then the minimum of

R[f ] :=
∫

X
‖x− f‖2dµ(x) (4)

yields the variance of the data and the minimizers of the quantization functionals can be
determined analytically:

argmin
f∈F

R[f ] =
∫

X
xdµ(x) and argmin

f∈F
Remp[f ] =

1
m

m∑
i=1

xi. (5)

Example 2 (k-Means Vector Quantization) Define Z := {1, . . . , k}, f : i → fi with
fi ∈ X, F to be the set of all such functions, and again c(x, f(z)) = ‖x− f(z)‖2. Then

R[f ] :=
∫

X
min

z∈{1,...,k}
‖x− fz‖2dµ(x) (6)

denotes the canonical distortion error of a vector quantizer. In practice one can use the
k-means algorithm (Lloyd, 1982) to find a set of vectors {f1, . . . , fk} minimizing Remp[f ].
Also here (Bartlett et al., 1998), one can prove convergence properties of (the minimizer)
of Remp[f ] to (one of) the minimizer(s) of R[f ].
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Note that, in this case, minimization of the empirical quantization error leads to local
minima, a problem quite common in this type of setting. A different choice of cost function
c leads to a clustering algorithm proposed by Bradley et al. (1997).

Example 3 (k-Median and Robust Vector Quantization) With the definitions of the
previous example and c(x, f(z)) = ‖x− f(z)‖1 one obtains the k-median problem (‖ · ‖1 is
the city-block metric). In this case,

R[f ] :=
∫

X
min

z∈{1,...,k}
‖x− fz‖1dµ(x). (7)

This setting is robust against outliers, since the maximum influence of each pattern is
bounded. An intermediate setting can be derived from Huber’s robust cost function (Hu-
ber, 1981). Here we have

c(x, f(z)) =
{

1
2σ‖x− f(z)‖2 for ‖x− f(z)‖ ≤ σ
‖x− f(z)‖ − σ

2 otherwise,
(8)

for suitably chosen σ. Eq. (8) behaves like a k-means vector quantizer for small xi, however
with the built-in safeguard of limiting the influence of each single pattern.

Instead of discrete quantization one can also consider a mapping onto a manifold of lower
dimensionality than the input space. PCA can be viewed in this way (Hastie and Stuetzle,
1989):

Example 4 (Principal Components) Define Z := R, f : z → f0 + z · f1 with f0, f1 ∈ X,
‖f1‖ = 1, and F to be the set of all such line segments. Moreover let c(x, f(z)) := ‖x −
f(z)‖2. Then the minimizer of

R[f ] :=
∫

X
min
z∈[0,1]

‖x− f0 − z · f1‖2dµ(x) (9)

over f ∈ F yields a line parallel to the direction of largest variance in µ(x) (Hastie and
Stuetzle, 1989).

A slight modification results in simultaneous diagonalization of the covariance matrix with
respect to a different metric tensor.

Example 5 (Transformed Cost Metrics) Denote by D a symmetric positive definite
matrix. With the definitions as above and the cost function

c(x, f(z)) := (x− f(z))>D−1(x− f(z)) (10)

the minimizer of the empirical quantization can be found by simultaneous diagonalization
of D and the covariance matrix cov(x).

This can be seen as follows. Replace x by x̃ := D−
1
2x and f by f̃ := D−

1
2 f . Now

c(x, f(z)) = ‖x̃ − f̃(z)‖2, hence we reduced the problem to the one of finding principal
components for the covariance matrix D−

1
2 cov(x)D−

1
2 . This, however, is equivalent to

simultaneous diagonalization of D and cov(x), which proves the above remark.
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Further choices of c based on either the ‖ ·‖1 metric or Huber’s robust loss function lead
to solutions that are less prone to instabilities caused by outliers than standard PCA.

A combination of the k-means clustering and principal components immediately recovers
the k-planes clustering algorithm proposed by Bradley and Mangasarian (1998), also known
as Local PCA by Kambhatla and Leen (1994, 1997).1 There, clustering is carried out with
respect to k planes instead of simply k cluster points. After an assignment of the data points
to the planes, the latter are re-estimated by using PCA (i.e., the directions with smallest
variance are eliminated). Both Kambhatla and Leen (1997) and Bradley & Mangasarian
show that this can improve results on certain datasets.

Hastie and Stuetzle (1989) extended PCA in a different direction by allowing other than
linear functions f(z):

Example 6 (principal curves and Surfaces) Denote by Z := [0, 1]d (with d ∈ N and
d > 1 for principal surfaces), f : z → f(z) with f ∈ F be a class of continuous Rd-valued
continuous functions (possibly with further restrictions), and again c(x, f(z)) := ‖x−f(z)‖2.
The minimizer of

R[f ] :=
∫

X
min

z∈[0,1]d
‖x− f(z)‖2dµ(x) (11)

is not well defined, unless F is a compact set. Moreover, even the minimizer of Remp[f ]
is not well defined either, in general. In fact, it is an ill-posed problem in the sense of
Tikhonov and Arsenin (1977). Until recently (Kégl et al., 2000), no uniform convergence
properties of Remp[f ] to R[f ] could be stated.

Kégl et al. (2000) modified the original “principal-curves” algorithm in order to prove
bounds on R[f ] in terms of Remp[f ] and to show that the resulting estimate is well de-
fined. The changes imply a restriction of F to polygonal lines with a fixed number of knots
and, most importantly, fixed length L.2

This is essentially equivalent to using a regularization operator. Instead of a length
constraint, which, as we will show in section 3.2, corresponds to a particular regularization
operator, we now consider more general smoothness constraints on the estimated curve
f(x).

3. A Regularized Quantization Functional

The overall requirement is for estimates that not only yield small expected quantization
error but are also smooth curves (or manifolds) where the “smoothness” is independent of

1. While Kambhatla and Leen (1997) introduces the problem by considering local linear versions of principal
component analysis and takes a neural networks perspective, Bradley et al. (1997) treat the task mainly
as an optimization problem for which convergence to a local minimum in a finite number of steps is
proven. While the resulting algorithm is identical, the motivation in the two cases differs significantly.
In particular, the ansatz of Bradley et al. (1997) makes it easier for us to formulate the problem as one
of minimizing a quantization functional.
The original local linear vector quantization formulation put forward by Kambhatla and Leen (1994)
would allow us to give a quantization formulation for local PCA as well. There we would simply consider
linear subspaces together with their enclosing Voronoi cells.

2. In practice Kegl et al. use a constraint on the angles of a polygonal curve rather than the actual length
constraint to achieve sample complexity rate bounds on the training time of the algorithm. For the
uniform convergence part, however, the length constraint is used.
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the parameterization of the curve. In general this is difficult to achieve. An easier task is
to work with a measure of smoothness of f depending on the parameterization of f(z). A
wide range of regularizers from supervised learning can be readily used for this purpose. As
a side-effect we obtain a smooth parameterization.

We now propose a variant of minimizing the empirical quantization functional which
seeks hypotheses from certain classes of smooth curves, leads to an algorithm that is readily
implemented, and is amenable to the analysis of sample complexity via uniform conver-
gence techniques. We will make use of a regularized version of the empirical quantization
functional. Let

Rreg[f ] := Remp[f ] + λQ[f ], (12)

where Q[f ] is a convex nonnegative regularization term and λ > 0 is a trade-off constant
determining how much simple functions f should be favoured over functions with low em-
pirical quantization error. We now consider some possible choices of Q.

3.1 Quadratic Regularizers

A common choice of regularizers are quadratic functionals as proposed by Tikhonov and
Arsenin (1977), i.e.,

Q[f ] =
1
2
‖Pf‖2. (13)

Here P is a regularization operator penalizing unsmooth functions f via a mapping into a
dot product space (e.g., a reproducing kernel Hilbert space (Kimeldorf and Wahba, 1971,
Wahba, 1979, 1990)). In this case one obtains

Rreg[f ] := Remp[f ] +
λ

2
‖Pf‖2 =

1
m

m∑
i=1

min
z∈Z
‖xi − f(z)‖2 +

λ

2
‖Pf‖2. (14)

As we will show in section 4, if one requires certain invariances regarding the regularizer to
hold, one need only consider a special class of operators P (scalar ones).

Using the results of Smola et al. (1998) regarding the connection between regularization
operators and kernels, it appears suitable to choose a kernel expansion of f matching the
regularization operator P ; i.e., for any xi, xj ∈ X,

〈Pk(xi, ·), Pk(xj , ·)〉 = k(xi, xj). (15)

Such functions k can be found as the Greens functions of P ∗P (see Girosi et al. (1995),
Smola et al. (1998), Girosi (1998)). Finally, assume that if f0 is a constant function then
(P ∗P )(f0) = 0. This assumption leads to translation invariance of the problem - any shifting
operation can be counterbalanced by a constant offset. For an expansion like

f(α1,...,αm)(z) = f(z) = f0 +
M∑
i=1

αik(zi, z) where zi ∈ Z, αi ∈ X, k : Z2 → R (16)

with some previously chosen nodes z1, . . . , zM (of which one takes as many as one may
afford in terms of computational cost) the regularization term can be written as

‖Pf‖2 =
M∑
i,j=1

〈αi, αj〉k(zi, zj). (17)
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This is the functional form of ‖Pf‖2 we need (and will use) to derive efficient algorithms.

3.2 Examples of Regularization Operators

The first example considers the equivalence between principal curves with a length con-
straint and minimizing the regularized quantization functional.

Example 7 (Regularizers with a Length Constraint) By choosing P := ∂z, i.e., the
differentiation operator, ‖Pf‖2 becomes an integral over the squared “speed” of the curve.
Reparameterizing f to constant speed leaves the empirical quantization error unchanged,
whereas the regularization term is minimized. This can be seen as follows: by construction∫

[0,1] ‖∂zf(z)‖dz does not depend on the (re)parameterization. The variance, however, is
minimal for a constant function, hence ‖∂zf(z)‖ has to be constant over the interval [0, 1].
Thus ‖Pf‖2 equals the squared length L2 of the curve at the optimal solution.

However, minimizing the empirical quantization error plus a regularizer is equivalent to
minimizing the empirical quantization error for a fixed value of the regularization term (for
λ adjusted suitably). Hence the proposed algorithm is equivalent to finding the optimal
curve with a length constraint, i.e., it is equivalent to the algorithm proposed by Kégl et al.
(2000).3

As experimental and theoretical evidence from regression indicates, it may be benefi-
cial to choose a kernel enforcing higher degrees of smoothness in higher derivatives of the
estimate as well.

Example 8 (Gaussian Kernels) Here one has

k(x, x′) = exp
(
−‖x−x

′‖2
2σ2

)
. (18)

This corresponds to a regularizer penalizing all orders of derivatives simultaneously. Yuille
and Grzywacz (1988) show that this kernel corresponds to the pseudo-differential operator
defined by

‖Pf‖2 =
∫

dx
∞∑
n=0

σ2n

n!2n
(Dnf(x))2 (19)

with D2n = ∆n and D2n+1 = ∇∆n, ∆ being the Laplacian and ∇ the gradient operator.
This means that one is looking not only for smooth functions but also curves whose curvature
and other higher-order properties change slowly.

(We used a Gaussian kernel in the experiments reported below).
Finally the use of periodical kernels (see Smola et al. (1998)) allows one to model circular

structures in X.

Example 9 (Periodical Kernels) Possible kernels would be of the type

k(x, x′) =
∞∑
j=1

cj cos
(

2πj
τ x
)

cos
(

2πj
τ x
′
)

+ sj sin
(

2πj
τ x
)

sin
(

2πj
τ x
′
)

(20)

3. The reasoning is slightly incorrect for the case of a finite number of basis functions - there f cannot
be completely reparameterized to constant speed. However the basic properties still hold, provided the
number of kernels is sufficiently high.
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where τ is the periodicity and cj , sj are positive and absolutely summable coefficients, or

k(x, x′) =
∞∑

j=−∞
k̃(x− x′ − jτ) (21)

where k̃ is some non-periodic kernel. The latter formulation may be numerically more
advantageous if k̃ is a translation invariant kernel with compact support or rapid decay
(e.g., Gaussian RBF) as the series then can be truncated after a few terms.

For more details on regularization operators see e.g., (Girosi et al., 1995, Smola et al., 1998,
Girosi, 1998). Essentially one may use any kernel introduced in support vector machines
(Vapnik, 1998), Gaussian processes (Williams, 1998), or reproducing kernel Hilbert spaces
(Wahba, 1990) in the expansions described above.

The appealing property of this formulation is that it is completely independent of the
dimensionality and particular structure of Z.

3.3 Linear Programming Regularizers

It may not always be desirable to find expansions of f =
∑M

i=1 αik(zi, ·) in terms of many
basis functions k(zi, ·). Instead it would be better if one obtained a (nearly as good) estimate
of f with just a few basis functions. This can be achieved via a regularizer enforcing sparsity,
e.g., by setting

Q[f ] :=
M∑
i=1

|αi|. (22)

(For αi ∈ Rd use ‖αi‖1 =
∑d

j=1 |αij | instead of |αi|.) Such approaches have been studied by
Mangasarian (1969), Chen et al. (1999), Weston et al. (1999), Girosi (1998), Bennett (1999),
Frieß and Harrison (1998), Smola (1998) in various settings such as wavelet expansions,
mathematical programming, or support vector machines. We will show (section A.2) that
by using an argument similar to the one of Smola et al. (2000) this setting allows efficient
capacity control, too.

4. Invariant Regularizers

In the previous section it was claimed that in many cases one could restrict oneself to
the class of scalar regularization operators, i.e., operators that act on each component of f
(independent of the choice of the basis) separately and identically. This is the case, provided
some basic assumptions about scaling behaviour and permutation symmetry are imposed.

Proposition 1 (Homogeneous Invariant Regularization) Any regularizer Q[f ] that
is both homogeneous quadratic and invariant under an irreducible orthogonal representation
ρ of a group G on X, i.e., satisfies

Q[f ] ≥ 0 for all f ∈ F (23)
Q[af ] = a2Q[f ] for all scalars a (24)

Q[ρ(g)f ] = Q[f ] for all ρ(g) ∈ G (25)

is of the form Q[f ] = 〈Pf, Pf〉 where P is a scalar operator.
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Proof It follows directly from (24) and Euler’s “homogeneity property”, that Q[f ] is a
quadratic form, thus Q[f ] = 〈f,Mf〉 for some operator M . Moreover M can be written as
P ∗P since it has to be a positive operator (see (23)). Finally from

〈Pf, Pf〉 = 〈Pρ(g)f, Pρ(g)f〉 (26)

and the polarization equation (i.e., exploiting (26) for f+f ′, f−f ′, subtracting both terms,
and making use of the symmetry of 〈·, ·〉) it follows that

〈Pf, Pf ′〉 = 〈Pρ(g)f, Pρ(g)f ′〉 for all f, f ′ ∈ F. (27)

Hence by virtue of the Fischer-Riesz theorem one obtains P ∗Pf = ρ(g)∗P ∗Pρ(g)f . How-
ever, ρ(g)ρ(g)∗ = 1 since ρ is a unitary representation of G and therefore

P ∗Pρ(g) = ρ(g)P ∗P (28)

has to hold for any ρ(g) ∈ G. Finally, by virtue of Schur’s lemma (see e.g., (Hamermesh,
1962)) P ∗P may only be a scalar operator. Therefore, without loss of generality, also P
may be assumed to be scalar.

The requirement (24) may seem artificial, however, it is not. In particular when stating
uniform convergence bounds in terms of entropy numbers (see Appendix A) a regularizer
with these properties is desirable: entropy numbers scale linearly when f is multiplied
by a scalar. Therefore one wants homogeneous scaling behaviour of some degree, say 2,
as in (24). A consequence of the proposition above is that there exists no vector-valued
regularization operator satisfying the invariance conditions. Hence there is no need to look
for other operators P in the presence of a sufficiently strong invariance. Now for a practical
application of proposition 1.

Corollary 2 (Permutation and Rotation Symmetries) Under the assumptions of
Proposition 1 both the canonical representation of the permutation group (by permutation
matrices) in a finite dimensional vector space Y and the group of orthogonal transformations
on Y enforce scalar operators P .

This follows immediately from the fact that the representation of these groups is unitary
and irreducible on Y by construction.

In other words, every time the nature of the data does not change when it undergoes a
rotation or a permutation, i.e., there exists no particular ordering of the data in terms
of features, one should use scalar operators P . Of course, this reasoning only applies to
quadratic regularizers since for other types of regularization the operator P may not even
be well defined.

5. An Algorithm for minimizing Rreg[f ]

In this section we present an algorithm that approximately minimizes Rreg[f ] via coordinate
descent. We certainly do not claim it is the best algorithm for this task - our modest goals
were to find an algorithm consistent with our framework (which is amenable to sample
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complexity theory) and which seems to work in practice; the following algorithm meets
these goals.

In the following we will assume the data to be centered and therefore drop the term f0 in
the expansion (16). This greatly simplifies the notation (the extension is straightforward).
Moreover, for the sake of practicality, we will assume that the ansatz for f can be written
in terms of a finite number of parameters α1, . . . αM and that likewise the regularizer Q[f ]
can also be expressed as a function of α1, . . . , αM . This allows us to rephrase the problem
of minimizing the regularized quantization functional in the following form.

min
{α1,...,αM}⊂X

{ζ1,...,ζm}⊂Z

[
1
m

m∑
i=1

c(xi, f(α1,...,αM )(ζi)) + λQ(α1, . . . , αM )

]
. (29)

The minimization here is achieved in an iterative fashion by coordinate descent over ζ and
α. It operates analogously to the EM (expectation maximization) algorithm (Dempster
et al., 1977): there the aim is to find (the parameters θ of) a distribution pθ(x, l) where x
are observations and l are latent variables. Keeping θ fixed one proceeds by maximizing
pθ(x, l) with respect to l. The M-step consists of maximizing pθ(x, l) with respect to θ.
These two steps are repeated until no further improvement can be achieved.

Likewise one iterates over minimizing (29) with respect to {ζ1, . . . , ζm}, equivalent to
the E-step (projection), and then with respect to {α1, . . . , αM}, corresponding to the M-
step (adaptation). This is repeated until convergence, or, in practice, until the regularized
quantization functional does not decrease significantly further. Let us have a closer look at
the individual phases of the algorithm.

5.1 Projection

For each i ∈ {1, . . . ,m} choose

ζi := argmin
ζ∈Z

c(xi, f(ζ)); (30)

e.g., for squared loss ζi := argmin ζ∈Z ‖xi − f(ζ)‖2. Clearly, for fixed αi, the so chosen ζi
minimizes the loss term in (29), which in turn is equal to Rreg[f ] for given αi and X. Hence
Rreg[f ] is decreased while keeping Q[f ] fixed (the latter is the case since the variables αi do
not change). In practice one uses standard low-dimensional nonlinear function minimization
algorithms (see Press et al. (1992) for details and references) to achieve this goal.

The computational complexity is O(m ·M) since the minimization step has to be carried
out for each sample separately (m). Moreover each function evaluation (whose number we
assumed to be approximately constant per minimization) scales linearly with the number
of basis functions (M).

5.2 Adaptation

Now the parameters ζi are fixed and αi is adapted such that Rreg[f ] decreases further. The
design of practical algorithms to decrease Rreg[f ] is closely connected with the particular
forms both the cost function c(x, f(z)) and the regularizer Q[f ] take. We will restrict
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ourselves to squared loss in this section (i.e., c(x, f(z)) = ‖x− f(z)‖2) and to the quadratic
or linear regularization terms as described in section 3. We thus assume that

f(z) =
M∑
i=1

αik(xi, x) (31)

for some kernel k, in the quadratic case, matching the regularization operator P .

Quadratic Regularizers The problem to be solved in this case is to minimize

1
m

m∑
i=1

∥∥∥∥∥∥xi −
M∑
j=1

αjk(zj , ζi)

∥∥∥∥∥∥
2

+
λ

2

M∑
i,j=1

〈αi, αj〉k(zi, zj) (32)

with respect to α. Here, α and X denote the matrices of all parameters and samples,
respectively. Differentiation of (32) with respect to αi yields(

λm

2
Kz +K>ζ Kζ

)
α = K>ζ X and hence α =

(
λm

2
Kz +K>ζ Kζ

)−1

K>ζ X (33)

where (Kz)ij := k(zi, zj) is an M ×M matrix and (Kζ)ij := k(ζi, zj) is m×M .
The computational complexity of the adaptation step is O(M2 ·m) for the matrix com-

putation and O(M3) for the computation of the parameters αi. Assuming termination of
the overall algorithm in a finite number of steps (independent of M and m) we showed that
the overall complexity of the proposed algorithm is O(M3) +O(M2 ·m); i.e., it scales only
linearly in the number of samples (but cubic in the number of parameters).4

Linear Regularizers Here the adaptation step can be solved via a quadratic optimization
problem. The trick is to break up the `1 norms of the coefficient vectors αi into pairs of
nonnegative variables αi −α∗i , thus replacing ‖αi‖1 by 〈αi,~1〉+ 〈α∗i ,~1〉 where ~1 denotes the
vector of d ones. Consequently one has to minimize

1
m

m∑
i=1

∥∥∥∥∥∥xi −
M∑
j=1

(αj − α∗j )k(zj , ζi)

∥∥∥∥∥∥
2

+ λ

M∑
i=1

〈αi + α∗i ,~1〉 (34)

under the constraint that αi, α∗i live in the positive orthant in X. Optimization is carried out
by standard quadratic programming codes (e.g., Murtagh and Saunders (1983), IBM Cor-
poration (1992), Vanderbei (1997)). This has (depending on the particular implementation
of the algorithm) a similar order of complexity as a matrix inversion, i.e., the calculations
to solve the unconstrained quadratic optimization problem described previously.

An algorithm iterating between the projection and adaptation step as described above
will generally decrease the regularized risk term and eventually reach a local minimum of
the optimization problem.5 What remains is to find good starting values.

4. Note that also the memory requirements are at least O(M · m) and that for optimal performance M
should increase with increasing m.

5. Rreg[f ] is bounded from below by 0, hence any decreasing series of Rreg[fi] where fi denotes the estimate
at step i has a limit which then will be a global, or most likely a local minimum. Note that this does
not guarantee that we will reach the minimum in a finite number of steps.
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5.3 Initialization

The idea is to choose the coefficients αi such that the initial guess of f approximately points
into the directions of the first D principal components given by the matrix V := (v1, . . . , vD).
This is done analogously to the initialization in the generative topographic map (Bishop
et al., 1998, eq. (2.20)). Choose

α(0) = argmin
α=(α1,...,αM )⊂X

1
M

M∑
i=1

c
(
V (zi − z0)− f(α1,...,αM )(zi)

)
+ λQ[f ]. (35)

Hence for squared loss and quadratic regularizers, α(0) is given by the solution of the linear
system

(
λ
2 1 +Kz

)
α = V (Z −Z0) where Z denotes the matrix of zi, z0 the mean of zi, and

Z0 the matrix of m identical copies of z0 correspondingly. If not dealing, as assumed, with
centered data, set f0 to the sample mean; i.e., f0 = 1

m

∑m
i=1 xi.

6. Relations to Other Algorithms

6.1 The Connection to the GTM

Just considering the basic algorithm of the GTM (without the Bayesian framework or its
interpretation in terms of generative models), one can observe that its goal is to minimize
a quantity similar to Rreg[f ]. More precisely, it maximizes the posterior probability of the
data having been generated by a lower-dimensional discrete grid Z := {z1, . . . zM} ⊂ RD,
mapped into X, and corrupted by additive Gaussian noise (this is where the squared loss
enters).

The difference lies in its choice of Z, set to be identical with the points zi in our setting
(no distinction is made between zi and the points generating the basis functions k) and
the probabilistic assignment of xi to Z, compared to the deterministic assignment in the
projection step of section 5.1: several “nodes” may be “responsible” for having generated a
particular datapoint xi. The latter is computationally tractable in the GTM setting, since
the cardinality of Z is finite (and small). For uncountable Z, such an assignment could be
approximated by sampling from the resulting distribution or variational calculations, which
might render the algorithm more efficient in finding a good local minimum (cf. simulated
annealing).

A further difference can be found in the choice of a regularizer which is of `2 type.
In other words, instead of using 1

2‖Pf‖
2 (Bishop et al., 1998), choose 1

2

∑M
i=1 ‖αi‖22 as a

regularizer. This may not always be favourable (Smola et al., 2000), since by increasing
the number of basis functions, uniform convergence bounds for these classes of functions
become less tight. In fact, it has been observed that in the GTM (Bishop et al., 1998, Sec.
2.3) the number of nodes M (for the kernel expansion) is a critical parameter.

A quadratic regularizer as proposed in section 3.2 does not exhibit this weakness since
it takes a coupling between the single centers of the basis functions k(zi, zj) into account,
which helps to avoid overfitting. It is worthwhile noticing that such a modification could also
be applied to the original GTM algorithm. This would correspond to a Gaussian Process
(Williams, 1998) having created the manifold (where the prior over all such manifolds f is
determined by the covariance function k). A detailed description of such a modification is
beyond the scope of the current work and is thus omitted.
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6.2 Robust Coding and Regularized Quantization

From a mere coding point of view it might not seem too obvious at first glance to seek very
smooth curves. In fact, one could construct a space-filling curve (e.g., a Peano curve). This
ensures one could achieve zero empirical and expected quantization error, by exploiting the
fact that codewords may be specified to arbitrary precision. However, the codebook in this
setting would have to be exact and the resulting estimate f would be quite useless for any
practical purposes.

The subsequent reasoning explains why such a solution f would not be desirable from
a learning-theory point of view either. Let us modify the situation slightly and introduce a
noisy channel, i.e., the reconstruction would not occur for

ζ(x) = argmin
ζ∈Z

c(x, f(ζ)) (36)

but for the random variable ζ̂(x) with

ζ̂(x) := argmin
ζ∈Z

c(x, f(ζ)) + ξ. (37)

Here ξ is another random variable which is symmetrically distributed with zero mean ac-
cording to p(ξ) and has finite variance σ2. Consider the minimization of a slightly different
risk functional

Rnoise[f ] :=
∫

X×R
c

(
x, f

(
argmin
z∈Z

c(x, f(z)) + ξ

))
dµ(x)dp(ξ). (38)

This modified setting rules out space-filling curves such as the Peano curve. Equation (38)
is inspired by the problem of robust vector quantization (see Gersho and Gray (1991)) and
the proof of Bishop (1995) that in supervised learning training with noise is equivalent to
Tikhonov regularization. It is an adaptation of these techniques that we will use to derive
a similar result in unsupervised learning.

Assume now that c(·, ·) is the squared loss. If the overall influence of ξ is small, the
moments of higher order than two are essentially negligible (for small ξ), and if f is twice
differentiable, one may expand f in a Taylor expansion with f(ζ + ξ) ≈ f(ζ) + ξf ′(ζ) +
ξ2

2 f
′′(ζ). Using the reasoning of Bishop (1995) one arrives at

Rnoise[f ] ≈ R[f ] + 2
∫
R

ξ2dp(ξ)
∫

X

∥∥f ′(ζ)
∥∥2 +

1
2
〈f(ζ)− x, f ′′(ζ)〉dµ(x)

= R[f ] + 2σ2

∫
X

∥∥f ′(ζ)
∥∥2 +

1
2
〈f(ζ)− x, f ′′(ζ)〉dµ(x) (39)

where ζ is defined as in (36). Finally we expand f at the unbiased solution f0 (where σ = 0)
in terms of σ2. Consequently the second term in (39) inside the integral is only O(σ2), hence
its overall contribution is only O(σ4) and can be neglected. What remains is

Rnoise[f ] ≈ R[f ] + 2σ2

∫
X
‖f ′(ζ)‖2dµ(x) with ζ = ζ(x) = argmin

ζ∈Z
‖x− f(ζ)‖2. (40)
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Modulo the fact that the integral is with respect to x (and hence with respect to some
complicated measure with respect to ζ), the second term is a regularizer enforcing smooth
functions by penalizing the first derivative as discussed in section 3.2. Hence we recovered
principal curves with a length constraint as a by-product of robust coding.

We chose not to use the discrete sample-size setting as done by Bishop (1995) since it
appears not very practicable to use a training-with-input-noise scheme like in supervised
learning to the problem of principal manifolds. The discretization of R[f ], i.e., its approx-
imation by the empirical risk functional, is independent of this reasoning. It might be of
practical interest, though, to use a probabilistic projection of samples onto the curve for al-
gorithmic stability (as done for instance in simulated annealing for the k-means algorithm).

7. Uniform Convergence Bounds

We now determine bounds on the sample size sufficient to ensure that the above algorithm
can find an f close to the best possible. We do this using methods which are very similar to
those of Kégl et al. (2000) and are based on uniform (over a class of functions) convergence
of empirical risk functionals to their expected value. The basic probabilistic tools we need
are given in section 7.2. In section 7.3 we will state bounds on the relevant covering numbers
for the classes of functions induced by our regularization operators:

FΛ := {f : Z→ X : Q[f ] ≤ Λ} . (41)

Recall Q[f ] = 1
2‖Pf‖

2 and ‖Pf‖2 is given by (17). Since bounding covering numbers can
be technically intricate, we will only state the results and basic techniques in the main body
and relegate their proof and more detailed considerations to the appendix. Section 7.4 gives
overall sample complexity rates.

In order to avoid technical complications arising from unbounded cost functions (like
boundedness of some moments of the distribution µ(x) (Vapnik, 1982)) we will assume that
there exists some r > 0 such that the probability measure of a ball of radius r is 1, i.e.,
µ(Ur) = 1. Kégl et al. (2000) showed that under these assumptions also the prinicipal
manifold f is contained in Ur, hence the quantization error will be no larger than ec :=
maxx,x′∈Ur c(x, x

′) for all x. For squared loss we have ec = 4r2.

7.1 Preliminaries

We wish to derive bounds on the deviation between the empirical quantization error Remp[f ]
and the expected quantization errorR[f ]. In order to do this we will use uniform convergence
bounds and to that end we utilize the ε-cover of the loss-function-induced class

FcΛ := Fc := {(x, z) 7→ c(x, f(z)): f ∈ FΛ} (42)

on Ur. Given a metric ρ and a set F, the ε covering number of F, denoted by N(ε,F, ρ) is
the smallest number of ρ-balls of radius ε the union of which contains F. A metric on FcΛ
is defined by letting

d(fc, f ′c) := sup
z∈Z,x∈Ur

|c(x, f(z))− c(x, f ′(z))| (43)
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where f, f ′ ∈ FΛ.
Whilst d is the metric we are interested in, it is quite hard to compute covering numbers

with respect to it directly. However, by an argument of Williamson et al. (1998), Anthony
and Bartlett (1999), it is possible to upper-bound these quantities in terms of corresponding
entropy numbers of the class of functions FΛ itself if c is Lipschitz continuous. Denote by
lc > 0 a constant for which |c(x, x′)− c(x, x′′)| ≤ lc‖x′ − x′′‖2 for all x, x′, x′′ ∈ Ur. In this
case

d(fc, f ′c) ≤ lc sup
z∈Z
‖f(z)− f ′(z)‖2, (44)

hence all we have to do is compute the L∞(`d2) covering numbers of F to obtain the corre-
sponding covering numbers of FcΛ, with the definition of the norm on F as

‖f‖L∞(`d2) := sup
z∈Z
‖f(z)‖`d2 . (45)

The metric is induced by the norm in the usual fashion. For the polynomial loss c(x, f(z)) :=
‖x − f(z)‖p2, one obtains lc = p(2r)p−1. With the definitions from above one can see
immediately that N(ε,FcΛ, d) ≤ N

(
ε/lc,FΛ, L∞(`d2)

)
.

7.2 Upper and Lower Bounds

The next two results are similar in their flavour to the bounds obtained by Kégl et al. (2000).
They are slightly streamlined since they are independent of some technical conditions on F

used by Kégl et al. (2000).

Proposition 3 (L∞(`d2) bounds for Principal Manifolds)
Denote by F a class of continuous functions from Z into X ⊆ Ur and let µ be a distribution
over X. If m points are drawn iid from µ, then for all η > 0, ε ∈ (0, η/2)

Pr

{
sup
f∈F

∣∣Rmemp[f ]−R[f ]
∣∣ > η

}
≤ 2N

(
ε

2lc
,F, L∞(`d2)

)
e−2m(η−ε)2/ec . (46)

Proof By definition of Rmemp[f ] = 1
m

m∑
i=1

minz ‖f(z)− xi‖2 the empirical quantization func-

tional is an average over m iid random variables which are each bounded by ec. Hence we
may apply Hoeffding’s inequality to obtain

Pr
{∣∣Rmemp[f ]−R[f ]

∣∣ > η
}
≤ 2e−2mη2/ec . (47)

The next step is to discretize FcΛ by a ε
2 cover (i.e., FΛ by a ε

2lc
cover) with respect to the

metric d: for every fc ∈ FcΛ there exists some fi in the cover such that |R[f ] − R[fi]| ≤ ε
2

and |Rmemp[f ]−Rmemp[fi]| ≤ ε
2 . Consequently

Pr
{∣∣Rmemp[f ]−R[f ]

∣∣ > η
}
≤ Pr

{∣∣Rmemp[fi]−R[fi]
∣∣ > η − ε

}
. (48)

Substituting (48) into (47) and taking the union bound over the ε
2 cover of FcΛ gives the

desired result.

This result is useful to assess the quality of an empirically determined manifold. In order
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to obtain rates of convergence we also need a result connecting the expected quantization
error of the principal manifold f∗emp minimizing Rmemp[f ] and the manifold f∗ with minimal
quantization error R[f∗].

Proposition 4 (Rates of Convergence for Optimal Estimates)
Suppose F is compact. Let f∗,memp := argmin f∈FcΛ

Remp[f ] and f∗ := argmin f∈FcΛ
R[f ]. With

the definitions and conditions of Proposition 3,

Pr

{
sup
f∈F

∣∣R[f∗,memp]−R[f∗]
∣∣ > η

}
≤ 2

(
N
(
ε
lc
,FΛ, L∞(`d2)

)
+ 1
)
e−

m(η−ε)2
2ec . (49)

The proof is similar to that of proposition 3 and can be found in Appendix B.1.

7.3 Bounding Covering Numbers

After propositions 3 and 4, the missing ingredient to state uniform convergence bounds is a
bound on the covering number N(ε,F, L∞(`d2)). (For the remainder of this section we will
simply write N(ε,F).)

Before going into details let us briefly review what already exists in terms of bounds on
the covering number N for L∞(`d2) metrics. Kégl et al. (2000) essentially show that

log N(ε,F) = O(1
ε ) (50)

under the following assumptions: they consider polygonal curves f(·) of length L in the
ball Ur ⊂ X. The distance measure (no metric!) for N(ε) is defined as supx∈Ur |∆(x, f) −
∆(x, f ′)| ≤ ε. Here ∆(x, f) is the minimum distance between a curve f(·) and x ∈ Ur.

By using functional analytic tools developed by Williamson et al. (1998) one can obtain
results for more general regularization operators, which can then be used in place of (50) to
obtain bounds on the expected quantization error. The technical details are in Appendix A.
The key point is to characterize the simplicity (as measured by covering numbers) of the
class of functions via the regularization term under consideration.

It turns out that a feature space representation of kernels k is useful in this regard. In
particular, like (15) we can write any kernel k(x, x′) satisfying Mercer’s condition (Mercer,
1909) as a dot product in some feature space (see Appendix A.2 for details) by

k(x, x′) =
∑
i

λiφi(x)φi(x′). (51)

Here (λi, φi) is the eigensystem of the operator Tkf :=
∫
Z f(x′)k(x′, x)dx′. It is this notion

of linear functionals introduced by (51) that allows us to treat nonlinear functions with
ease.

Roughly speaking, if the λi decay rapidly, the possibly infinite expansion in (51) can
be approximated with high precision by a low-dimensional space which means that we are
effectively dealing only with simple function classes. This becomes more obvious in the
following theorem:
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Proposition 5 (Eigenvalues and Covering Numbers) Suppose k is a Mercer kernel
with eigenvalues (sorted in decreasing order) satisfying λj = O(e−αj

p
) for some α, p > 0.

Then
log N(ε,F) = O

(
log

p+1
p ε−1

)
. (52)

Suppose k is a Mercer kernel with eigenvalues satisfying λj = O(j−α−1) for some α > 0.
Then

log N(ε,F) = O
(
ε−

α
2

+δ
)

(53)

for any δ ∈ (0, α/2).

Proof The rates follow immediately from propositions 12 and 13 and that F can be
described by a linear operator. See Appendix A for details.

The rates obtained in proposition 5 are quite strong. In particular recall that for compact
sets in finite dimensional spaces of dimension d the covering number is N(ε,F) = O(ε−d)
(Carl and Stephani, 1990). In view of (52) this means that even though we are dealing with
a nonparametric estimator, it behaves almost as if it was a finite dimensional one.

All that is left is to substitute (52) and (53) into the uniform convergence results to
obtain bounds on the performance of our learning algorithm. The slow growth in N(ε,F)
is the reason why we will be able to prove fast rates of convergence below.

7.4 Rates of Convergence

Another property of interest is the sample complexity of learning principal manifolds. Kégl
et al. (2000) have shown a O(m−1/3) rate of convergence for principal curves (d = 1) with
a length constraint regularizer. We prove that by using a more powerful regularizer (as
one can do using our algorithm) one may obtain a bound of the form O(m−

α
2(α+1) ) for

polynomial rates of decay of the eigenvalues of k (α+1 is the rate of decay); or O(m−1/2+β)
for exponential rates of decay (β is an arbitrary positive constant). It would be surprising
if we could do any better given that supervised learning rates are typically no better than
O(m−1/2) (Anthony and Bartlett, 1999, Chapter 19). In the following we assume that FΛ

is compact; this is true of all the specific FΛ considered above.

Proposition 6 (Learning Rates for Principal Manifolds) Suppose FΛ defined by (41)
is compact. Define f∗,memp, f∗ ∈ FΛ as in Proposition 4.
1. If log N(ε,FcΛ) = O(logα 1

ε ) for some α > 0 then

R[f∗,memp]−R[f∗] = O(m−1/2 logα/2m) = O(m−1/2+β) (54)

for any β > 0.
2. If log N(ε,FcΛ) = O(ε−α), for some α > 0 then

R[f∗,memp]−R[f∗] ≤ O(m−
1

α+2 ). (55)

The proof can be found in Appendix B.2. A restatement of the optimal learning rates in
terms of the eigenspectrum of the kernel leads to the following corollary.
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Corollary 7 (Learning Rates for given Eigenspectra) Suppose FΛ is compact, f∗,memp,
f∗ ∈ FΛ are as before, and λj are the eigenvalues of the kernel k inducing FΛ (sorted in
decreasing order). If there is a c > 0 such that for all j ∈ N, λj ≤ e−cj

α
, then

R[f∗emp]−R[f∗] ≤ O(m−1/2 log
α+1
2α m). (56)

If λj = O(j−α) for quadratic regularizers, or λj = O(j−α/2) for linear regularizers, then

R[f∗,memp]−R[f∗] ≤ O(m−
α−1
2α ). (57)

Interestingly the above result is slightly weaker than the result by Kégl et al. (2000) for
the case of length constraints, as the latter corresponds to the differentiation operator, thus
polynomial eigenvalue decay of order 2, and therefore to a rate of 1

4 (Kégl et al. (2000)
obtain 1

3). For a linear regularizer, though, we obtain a rate of 3
8 . It is unclear, whether

this is due to a (possibly) suboptimal bound on the entropy numbers induced by k, or the
fact that our results were stated in terms of the (stronger) L∞(`d2) metric. This weakness,
which is yet to be fully understood, should not detract from the fact that we can get better
rates by using stronger regularizers, and our algorithm can utilize such regularizers.

8. Experiments

We now illustrate that the basic idea of the algorithm proposed in section 5 is sound by
reporting the results of several experiments (figures 1, 3). In all cases Gaussian RBF kernels,
as discussed in section 3.2, were used. First, we generated different data sets in 2 and 3
dimensions from 1 or 2 dimensional parameterizations. Then we applied our algorithm
using the prior knowledge about the original parameterization dimension of the data set in
choosing the latent variable space to have the appropriate size. For almost any parameter
setting (λ, M , and width of basis functions) we obtained reasonable results.
We found that for a suitable choice of the regularization factor λ, a very close match to
the original distribution can be achieved. Of course, the number and width of the basis
functions had an effect on the solution, too. But their influence on the basic characteristics
was quite small. Figure 2 shows the convergence properties of the algorithm. One can clearly
observe that the overall regularized quantization error decreases for each step, while both
the regularization term and the quantization error term are free to vary. This experimentally
shows that the algorithm strictly decreases Rreg[f ] at every step and will eventually converge
to a (local) minimum.

Given the close relationship to the GTM, we also applied our algorithm to the oil flow
data set used by Bishop et al. (1998). The data set consists of 1000 samples from R

12,
organized into 3 classes. The goal is to visualize these data, so we chose the latent space
to be Z = [−1, 1]2. We then generated the principal manifold and plotted the distribution
of the latent variables for each sample (see figure 3). For comparison we did the same
with principal component analysis (PCA). It can be seen, that the result achieved with
principal manifolds reveals much more of the structure intrinsic to the data set than simply
to search for directions with high variance. Comparing to (Bishop et al., 1998) we achieved
a competitive result.
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Figure 1: Upper 4 images: we generated a dataset (small dots) by adding noise to a distri-
bution indicated by the dotted line. The resulting manifold generated by our ap-
proach is given by the solid line (over a parameter range of Z = [−1, 1]). From left
to right we used different values for the regularization parameter λ = 0.1, 0.5, 1, 4.
The width and number of basis function was constant 1, and 10 respectively.
Lower 4 images: here we generated a dataset by sampling (with noise) from a
distribution depicted in the left-most image (small dots are the sampled data).
The remaining three images show the manifold yielded by our approach over the
parameter space Z = [−1, 1]2 for λ = 0.001, 0.1, 1. The width and number of
basis functions was again constant (1 and 36).

Figure 2: Left: regularization term, middle: empirical quantization error, right: regularized
quantization error vs. number of iterations.

Finally, in order to demonstrate the fact that RPM can be applied to construct higher
dimensional manifolds as well, we constructed a 3 dimensional latent variable space for
the oil flow dataset (see fig. 4). In this setting the different flow regimes are much more
apparent. Moreover it suggests a further subdivision of one class into 5 more regimes.
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Figure 3: Organization of the latent variable space for the oil flow data set using principal
manifolds (left, 49 nodes, kernel width 1, regularization 0.01) and principal com-
ponent analysis (right). The lower-dimensional representation found by principal
manifolds nicely reveals the class structure, comparably to the GTM. Linear PCA
fails completely.

9. Conclusion

We proposed a framework for unsupervised learning that can draw on the techniques avail-
able in minimization of risk functionals in supervised learning. This yielded an algorithm
suitable for obtaining principal manifolds. The expansion in terms of kernel functions and
the treatment by regularization operators made it easier to decouple the algorithmic part (of
finding a suitable manifold) from the part of specifying a class of manifolds with desirable
properties. In particular, our algorithm does not crucially depend on the number of nodes
used.

Bounds on the sample complexity of learning principal manifolds were given. These may
be used to perform capacity control more effectively. Moreover our calculations have shown
that regularized principal manifolds are a feasible way to perform unsupervised learning.
The proofs relied on the function-analytic tools developed by Williamson et al. (1998).

There are several directions to take this research further; we mention the most obvious
three. The algorithm could well be improved. In contrast to successful kernel algorithms
such as SV machines, our algorithm here is not guaranteed to find a global minimum. Is it
possible to develop an efficient algorithm that does? Furthermore the algorithm is related
to methods that carry out a probabilistic assignment of the observed data to the manifold.
The latter often exhibit improved numerical properties and the assignments themselves
can be interpreted statistically. It would be interesting to exploit this fact in the present
context. Finally, the theoretical bounds could be improved - hopefully achieving the same
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Figure 4: Organization of the latent variable space for the oil flow data set using principal
manifolds in 3 dimensions with 63 = 216 nodes, kernel width 1 and regularization
0.01. The three-dimensional latent variable space was projected onto 2 dimen-
sions for display reasons. Observe the good separation between the different flow
regimes. The map furthermore suggests that there exist 5 subdivisions of the
regime denoted by ’+’.

rate as Kégl et al. (2000) for their special case, while still keeping the better rates for more
powerful regularizers.
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Appendix A. Covering and Entropy Numbers

A.1 Entropy Numbers

Denote by L(E,F ) the set of all bounded linear operators T between two normed spaces
(E, ‖ · ‖E), (F, ‖ · ‖F ). The nth entropy number of a set M ⊂ E relative to a metric ρ, for
n ∈ N, is

ε(M) := inf{ε: N(ε,M, ρ) ≤ n}. (58)

Similarly, the entropy numbers of an operator T ∈ L(E,F ) are defined as

ε(T ) := ε(T (UE)) where UE = {x ∈ E: ‖x‖E ≤ 1}. (59)

Note that ε(T ) = ‖T‖, and that ε(T ) certainly is well defined for all n ∈ N if T is a compact
operator, i.e., if T (UE) is precompact.6

The key idea in the following is to bound the entropy number of parameterized curves
in L∞(`d2) satisfying the constraint Q[f ] ≤ Λ by viewing FΛ as the image of the unit ball
under an operator T . A key tool in bounding the relevant entropy number is the following
factorization result.

Proposition 8 (Carl and Stephani (1990), p. 11) Let E,F,G be Banach spaces, R ∈
L(F,G), and S ∈ L(E,F ). Then, for n, t ∈ N,

εnt(RS) ≤ ε(R)ε(S) (60)
ε(RS) ≤ ε(R)‖S‖ (61)
ε(RS) ≤ ε(S)‖R‖. (62)

Since one is dealing with vector-valued functions FΛ, it handy to view f(·) as generated by
a linear d = dim X dimensional operator, i.e.,

f(z) = wΦ(z) := (〈w1,Φ(z)〉, . . . , 〈wd,Φ(z)〉). (63)

Here the inner product 〈·, ·〉 is given by the regularization operator P as

〈f, g〉 := 〈Pf, Pg〉L2 =
∫

Z
(Pg)(x)(Pf)(x)dx (64)

where the latter was described in section 4.

A.2 Using the Shape of the Feature Space

It is convenient to view (64) also the other way around. For any kernel k corresponding to
a positive integral operator

(Tkf)(x) :=
∫

Z
f(x′)k(x′, x)dx′, (65)

6. Precompactness of a set X means that for any ε > 0 there exists a finite number of open balls of radius
ε that cover X.
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e.g., for any Mercer kernel (one satisfying Mercer’s condition (Mercer, 1909)), one can write
k as

k(x, x′) =
∑
i

λiφi(x)φi(x′). (66)

Here (λi, φi) is the eigensystem of the integral operator Tk. Hence the map into feature
space may be written as

Φ(x) =
(√

λ1φ1(x),
√
λ2φ2(x), . . .

)
. (67)

This property has been used to develop and understand learning algorithms for RBF net-
works (Aizerman et al., 1964), support vector machines (Boser et al., 1992), and kernel PCA
(Schölkopf et al., 1998). In the current context we will use the geometrical viewpoint to
provide bounds on the entropy numbers of the classes of functions FΛ generated by kernels.

One can prove (Williamson et al., 1998) by using Mercer’s theorem that Φ corresponding
to k (and matching regularization operators P ) maps x into a box B in a Hilbert space with
side-lengths Ck

√
λi. Here Ck is a constant depending on the kernel and the eigenvalues λi

are those of the integral operator Tk.
Finally we need to introduce the mixed spaces `dp(`2) to describe the geometric properties

of the setting:

`dp(`2) :=
{
x = (x1, . . . , xd):xi ∈ `2, and ‖x‖`dp(`2) :=

(∑d
i=1 ‖xi‖

p
`2

)1/p
<∞

}
. (68)

Quadratic Regularizers Here FΛ is the class of all functions with 1
2‖Pf‖

2 ≤ Λ. Conse-
quently Φ(x) ∈ B and moreover 1

2‖w‖
2 = 1

2

∑d
i=1 ‖wi‖2 ≤ Λ. Thus w := (w1, . . . , wd) ∈√

2ΛU`d2(`2).

Linear Regularizers Here

FΛ =

{
f =

M∑
i=1

αiK(zi, ·):
M∑
i=1

‖αi‖1 ≤ Λ

}
. (69)

Hence we have Φ(x) ∈ B and moreover wi ∈ ΛiB with
∑

i Λi ≤ Λ. This is the

case since wi =
∑M

j=1 αijΦ(zi), hence wi ∈
(∑M

j=1 |αij |
)

B which satisfies the above
restrictions by construction of FΛ.

Our strategy will be (as in (Williamson et al., 1998, Smola et al., 2000)) to find operators A
mapping B (or their d-times replication) into balls of some radius RA and use the Cauchy-
Schwartz inequality to obtain overall covering numbers for the class of functions under
consideration.

Proposition 9 (Williamson, Smola, and Schölkopf (1998)) Let Φ(·) be the map
onto the eigensystem introduced by a Mercer kernel k with eigenvalues (λi)i. Denote by
Ck a constant depending on the kernel given by Ck := supi ‖ψi‖L∞, where ψi is the eigen-
function corresponding to λi and normalised such that ‖ψi‖L2 = 1. Let A be the diagonal
map

A : RN → R
N

A : (xj)j 7→ A(xj)j = RA(ajxj)j where aj ∈ R
(70)
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and RA := Ck‖(
√
λjaj)j‖`2. Then by construction A−1 maps Φ(X) into the unit ball,

centered at the origin if and only if (
√
λjaj)j ∈ `2.

The evaluation operator S plays a crucial role in dealing with entire classes of functions
(instead of just a single f(·)). It is defined as

SΦ(Z) : `dp(`2) → L∞(`d2)
SΦ(Z) : w 7→ (〈w1,Φ(Z)〉, . . . , 〈wd,Φ(Z)〉) . (71)

Furthermore we will need a bound on the operator norm of ‖SA−1Φ(Z)‖ in order to pro-
vide bounds on the entropy numbers of a concatenated operator constructed from it. By
application of the Cauchy-Schwartz inequality we obtain

‖SA−1Φ(Z)‖ = supz∈Z ‖(〈w1, A
−1Φ(z)〉, . . . , 〈wd, A−1Φ(z)〉)‖`d2

≤
(
supz∈Z ‖A−1Φ(z)‖

) (∑d
i=1 ‖wi‖2

)1/2

≤ max
(

1, d
1
2
− 1
p

) (72)

since we assumed w = (w1, . . . , wd) to be constrained to the ball U`dp(`2), (this means that
(‖w1‖`2 , . . . , ‖wd‖`2) ∈ U`dp). Before we proceed to the actual bounds for different classes
FΛ, we define a scaling operator Ad for the multi-output case as the d times tensor product
of A, i.e.

Ad : `dp(`2)→ `dp(`2) and Ad := A×A× · · · ×A︸ ︷︷ ︸
d-times

. (73)

A.3 Quadratic Regularizers

The final step, the computation of ε(FΛ), is achieved by computing the entropy numbers of
an operator mapping U`dp(`2) or similarly restricted sets into L∞(`d2).

Proposition 10 (Bounds for Quadratic Regularizers) Let k be a Mercer kernel, be Φ
the corresponding map into feature space, and let T := SΦ(Z)Λ where SΦ(Z) is given by (71)
and Λ ∈ R+. Let A be defined by (70) and Ad by (73). Then the entropy numbers of T
satisfy

ε(T ) ≤ Λε(Ad). (74)

Proof The proof relies on the fact that the following diagram commutes.

U`d2(`2) ⊂ `d2(`2) T //

Λ

��

L∞(`d2)

ΛU`d2(`2) ⊂ `d2(`2)

SΦ(Z)

77nnnnnnnnnnnnnnnnnnnnn

Ad
// `d2(`2)

SA−1Φ(Z)

OO
(75)
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That this is so can be see as follows:

ε(T ) = ε
(

ΛSΦ(Z)U`d2(`2)

)
(76)

= ε
(

ΛSA−1Φ(Z)AdU`d2(`2)

)
(77)

≤ Λ
∥∥S(A−1Φ(Z))

∥∥ ε(Ad) (78)
≤ Λε(Ad) (79)

Here we relied on the fact that ‖AΦ(z)‖ ≤ 1, the factorization property of entropy numbers
(proposition 8) and on the fact that by construction

(〈w1,Φ(z)〉, . . . , 〈wd,Φ(z)〉) =
(
〈Aw1, A

−1Φ(z)〉, . . . , 〈Awd, A−1Φ(z)〉
)
, (80)

which is just the explicit notation of Ad.

The price for dealing with vector-valued functions is a degeneracy in the eigenvalues of
Ad - scaling factors appear d times, instead of only once in the single output situation.
From a theorem for degenerate eigenvalues of scaling operators (Williamson et al., 1998)
one immediately obtains the following corollary.

Corollary 11 (Entropy numbers for the vector valued case) Let k be a Mercer ker-
nel, let A be defined by (70) and Ad by (73). Then there exists an operator Âd such that

ε(Âd: `2 → `2) ≤ inf
(as)s:

(√
λs
as

)
s
∈`2

sup
j∈N

6Ck
√
d

∥∥∥∥(√λsas

)
s

∥∥∥∥
`2

n
− 1
j·d (a1a2 · · · aj)

1
j . (81)

Note that the dimensionality of Z does not affect these considerations directly, however it
has to be taken into account implicitly by the decay of the eigenvalues (Williamson et al.,
1998) of the integral operator induced by k. The output dimensionality d, however, affects
the bound in two ways - firstly due to the increased operator norm (the

√
d term) for the

scaling operator Ad, and secondly due to the slower decay properties (each scaling factor ai
appears d times).

The same techniques that led to explicit bounds on entropy numbers of Williamson et al.
(1998) can also be applied here. As this is rather technical, we will only briefly sketch a
similar result for the case of principal manifolds.

Proposition 12 (Exponential-Polynomial decay) Suppose k is a Mercer kernel with
λj = O(e−αj

p
) for some α, p > 0. Then

| log εn(Ad: `2 → `2)| = O(log
p
p+1 n). (82)

Proof We use a series (aj)j = e−τ/2j
p
. Moreover there exists some β ∈ R+ such that

λj ≤ β2e−αj
p
. Now we may bound

√
d

∥∥∥∥∥
(√

λj
aj

)
j

∥∥∥∥∥
`2

=
√
dβ
(∑∞

j=0 e
(τ−α)jp

) 1
2 ≤
√
dβ
√

1 +
∫∞

0 e(τ−α)tpdt

=
√
dβ
√

1 + Γ(1/p)

p(α−τ)1/p

(83)
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and (a1a2 . . . aj)
1
j = exp

(
− 1

2j τ
j∑
s=1

sp

)
≤ e−τφj

p
for some positive number φ. For the

purpose of finding an upper bound, supj∈N can be replaced by supj∈[1,∞]. One computes

supj∈[1,∞] n
− 1
dj e−τφj

p
which is obtained for some j = φ′ log

1
p+1 n and some φ′ > 0. Resubsti-

tution yields the claimed rate of convergence for any τ ∈ (0, α) which proves the theorem.7

Possible kernels for which proposition 12 applies are Gaussian radial basis functions, i.e.,
k(x, x′) = exp(−‖x− x′‖2) (p = 2) and the “Damped Harmonic Oscillator”, i.e., k(x, x′) =

1
1+‖x−x′‖2 with p = 1. For more details on this issue see (Williamson et al., 1998). Finally
one has to invert (82) to obtain a bound on N(ε,FΛ, L∞(`d2)). We have:

log N
(
ε,FΛ, L∞(`d2)

)
= O(log

p+1
p (

1
ε

)). (84)

A similar result may be obtained for the case of polynomial decay in the eigenvalues of the
Mercer kernel. Following (Williamson et al., 1998) one gets:

Proposition 13 (Polynomial Decay (Williamson et al., 1998)) Let k be a Mercer
kernel with eigenvalues λj = O(j−(α+1)) for some α > 0. Then for any δ ∈ (0, α/2)
we have

εn(A: `2 → `2) = O
(

log−
α
2

+δ n
)
.

εn(A: `2 → `2) = Ω
(

log−
α
2 n
)
.

thus
log N(ε,FΛ, L∞(`d2)) = O(ε−2/α+δ). (85)

A.4 Linear Regularizers

Analogous application of the techniques described in the previous section will lead to bounds
on the entropy numbers of FΛ for linear regularizers. The additional complication in the
setting arises from the fact that now also the separate “components” w1, . . . , wd of w are
contained inside a scaled version of the box B rather than a scaled version of the unit ball.

However, by construction of A and Ad one obtains that Adw ∈ ΛU`d1(`2), since AB ∈ U`2 .
Hence we have

ε(FΛ) ≤ Λε(SΦ(Z)AdU`d1(`2)). (86)

Here we assumed SΦ(Z) to have U`d1(`2) as its domain of validity instead of U`d2(`2) as in the
previous section. All techniques, in particular the factorization of SΦ(Z) carries over and we
obtain

ε(FΛ) ≤ Λε((Ad)2). (87)

Hence FΛ for the linear regularizers behaves as if the rate of decay in the eigenvalues of k
was twice as fast as in the quadratic regularizer setting.

7. See (Williamson et al., 1998) for how explicit bounds can be obtained instead of just asymptotic rates.
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A.5 Linear Regularizers for Kernels with Lipschitz Properties

In the above we have only made use of information concerning the eigenvalues of the kernel
used. Interestingly we can do better if in addition the kernels satisfy a Lipschitz property,
i.e.,

|k(z, z′)− k(z, z′′)| ≤ ck‖z′ − z′′‖ for all z, z′, z′′ ∈ Z. (88)

In the latter case, also the resulting function f ∈ FΛ satisfies a Lipschitz property with
Lipschitz constant Λck. To see this, note that by construction

∑
i,j |αij | ≤ Λ.

Now suppose that z1, . . . , za (a ∈ N) form an ε-cover of Z with respect to the standard
metric. Suppose, moreover, that f1, . . . , fn (n ∈ N) are n elements of FΛ, whose restrictions
to {z1, . . . , za} form an ε′-cover of FΛ|{z1,...,za} in the `a∞ metric. Then, due to the Lipschitz
property, we have an ε′+ Λckε cover, consisting of f1, . . . , fn, in terms of the L∞(`d2) metric
on FΛ. In terms of entropy numbers, we thus arrive at

εn(FΛ, L∞(`d2)) ≤ Λckεa(Z) + εn (FΛ, `
a
∞) . (89)

This result holds for arbitrary a ∈ N. The rest of the proof strategy is as follows: bound the
entropy numbers of Z and FΛ with respect to the corresponding metrics. The first part is
straightforward via volume considerations, Z being a bounded subset of a finite-dimensional
space. The second part takes into account the entropy number properties of the kernel; it
is technically more demanding, but can be done in analogy to (Williamson et al., 1998).
Finally, one can exploit the freedom to choose a by optimizing over it (potentially by
numerical means) to obtain the tightest possible form of the bound.

Appendix B. Proofs

B.1 Proof of Proposition 4

Proof By the compactness assumption, f∗,memp, and f∗ as defined exist. We proceed similarly
to the proof of proposition 3, however use N(ε,FcΛ, d) and η

2 to bound R[f∗emp]

R[f∗,memp]−R[f∗] = R[f∗,memp]−Remp[f∗,memp] +Remp[f∗,memp]−R[f∗] (90)
≤ ε+R[fi]−Remp[fi] +Remp[f∗,memp]−R[f∗] (91)
≤ ε+ 2 max

f∈Vε∪{f∗}
|R[f ]−Remp[f ]| (92)

where Vε is the ε-cover of FΛ of size N(ε,F, L∞(`d2)), fi ∈ Vε and clearly Remp[f∗,memp] ≤
Remp[f∗]. Now apply Hoeffding’s inequality, the union bound and change η + ε into η to
prove the claim.

B.2 Proof of Proposition 6

Proof The proof uses a clever trick from (Kégl et al., 2000), however without the difficulty
of also having to bound the approximation error. Since by hypothesis FΛ is compact, we
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can use Proposition 4. We have

R[f∗emp]−R[f∗] =

∞∫
0

Pr
{
R[f∗,memp]−R[f∗] > η

}
dη

≤ u+ ε+ 2 (N (ε,FcΛ, d) + 1)

∞∫
u+ε

e−
m(η−ε)2

2ec dη

≤ u+ ε+
2ec
um

(N (ε,FcΛ, d) + 1) e−
mu2

2ec

≤

√
2ec log(N(ε,FcΛ,d)+1)

m + ε+
√

2ec
m log(N(ε,FcΛ,d)+1) . (93)

Here we used
∫∞
x exp(−t2/2)dt ≤ exp(−x2/2)/x in the second step. The third inequality

was derived by substituting

u =

√
2ec
m

log
(
N
(
ε,FcΛ, d

)
+ 1
)
. (94)

For part 1, set ε = m−1/2 and we obtain

R[f∗,memp]−R[f∗] = O
(
m−1/2 logα/2m

)
. (95)

For part 2, (93) implies (for some constants c, c′ > 0)

R[f∗,memp]−R[f∗] ≤ cε−α/2m−1/2 + ε+ c′εα/2m−1/2. (96)

The minimum is obtained for ε = c′′m−1/(α+2) for some c′′ > 0. Hence the overall term is
of order O(m−

1
α+2 ), as required.
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