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Suppose you are given some data set drawn from an underlying probabil-
ity distribution P and you want to estimate a “simple” subset S of input
space such that the probability that a test point drawn from P lies outside
of S equals some a priori specified value between 0 and 1.

We propose a method to approach this problem by trying to estimate a
function f that is positive on S and negative on the complement. The func-
tional form of f is given by a kernel expansion in terms of a potentially
small subset of the training data; it is regularized by controlling the length
of the weight vector in an associated feature space. The expansion coeffi-
cients are found by solving a quadratic programming problem, which we
do by carrying out sequential optimization over pairs of input patterns.
We also provide a theoretical analysis of the statistical performance of
our algorithm.

The algorithm is a natural extension of the support vector algorithm
to the case of unlabeled data.

1 Introduction

During recent years, a new set of kernel techniques for supervised learn-
ing has been developed (Vapnik, 1995; Schölkopf, Burges, & Smola, 1999).
Specifically, support vector (SV) algorithms for pattern recognition, regres-
sion estimation, and solution of inverse problems have received consider-
able attention.

There have been a few attempts to transfer the idea of using kernels to
compute inner products in feature spaces to the domain of unsupervised
learning. The problems in that domain are, however, less precisely speci-

Neural Computation 13, 1443–1471 (2001) c© 2001 Massachusetts Institute of Technology



1444 Bernhard Schölkopf et al.

fied. Generally, they can be characterized as estimating functions of the data,
which reveal something interesting about the underlying distributions. For
instance, kernel principal component analysis (PCA) can be characterized as
computing functions that on the training data produce unit variance outputs
while having minimum norm in feature space (Schölkopf, Smola, & Müller,
1999). Another kernel-based unsupervised learning technique, regularized
principal manifolds (Smola, Mika, Schölkopf, & Williamson, in press), com-
putes functions that give a mapping onto a lower-dimensional manifold
minimizing a regularized quantization error. Clustering algorithms are fur-
ther examples of unsupervised learning techniques that can be kernelized
(Schölkopf, Smola, & Müller, 1999).

An extreme point of view is that unsupervised learning is about estimat-
ing densities. Clearly, knowledge of the density of P would then allow us
to solve whatever problem can be solved on the basis of the data.

The work presented here addresses an easier problem: it proposes an
algorithm that computes a binary function that is supposed to capture re-
gions in input space where the probability density lives (its support), that
is, a function such that most of the data will live in the region where the
function is nonzero (Schölkopf, Williamson, Smola, Shawe-Taylor, 1999). In
doing so, it is in line with Vapnik’s principle never to solve a problem that
is more general than the one we actually need to solve. Moreover, it is also
applicable in cases where the density of the data’s distribution is not even
well defined, for example, if there are singular components.

After a review of some previous work in section 2, we propose SV al-
gorithms for the considered problem. section 4 gives details on the imple-
mentation of the optimization procedure, followed by theoretical results
characterizing the present approach. In section 6, we apply the algorithm
to artificial as well as real-world data. We conclude with a discussion.

2 Previous Work

In order to describe some previous work, it is convenient to introduce the
following definition of a (multidimensional) quantile function, introduced
by Einmal and Mason (1992). Let x1, . . . , x` be independently and identically
distributed (i.i.d.) random variables in a setX with distribution P. Let C be a
class of measurable subsets ofX , and let λ be a real-valued function defined
on C. The quantile function with respect to (P, λ,C) is

U(α) = inf{λ(C): P(C) ≥ α,C ∈ C} 0 < α ≤ 1.

In the special case where P is the empirical distribution (P`(C) := 1
`

∑`
i=1

1C(xi)), we obtain the empirical quantile function. We denote by C(α) and
C`(α) the (not necessarily unique) C ∈ C that attains the infimum (when it
is achievable). The most common choice of λ is Lebesgue measure, in which
case C(α) is the minimum volume C ∈ C that contains at least a fraction α
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of the probability mass. Estimators of the form C`(α) are called minimum
volume estimators.

Observe that for C being all Borel measurable sets, C(1) is the support
of the density p corresponding to P, assuming it exists. (Note that C(1) is
well defined even when p does not exist.) For smaller classes C, C(1) is the
minimum volume C ∈ C containing the support of p.

Turning to the case where α < 1, it seems the first work was reported
by Sager (1979) and then Hartigan (1987) who considered X = R2 with C
being the class of closed convex sets inX . (They actually considered density
contour clusters; cf. appendix A for a definition.) Nolan (1991) considered
higher dimensions with C being the class of ellipsoids. Tsybakov (1997)
has studied an estimator based on piecewise polynomial approximation of
C(α) and has shown it attains the asymptotically minimax rate for certain
classes of densities p. Polonik (1997) has studied the estimation of C(α)
by C`(α). He derived asymptotic rates of convergence in terms of various
measures of richness of C. He considered both VC classes and classes with
a log ε-covering number with bracketing of order O

(
ε−r

)
for r > 0. More

information on minimum volume estimators can be found in that work and
in appendix A.

A number of applications have been suggested for these techniques. They
include problems in medical diagnosis (Tarassenko, Hayton, Cerneaz, &
Brady, 1995), marketing (Ben-David & Lindenbaum, 1997), condition moni-
toring of machines (Devroye & Wise, 1980), estimating manufacturing yields
(Stoneking, 1999), econometrics and generalized nonlinear principal curves
(Tsybakov, 1997; Korostelev & Tsybakov, 1993), regression and spectral anal-
ysis (Polonik, 1997), tests for multimodality and clustering (Polonik, 1995b),
and others (Müller, 1992). Most of this work, in particular that with a the-
oretical slant, does not go all the way in devising practical algorithms that
work on high-dimensional real-world-problems. A notable exception to this
is the work of Tarassenko et al. (1995).

Polonik, (1995a) has shown how one can use estimators of C(α) to con-
struct density estimators. The point of doing this is that it allows one to
encode a range of prior assumptions about the true density p that would be
impossible to do within the traditional density estimation framework. He
has shown asymptotic consistency and rates of convergence for densities
belonging to VC-classes or with a known rate of growth of metric entropy
with bracketing.

Let us conclude this section with a short discussion of how the work
presented here relates to the above. This article describes an algorithm that
finds regions close to C(α). Our class C is defined implicitly via a kernel k
as the set of half-spaces in an SV feature space. We do not try to minimize
the volume of C in input space. Instead, we minimize an SV-style regular-
izer that, using a kernel, controls the smoothness of the estimated function
describing C. In terms of multidimensional quantiles, our approach can be
thought of as employing λ(Cw) = ‖w‖2, where Cw = {x: fw(x) ≥ ρ}. Here,



1446 Bernhard Schölkopf et al.

(w, ρ) are a weight vector and an offset parameterizing a hyperplane in the
feature space associated with the kernel.

The main contribution of this work is that we propose an algorithm that
has tractable computational complexity, even in high-dimensional cases.
Our theory, which uses tools very similar to those used by Polonik, gives
results that we expect will be of more use in a finite sample size setting.

3 Algorithms

We first introduce terminology and notation conventions. We consider train-
ing data

x1, . . . , x` ∈ X , (3.1)

where ` ∈ N is the number of observations andX is some set. For simplicity,
we think of it as a compact subset of RN. Let 8 be a feature map X → F,
that is, a map into an inner product space F such that the inner product in
the image of 8 can be computed by evaluating some simple kernel (Boser,
Guyon, & Vapnik, (1992), Vapnik, (1995); Schölkopf, Burges, et al., (1999))

k(x,y) = (8(x) ·8(y)), (3.2)

such as the gaussian kernel

k(x,y) = e−‖x−y‖2/c. (3.3)

Indices i and j are understood to range over 1, . . . , ` (in compact notation:
i, j ∈ [`]). Boldface Greek letters denote `-dimensional vectors whose com-
ponents are labeled using a normal typeface.

In the remainder of this section, we develop an algorithm that returns
a function f that takes the value +1 in a “small” region capturing most
of the data points and −1 elsewhere. Our strategy is to map the data into
the feature space corresponding to the kernel and to separate them from
the origin with maximum margin. For a new point x, the value f (x) is
determined by evaluating which side of the hyperplane it falls on in feature
space. Via the freedom to use different types of kernel functions, this simple
geometric picture corresponds to a variety of nonlinear estimators in input
space.

To separate the data set from the origin, we solve the following quadratic
program:

min
w∈F,ξ∈R`,ρ∈R

1
2‖w‖2 + 1

ν`

∑
i ξi − ρ (3.4)

subject to (w ·8(xi)) ≥ ρ − ξi, ξi ≥ 0. (3.5)

Here, ν ∈ (0, 1] is a parameter whose meaning will become clear later.



Estimating the Support of a High-Dimensional Distribution 1447

Since nonzero slack variables ξi are penalized in the objective function,
we can expect that if w and ρ solve this problem, then the decision function

f (x) = sgn((w ·8(x))− ρ) (3.6)

will be positive for most examples xi contained in the training set,1 while
the SV type regularization term ‖w‖ will still be small. The actual trade-off
between these two goals is controlled by ν.

Using multipliers αi,βi ≥ 0, we introduce a Lagrangian

L(w, ξ, ρ,α,β) = 1
2
‖w‖2 + 1

ν`

∑
i
ξi − ρ

−
∑

i
αi ((w ·8(xi))− ρ + ξi)−

∑
i
βiξi, (3.7)

and set the derivatives with respect to the primal variables w, ξ, ρ equal to
zero, yielding

w =
∑

i
αi8(xi), (3.8)

αi = 1
ν`
− βi ≤

1
ν`
,

∑
i
αi = 1. (3.9)

In equation 3.8, all patterns {xi: i ∈ [`], αi > 0} are called support vec-
tors. Together with equation 3.2, the SV expansion transforms the decision
function, equation 3.6 into a kernel expansion:

f (x) = sgn

(∑
i
αik(xi, x)− ρ

)
. (3.10)

Substituting equation 3.8 and equation 3.9 into L (see equation 3.7) and
using equation 3.2, we obtain the dual problem:

min
α

1
2

∑
ij

αiαjk(xi, xj) subject to 0 ≤ αi ≤ 1
ν`
,

∑
i
αi = 1. (3.11)

One can show that at the optimum, the two inequality constraints, equa-
tion 3.5, become equalities if αi andβi are nonzero, that is, if 0 < αi < 1/(ν`).
Therefore, we can recover ρ by exploiting that for any such αi, the corre-
sponding pattern xi satisfies

ρ = (w ·8(xi)) =
∑

j

αjk(xj, xi). (3.12)

1 We use the convention that sgn(z) equals 1 for z ≥ 0 and −1 otherwise.
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Note that if ν approaches 0, the upper boundaries on the Lagrange mul-
tipliers tend to infinity, that is, the second inequality constraint in equa-
tion 3.11 becomes void. The problem then resembles the corresponding
hard margin algorithm, since the penalization of errors becomes infinite, as
can be seen from the primal objective function (see equation 3.4). It is still a
feasible problem, since we have placed no restriction on the offset ρ, so it can
become a large negative number in order to satisfy equation 3.5. If we had
required ρ ≥ 0 from the start, we would have ended up with the constraint∑

i αi ≥ 1 instead of the corresponding equality constraint in equation 3.11,
and the multipliers αi could have diverged.

It is instructive to compare equation 3.11 to a Parzen windows estimator.
To this end, suppose we use a kernel that can be normalized as a density in
input space, such as the gaussian (see equation 3.3). If we use ν = 1, then the
two constraints only allow the solution α1 = · · · = α` = 1/`. Thus the kernel
expansion in equation 3.10 reduces to a Parzen windows estimate of the
underlying density. For ν < 1, the equality constraint in equation 3.11 still
ensures that the decision function is a thresholded density; however, in that
case, the density will be represented only by a subset of training examples
(the SVs)—those that are important for the decision (see equation 3.10) to
be taken. Section 5 will explain the precise meaning of ν.

To conclude this section, we note that one can also use balls to describe the
data in feature space, close in spirit to the algorithms of Schölkopf, Burges,
and Vapnik (1995), with hard boundaries, and Tax and Duin (1999), with
“soft margins.” Again, we try to put most of the data into a small ball by
solving, for ν ∈ (0, 1),

min
R∈R,ξ∈R`,c∈F

R2 + 1
ν`

∑
i
ξi

subject to ‖8(xi)− c‖2 ≤ R2 + ξi, ξi ≥ 0 for i ∈ [`]. (3.13)

This leads to the dual

min
α

∑
ij

αiαjk(xi, xj)−
∑

i
αik(xi, xi) (3.14)

subject to 0 ≤ αi ≤ 1
ν`
,
∑

i
αi = 1 (3.15)

and the solution

c =
∑

i
αi8(xi), (3.16)

corresponding to a decision function of the form

f (x) = sgn

R2 −
∑

ij

αiαjk(xi, xj)+ 2
∑

i
αik(xi, x)− k(x, x)

 . (3.17)
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Similar to the above, R2 is computed such that for any xi with 0 < αi <

1/(ν`), the argument of the sgn is zero.
For kernels k(x,y) that depend on only x − y, k(x, x) is constant. In this

case, the equality constraint implies that the linear term in the dual target
function is constant, and the problem, 3.14 and 3.15, turns out to be equiv-
alent to equation 3.11. It can be shown that the same holds true for the
decision function; hence, the two algorithms coincide in that case. This is
geometrically plausible. For constant k(x, x), all mapped patterns lie on a
sphere in feature space. Therefore, finding the smallest sphere (containing
the points) really amounts to finding the smallest segment of the sphere
that the data live on. The segment, however, can be found in a straightfor-
ward way by simply intersecting the data sphere with a hyperplane; the
hyperplane with maximum margin of separation to the origin will cut off
the smallest segment.

4 Optimization

Section 3 formulated quadratic programs (QPs) for computing regions that
capture a certain fraction of the data. These constrained optimization prob-
lems can be solved using an off-the-shelf QP package to compute the solu-
tion. They do, however, possess features that set them apart from generic
QPs, most notably the simplicity of the constraints. In this section, we de-
scribe an algorithm that takes advantage of these features and empirically
scales better to large data set sizes than a standard QP solver with time com-
plexity of order O

(
`3) (cf. Platt, 1999). The algorithm is a modified version

of SMO (sequential minimal optimization), an SV training algorithm origi-
nally proposed for classification (Platt, 1999), and subsequently adapted to
regression estimation (Smola & Schölkopf, in press).

The strategy of SMO is to break up the constrained minimization of
equation 3.11 into the smallest optimization steps possible. Due to the con-
straint on the sum of the dual variables, it is impossible to modify individual
variables separately without possibly violating the constraint. We therefore
resort to optimizing over pairs of variables.

4.1 Elementary Optimization Step. For instance, consider optimizing
over α1 and α2 with all other variables fixed. Using the shorthand Kij :=
k(xi, xj), equation 3.11 then reduces to

min
α1,α2

1
2

2∑
i,j=1

αiαjKij +
2∑

i=1

αiCi + C, (4.1)
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with Ci :=∑`
j=3 αjKij and C :=∑`

i,j=3 αiαjKij, subject to

0 ≤ α1, α2 ≤ 1
ν`
,

2∑
i=1

αi = 1, (4.2)

where 1: = 1−∑`
i=3 αi.

We discard C, which is independent of α1 and α2, and eliminate α1 to
obtain

min
α2

1
2
(1− α2)

2K11 + (1− α2)α2K12 + 1
2
α2

2K22

+(1− α2)C1 + α2C2, (4.3)

with the derivative

− (1− α2)K11 + (1− 2α2)K12 + α2K22 − C1 + C2. (4.4)

Setting this to zero and solving for α2, we get

α2 = 1(K11 − K12)+ C1 − C2

K11 + K22 − 2K12
. (4.5)

Once α2 is found, α1 can be recovered from α1 = 1 − α2. If the new point
(α1, α2) is outside of [0, 1/(ν`)], the constrained optimum is found by pro-
jecting α2 from equation 4.5 into the region allowed by the constraints, and
then recomputing α1.

The offset ρ is recomputed after every such step.
Additional insight can be obtained by rewriting equation 4.5 in terms of

the outputs of the kernel expansion on the examples x1 and x2 before the
optimization step. Let α∗1 , α

∗
2 denote the values of their Lagrange parameter

before the step. Then the corresponding outputs (cf. equation 3.10) read

Oi := K1iα
∗
1 + K2iα

∗
2 + Ci. (4.6)

Using the latter to eliminate the Ci, we end up with an update equation for
α2, which does not explicitly depend on α∗1 ,

α2 = α∗2 +
O1 −O2

K11 + K22 − 2K12
, (4.7)

which shows that the update is essentially the fraction of first and second
derivative of the objective function along the direction of ν-constraint sat-
isfaction.

Clearly, the same elementary optimization step can be applied to any
pair of two variables, not just α1 and α2. We next briefly describe how to do
the overall optimization.
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4.2 Initialization of the Algorithm. We start by setting a fraction ν of
all αi, randomly chosen, to 1/(ν`). If ν` is not an integer, then one of the
examples is set to a value in (0, 1/(ν`)) to ensure that

∑
i αi = 1. Moreover,

we set the initial ρ to max{Oi: i ∈ [`], αi > 0}.

4.3 Optimization Algorithm. We then select a first variable for the ele-
mentary optimization step in one of the two following ways. Here, we use
the shorthand SVnb for the indices of variables that are not at bound, that is,
SVnb := {i: i ∈ [`], 0 < αi < 1/(ν`)}. At the end, these correspond to points
that will sit exactly on the hyperplane and that will therefore have a strong
influence on its precise position.

We scan over the entire data set2 until we find a variable violating a
Karush-kuhn-Tucker (KKT) condition (Bertsekas, 1995), that is, a point such
that (Oi−ρ) ·αi > 0 or (ρ−Oi) · (1/(ν`)−αi) > 0. Once we have found one,
say αi, we pick αj according to

j = arg max
n∈SVnb

|Oi −On|. (4.8)

We repeat that step, but the scan is performed only over SVnb.
In practice, one scan of the first type is followed by multiple scans of

the second type, until there are no KKT violators in SVnb, whereupon the
optimization goes back to a single scan of the first type. If it finds no KKT
violators, the optimization terminates.

In unusual circumstances, the choice heuristic, equation 4.8, cannot make
positive progress. Therefore, a hierarchy of other choice heuristics is applied
to ensure positive progress. These other heuristics are the same as in the case
of pattern recognition (cf. Platt, 1999), and have been found to work well in
the experiments we report below.

In our experiments with SMO applied to distribution support estima-
tion, we have always found it to converge. However, to ensure convergence
even in rare pathological conditions, the algorithm can be modified slightly
(Keerthi, Shevade, Bhattacharyya, & Murthy, 1999).

We end this section by stating a trick that is of importance in practical
implementations. In practice, one has to use a nonzero accuracy tolerance
when checking whether two quantities are equal. In particular, comparisons
of this type are used in determining whether a point lies on the margin. Since
we want the final decision function to evaluate to 1 for points that lie on the
margin, we need to subtract this constant from the offset ρ at the end.

In the next section, it will be argued that subtracting something from ρ

is actually advisable also from a statistical point of view.

2 This scan can be accelerated by not checking patterns that are on the correct side of
the hyperplane by a large margin, using the method of Joachims (1999)
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5 Theory

We now analyze the algorithm theoretically, starting with the uniqueness of
the hyperplane (proposition 1). We then describe the connection to pattern
recognition (proposition 2), and show that the parameter ν characterizes
the fractions of SVs and outliers (proposition 3). Following that, we give a
robustness result for the soft margin (proposition 4) and finally we present a
theoretical result on the generalization error (theorem 1). Some of the proofs
are given in appendix B.

In this section, we use italic letters to denote the feature space images of
the corresponding patterns in input space, that is,

xi := 8(xi). (5.1)

Definition 1. A data set

x1, . . . , x` (5.2)

is called separable if there exists some w ∈ F such that (w · xi) > 0 for i ∈ [`].

If we use a gaussian kernel (see equation 3.3), then any data set x1, . . . , x`
is separable after it is mapped into feature space. To see this, note that
k(xi, xj) > 0 for all i, j; thus all inner products between mapped patterns are
positive, implying that all patterns lie inside the same orthant. Moreover,
since k(xi, xi) = 1 for all i, they all have unit length. Hence, they are separable
from the origin.

Proposition 1 (supporting hyperplane). If the data set, equation 5.2, is sepa-
rable, then there exists a unique supporting hyperplane with the properties that (1)
it separates all data from the origin, and (2) its distance to the origin is maximal
among all such hyperplanes. For any ρ > 0, it is given by

min
w∈F

1
2
‖w‖2 subject to (w · xi) ≥ ρ, i ∈ [`]. (5.3)

The following result elucidates the relationship between single-class clas-
sification and binary classification.

Proposition 2 (connection to pattern recognition). (i) Suppose (w, ρ)param-
eterizes the supporting hyperplane for the data in equation 5.2. Then (w, 0) param-
eterizes the optimal separating hyperplane for the labeled data set,

{(x1, 1), . . . , (x`, 1), (−x1,−1), . . . , (−x`,−1)}. (5.4)
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(ii) Suppose (w, 0) parameterizes the optimal separating hyperplane passing
through the origin for a labeled data set,{(

x1, y1
)
, . . . ,

(
x`, y`

)}
,

(
yi ∈ {±1} for i ∈ [`]

)
, (5.5)

aligned such that (w · xi) is positive for yi = 1. Suppose, moreover, that ρ/‖w‖ is
the margin of the optimal hyperplane. Then (w, ρ) parameterizes the supporting
hyperplane for the unlabeled data set,{

y1x1, . . . , y`x`
}
. (5.6)

Note that the relationship is similar for nonseparable problems. In that
case, margin errors in binary classification (points that are either on the
wrong side of the separating hyperplane or fall inside the margin) translate
into outliers in single-class classification, (points that fall on the wrong side
of the hyperplane). Proposition 2 then holds, cum grano salis, for the training
sets with margin errors and outliers, respectively, removed.

The utility of proposition 2 lies in the fact that it allows us to recycle certain
results proven for binary classification (Schölkopf, Smola, Williamson, &
Bartlett, 2000) for use in the single-class scenario. The following, explaining
the significance of the parameter ν, is such a case.

Proposition 3 ν-property. Assume the solution of equation 3.4 and 3.5 satisfies
ρ 6= 0. The following statements hold:

i. ν is an upper bound on the fraction of outliers, that is, training points outside
the estimated region.

ii. ν is a lower bound on the fraction of SVs.

iii. Suppose the data (see equation 5.2) were generated independently from a
distribution P(x), which does not contain discrete components. Suppose,
moreover, that the kernel is analytic and nonconstant. With probability 1,
asymptotically, ν equals both the fraction of SVs and the fraction of outliers.

Note that this result also applies to the soft margin ball algorithm of Tax
and Duin (1999), provided that it is stated in the ν-parameterization given
in section 3.

Proposition 4 (resistance). Local movements of outliers parallel to w do not
change the hyperplane.

Note that although the hyperplane does not change, its parameterization in
w and ρ does.

We now move on to the subject of generalization. Our goal is to bound the
probability that a novel point drawn from the same underlying distribution
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lies outside the estimated region. We present a “marginalized” analysis that
in fact provides a bound on the probability that a novel point lies outside
the region slightly larger than the estimated one.

Definition 2. Let f be a real-valued function on a space X . Fix θ ∈ R. For
x ∈ X let d(x, f, θ) = max{0, θ − f (x)}. Similarly for a training sequence X :=
(x1, . . . , x`), we define

D(X, f, θ) =
∑
x∈X

d(x, f, θ).

In the following, log denotes logarithms to base 2 and ln denotes natural
logarithms.

Theorem 1 (generalization error bound). Suppose we are given a set of ` ex-
amples X ∈ X ` generated i.i.d. from an unknown distribution P, which does not
contain discrete components. Suppose, moreover, that we solve the optimization
problem, equations 3.4 and 3.5 (or equivalently equation 3.11) and obtain a solu-
tion fw given explicitly by equation (3.10). Let Rw,ρ := {x: fw(x) ≥ ρ} denote the
induced decision region. With probability 1−δ over the draw of the random sample
X ∈ X `, for any γ > 0,

P
{
x′: x′ 6∈ Rw,ρ−γ

} ≤ 2
`

(
k+ log

`2

2δ

)
, (5.7)

where

k = c1 log
(
c2γ̂

2`
)

γ̂ 2 + 2D
γ̂

log
(

e
(
(2`− 1)γ̂

2D + 1
))
+ 2, (5.8)

c1 = 16c2, c2 = ln(2)/
(
4c2), c = 103, γ̂ = γ /‖w‖, D = D(X, fw,0, ρ) =

D(X, fw,ρ, 0), and ρ is given by equation (3.12).

The training sample X defines (via the algorithm) the decision region
Rw,ρ . We expect that new points generated according to P will lie in Rw,ρ .
The theorem gives a probabilistic guarantee that new points lie in the larger
region Rw,ρ−γ .

The parameter ν can be adjusted when running the algorithm to trade
off incorporating outliers versus minimizing the “size” of Rw,ρ . Adjusting
ν will change the value ofD. Note that sinceD is measured with respect to
ρ while the bound applies to ρ− γ , any point that is outside the region that
the bound applies to will make a contribution to D that is bounded away
from 0. Therefore, equation 5.7 does not imply that asymptotically, we will
always estimate the complete support.
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The parameter γ allows one to trade off the confidence with which one
wishes the assertion of the theorem to hold against the size of the predictive
region Rw,ρ−γ : one can see from equation 5.8 that k and hence the right-hand
side of equation 5.7 scales inversely with γ . In fact, it scales inversely with
γ̂ , that is, it increases with w. This justifies measuring the complexity of the
estimated region by the size of w, and minimizing ‖w‖2 in order to find a
region that will generalize well. In addition, the theorem suggests not to use
the offset ρ returned by the algorithm, which would correspond to γ = 0,
but a smaller value ρ − γ (with γ > 0).

We do not claim that using theorem 1 directly is a practical means to
determine the parameters ν and γ explicitly. It is loose in several ways. We
suspect c is too large by a factor of more than 50. Furthermore, no account
is taken of the smoothness of the kernel used. If that were done (by using
refined bounds on the covering numbers of the induced class of functions
as in Williamson, Smola, and Schölkopf (1998)), then the first term in equa-
tion 5.8 would increase much more slowly when decreasing γ . The fact that
the second term would not change indicates a different trade-off point. Nev-
ertheless, the theorem gives one some confidence that ν and γ are suitable
parameters to adjust.

6 Experiments

We apply the method to artificial and real-world data. Figure 1 displays
two-dimensional (2D) toy examples and shows how the parameter settings
influence the solution. Figure 2 shows a comparison to a Parzen windows
estimator on a 2D problem, along with a family of estimators that lie “in
between” the present one and the Parzen one.

Figure 3 shows a plot of the outputs (w ·8(x)) on training and test sets of
the U.S. Postal Service (USPS) database of handwritten digits. The database
contains 9298 digit images of size 16× 16 = 256; the last 2007 constitute the
test set. We used a gaussian kernel (see equation 3.3) that has the advan-
tage that the data are always separable from the origin in feature space (cf.
the comment following definition 1). For the kernel parameter c, we used
0.5 ·256. This value was chosen a priori, it is a common value for SVM classi-
fiers on that data set (cf. Schölkopf et al., 1995).3 We fed our algorithm with
the training instances of digit 0 only. Testing was done on both digit 0 and
all other digits. We present results for two values of ν, one large, one small;
for values in between, the results are qualitatively similar. In the first exper-
iment, we used ν = 50%, thus aiming for a description of “0-ness,” which

3 Hayton, Schölkopf, Tarassenko, and Anuzis (in press), use the following procedure
to determine a value of c. For small c, all training points will become SVs; the algorithm
just memorizes the data and will not generalize well. As c increases, the number of SVs
initially drops. As a simple heuristic, one can thus start with a small value of c and increase
it until the number of SVs does not decrease any further.
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ν, width c 0.5, 0.5 0.5, 0.5 0.1, 0.5 0.5, 0.1
frac. SVs/OLs 0.54, 0.43 0.59, 0.47 0.24, 0.03 0.65, 0.38
margin ρ/‖w‖ 0.84 0.70 0.62 0.48

Figure 1: (First two pictures) A single-class SVM applied to two toy problems;
ν = c = 0.5, domain: [−1, 1]2. In both cases, at least a fraction of ν of all examples
is in the estimated region (cf. Table 1). The large value of ν causes the additional
data points in the upper left corner to have almost no influence on the decision
function. For smaller values of ν, such as 0.1 (third picture) the points cannot
be ignored anymore. Alternatively, one can force the algorithm to take these
outliers (OLs) into account by changing the kernel width (see equation 3.3). In
the fourth picture, using c = 0.1, ν = 0.5, the data are effectively analyzed on
a different length scale, which leads the algorithm to consider the outliers as
meaningful points.

Figure 2: A single-class SVM applied to a toy problem; c = 0.5, domain: [−1, 1]2,
for various settings of the offset ρ. As discussed in section 3, ν = 1 yields a
Parzen windows expansion. However, to get a Parzen windows estimator of
the distribution’s support, we must in that case not use the offset returned
by the algorithm (which would allow all points to lie outside the estimated
region). Therefore, in this experiment, we adjusted the offset such that a fraction
ν ′ = 0.1 of patterns would lie outside. From left to right, we show the results for
ν ∈ {0.1, 0.2, 0.4, 1}. The right-most picture corresponds to the Parzen estimator
that uses all kernels; the other estimators use roughly a fraction of ν kernels.
Note that as a result of the averaging over all kernels, the Parzen windows
estimate does not model the shape of the distribution very well for the chosen
parameters.
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other    
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test     
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other    
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Figure 3: Experiments on the U.S. Postal Service OCR data set. Recognizer for
digit 0; output histogram for the exemplars of 0 in the training/test set, and on
test exemplars of other digits. The x-axis gives the output values, that is, the
argument of the sgn function in equation 3.10. For ν = 50% (top), we get 50%
SVs and 49% outliers (consistent with proposition 3 ), 44% true positive test
examples, and zero false positives from the “other” class. For ν = 5% (bottom),
we get 6% and 4% for SVs and outliers, respectively. In that case, the true positive
rate is improved to 91%, while the false-positive rate increases to 7%. The offset
ρ is marked in the graphs. Note, finally, that the plots show a Parzen windows
density estimate of the output histograms. In reality, many examples sit exactly
at the threshold value (the nonbound SVs). Since this peak is smoothed out by
the estimator, the fractions of outliers in the training set appear slightly larger
than it should be.
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6 9 2 8 1 8 8 6 5 3

2 3 8 7 0 3 0 8 2 7

Figure 4: Subset of 20 examples randomly drawn from the USPS test set, with
class labels.

captures only half of all zeros in the training set. As shown in Figure 3, this
leads to zero false positives (although the learning machine has not seen
any non-0’s during training, it correctly identifies all non-0’s as such), while
still recognizing 44% of the digits 0 in the test set. Higher recognition rates
can be achieved using smaller values of ν: for ν = 5%, we get 91% correct
recognition of digits 0 in the test set, with a fairly moderate false-positive
rate of 7%.

Although this experiment leads to encouraging results, it did not re-
ally address the actual task the algorithm was designed for. Therefore, we
next focused on a problem of novelty detection. Again, we used the USPS
set; however, this time we trained the algorithm on the test set and used
it to identify outliers. It is folklore in the community that the USPS test
set (see Figure 4) contains a number of patterns that are hard or impossi-
ble to classify, due to segmentation errors or mislabeling (Vapnik, 1995). In
this experiment, we augmented the input patterns by 10 extra dimensions
corresponding to the class labels of the digits. The rationale is that if we dis-
regarded the labels, there would be no hope to identify mislabeled patterns
as outliers. With the labels, the algorithm has the chance of identifying both
unusual patterns and usual patterns with unusual labels. Figure 5 shows
the 20 worst outliers for the USPS test set, respectively. Note that the algo-
rithm indeed extracts patterns that are very hard to assign to their respective
classes. In the experiment, we used the same kernel width as above and a
ν value of 5%. The latter was chosen roughly to reflect our expectations as
to how many “bad” patterns there are in the test set. Most good learning
algorithms achieve error rates of 3 to 5% on the USPS benchmark (for a list
of results, cf. Vapnik, 1995). Table 1 shows that ν lets us control the fraction
of outliers.

In the last experiment, we tested the run-time scaling behavior of the
proposed SMO solver, which is used for training the learning machine (see
Figure 6). It was found to depend on the value of ν used. For the small
values of ν that are typically used in outlier detection tasks, the algorithm
scales very well to larger data sets, with a dependency of training times on
the sample size, which is at most quadratic.

In addition to the experiments reported above, the algorithm has since
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9−513 1−507 0−458 1−377 7−282 2−216 3−200 9−186 5−179 0−162

3−153 6−143 6−128 0−123 7−117 5−93 0−78 7−58 6−52 3−48

Figure 5: Outliers identified by the proposed algorithm, ranked by the negative
output of the SVM (the argument of equation 3.10). The outputs (for convenience
in units of 10−5) are written underneath each image in italics; the (alleged) class
labels are given in boldface. Note that most of the examples are “difficult” in
that they are either atypical or even mislabeled.

Table 1: Experimental Results for Various Values of the Outlier Control Constant
ν, USPS Test Set, Size ` = 2007.

Training Time
ν Fraction of OLs Fraction of SVs (CPU sec)

1% 0.0% 10.0% 36
2% 0.0 10.0 39
3% 0.1 10.0 31
4% 0.6 10.1 40
5% 1.4 10.6 36
6% 1.8 11.2 33
7% 2.6 11.5 42
8% 4.1 12.0 53
9% 5.4 12.9 76

10% 6.2 13.7 65
20% 16.9 22.6 193
30% 27.5 31.8 269
40% 37.1 41.7 685
50% 47.4 51.2 1284
60% 58.2 61.0 1150
70% 68.3 70.7 1512
80% 78.5 80.5 2206
90% 89.4 90.1 2349

Notes: ν bounds the fractions of outliers and support vec-
tors from above and below, respectively (cf. Proposition 3).
As we are not in the asymptotic regime, there is some slack
in the bounds; nevertheless, ν can be used to control the
above fractions. Note, moreover, that training times (CPU
time in seconds on a Pentium II running at 450 MHz) in-
crease as ν approaches 1. This is related to the fact that al-
most all Lagrange multipliers will be at the upper bound
in that case (cf. section 4). The system used in the outlier
detection experiments is shown in boldface.



1460 Bernhard Schölkopf et al.

Figure 6: Training times versus data set sizes ` (both axes depict logs at base 2;
CPU time in seconds on a Pentium II running at 450 MHz, training on subsets
of the USPS test set); c = 0.5 · 256. As in Table 1, it can be seen that larger values
of ν generally lead to longer training times (note that the plots use different y-
axis ranges). However, they also differ in their scaling with the sample size. The
exponents can be directly read off from the slope of the graphs, as they are plotted
in log scale with equal axis spacing. For small values of ν (≤ 5%), the training
times were approximately linear in the training set size. The scaling gets worse
as ν increases. For large values of ν, training times are roughly proportional
to the sample size raised to the power of 2.5 (right plot). The results should
be taken only as an indication of what is going on; they were obtained using
fairly small training sets, the largest being 2007, the size of the USPS test set.
As a consequence, they are fairly noisy and refer only to the examined regime.
Encouragingly, the scaling is better than the cubic one that one would expect
when solving the optimization problem using all patterns at once (cf. section 4).
Moreover, for small values of ν, that is, those typically used in outlier detection
(in Figure 5, we used ν = 5%), our algorithm was particularly efficient.

been applied in several other domains, such as the modeling of parameter
regimes for the control of walking robots (Still & Schölkopf, in press), and
condition monitoring of jet engines (Hayton et al., in press).

7 Discussion

One could view this work as an attempt to provide a new algorithm in
line with Vapnik’s principle never to solve a problem that is more general
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than the one that one is actually interested in. For example, in situations
where one is interested only in detecting novelty, it is not always necessary
to estimate a full density model of the data. Indeed, density estimation is
more difficult than what we are doing, in several respects.

Mathematically, a density will exist only if the underlying probability
measure possesses an absolutely continuous distribution function. How-
ever, the general problem of estimating the measure for a large class of sets,
say, the sets measureable in Borel’s sense, is not solvable (for a discussion,
see Vapnik, 1998). Therefore we need to restrict ourselves to making a state-
ment about the measure of some sets. Given a small class of sets, the simplest
estimator that accomplishes this task is the empirical measure, which sim-
ply looks at how many training points fall into the region of interest. Our
algorithm does the opposite. It starts with the number of training points
that are supposed to fall into the region and then estimates a region with
the desired property. Often there will be many such regions. The solution
becomes unique only by applying a regularizer, which in our case enforces
that the region be small in a feature space associated with the kernel.

Therefore, we must keep in mind that the measure of smallness in this
sense depends on the kernel used, in a way that is no different from any
other method that regularizes in a feature space. A similar problem, how-
ever, appears in density estimation already when done in input space. Let
p denote a density on X . If we perform a (nonlinear) coordinate transfor-
mation in the input domain X , then the density values will change; loosely
speaking, what remains constant is p(x) · dx, while dx is transformed too.
When directly estimating the probability measure of regions, we are not
faced with this problem, as the regions automatically change accordingly.

An attractive property of the measure of smallness that we chose to use is
that it can also be placed in the context of regularization theory, leading to an
interpretation of the solution as maximally smooth in a sense that depends
on the specific kernel used. More specifically, let us assume that k is Green’s
function of P∗P for an operator P mapping into some inner product space
(Smola, Schölkopf, & Müller, 1998; Girosi, 1998), and take a look at the dual
objective function that we minimize,∑

i,j

αiαjk
(
xi, xj

) =∑
i,j

αiαj
(
k (xi, ·) · δxj (·)

)
=
∑

i,j

αiαj
(
k (xi, ·) ·

(
P∗Pk

) (
xj, ·

))
=
∑
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= ‖Pf‖2,
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using f (x) = ∑
i αik(xi, x). The regularization operators of common ker-

nels can be shown to correspond to derivative operators (Poggio & Girosi,
1990); therefore, minimizing the dual objective function corresponds to max-
imizing the smoothness of the function f (which is, up to a thresholding
operation, the function we estimate). This, in turn, is related to a prior
p( f ) ∼ e−‖Pf‖2 on the function space.

Interestingly, as the minimization of the dual objective function also cor-
responds to a maximization of the margin in feature space, an equivalent
interpretation is in terms of a prior on the distribution of the unknown other
class (the “novel” class in a novelty detection problem); trying to separate
the data from the origin amounts to assuming that the novel examples lie
around the origin.

The main inspiration for our approach stems from the earliest work of
Vapnik and collaborators. In 1962, they proposed an algorithm for charac-
terizing a set of unlabeled data points by separating it from the origin using
a hyperplane (Vapnik & Lerner, 1963; Vapnik & Chervonenkis, 1974). How-
ever, they quickly moved on to two-class classification problems, in terms
of both algorithms and the theoretical development of statistical learning
theory, which originated in those days.

From an algorithmic point of view, we can identify two shortcomings of
the original approach, which may have caused research in this direction to
stop for more than three decades. Firstly, the original algorithm in Vapnik
and Chervonenkis (1974) was limited to linear decision rules in input space;
second, there was no way of dealing with outliers. In conjunction, these
restrictions are indeed severe; a generic data set need not be separable from
the origin by a hyperplane in input space.

The two modifications that we have incorporated dispose of these short-
comings. First, the kernel trick allows for a much larger class of functions
by nonlinearly mapping into a high-dimensional feature space and thereby
increases the chances of a separation from the origin being possible. In par-
ticular, using a gaussian kernel (see equation 3.3), such a separation is always
possible, as shown in section 5. The second modification directly allows for
the possibility of outliers. We have incorporated this softness of the decision
rule using the ν-trick (Schölkopf, Platt, & Smola, 2000) and thus obtained a
direct handle on the fraction of outliers.

We believe that our approach, proposing a concrete algorithm with well-
behaved computational complexity (convex quadratic programming) for a
problem that so far has mainly been studied from a theoretical point of view,
has abundant practical applications. To turn the algorithm into an easy-to-
use black-box method for practitioners, questions like the selection of kernel
parameters (such as the width of a gaussian kernel) have to be tackled. It is
our hope that theoretical results as the one we have briefly outlined and the
one of Vapnik and Chapelle (2000) will provide a solid foundation for this
formidable task. This, alongside with algorithmic extensions such as the
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possibility of taking into account information about the “abnormal” class
(Schölkopf, Platt, & Smola, 2000), is subject of current research.

Appendix A: Supplementary Material for Section 2

A.1 Estimating the Support of a Density. The problem of estimating
C(1) appears to have first been studied by Geffroy (1964) who considered
X = R2 with piecewise constant estimators. There have been a number of
works studying a natural nonparametric estimator of C(1) (e.g., Chevalier,
1976; Devroye & Wise, 1980; see Gayraud, 1997 for further references). The
nonparametric estimator is simply

Ĉ` =
⋃̀
i=1

B(xi, ε`), (A.1)

where B(x, ε) is the l2(X ) ball of radius ε centered at x and (ε`)` is an appro-
priately chosen decreasing sequence. Devroye & Wise (1980) showed the
asymptotic consistency of (A.1) with respect to the symmetric difference
between C(1) and Ĉ`. Cuevas and Fraiman (1997) studied the asymptotic
consistency of a plug-in estimator of C(1): Ĉplug-in = {x: p̂`(x) > 0

}
where

p̂` is a kernel density estimator. In order to avoid problems with Ĉplug-in,
they analyzed

Ĉplug-in
β := {

x: p̂`(x) > β`
}
, where (β`)` is an appropriately chosen se-

quence. Clearly for a given distribution, α is related to β, but this connection
cannot be readily exploited by this type of estimator.

The most recent work relating to the estimation of C(1) is by Gayraud
(1997), who has made an asymptotic minimax study of estimators of func-
tionals of C(1). Two examples are vol C(1) or the center of C(1). (See also
Korostelev & Tsybakov, 1993, chap. 8).

A.2 Estimating High Probability Regions (α 6= 1). Polonik (1995b) has
studied the use of the “excess mass approach” (Müller, 1992) to construct
an estimator of “generalized α-clusters” related to C(α).

Define the excess mass over C at level α as

EC(α) = sup {Hα(C): C ∈ C} ,
where Hα(·) = (P− αλ)(·) and again λ denotes Lebesgue measure. Any set
0C(α) ∈ C such that

EC(α) = Hα (0C(α))

is called a generalized α-cluster in C. Replace P by P` in these definitions to
obtain their empirical counterparts E`,C(α) and 0`,C(α). In other words, his
estimator is

0`,C(α) = arg max {(P` − αλ)(C): C ∈ C} ,
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where the max is not necessarily unique. Now while 0`,C(α) is clearly dif-
ferent from C`(α), it is related to it in that it attempts to find small regions
with as much excess mass (which is similar to finding small regions with a
given amount of probability mass). Actually 0`,C(α) is more closely related
to the determination of density contour clusters at level α:

cp(α) := {x: p(x) ≥ α}.
Simultaneously, and independently, Ben-David & Lindenbaum (1997)

studied the problem of estimating cp(α). They too made use of VC classes
but stated their results in a stronger form, which is meaningful for finite
sample sizes.

Finally we point out a curious connection between minimum volume
sets of a distribution and its differential entropy in the case that X is one-
dimensional. Suppose X is a one-dimensional random variable with density
p. Let S = C(1) be the support of p and define the differential entropy of X
by h(X) = − ∫S p(x) log p(x)dx. For ε > 0 and ` ∈ N, define the typical set
A(`)
ε with respect to p by

A(`)
ε =

{
(x1, . . . , x`) ∈ S`: | − 1

`
log p(x1, . . . , x`)− h(X)| ≤ ε} ,

where p(x1, . . . , x`) =
∏`

i=1 p(xi). If (a`)` and (b`)` are sequences, the notation
a`

.= b` means lim`→∞ 1
`

log a`
b`
= 0. Cover and Thomas, (1991) show that

for all ε, δ < 1
2 , then

vol A(`)
ε

.= vol C`(1− δ) .= 2`h.

They point out that this result “indicates that the volume of the smallest
set that contains most of the probability is approximately 2`h. This is a `-
dimensional volume, so the corresponding side length is (2`h)1/` = 2h. This
provides an interpretation of differential entropy” (p. 227).

Appendix B: Proofs of Section 5

Proof. (Proposition 1). Due to the separability, the convex hull of the
data does not contain the origin. The existence and uniqueness of the hy-
perplane then follow from the supporting hyperplane theorem (Bertsekas,
1995).

Moreover, separability implies that there actually exists some ρ > 0
and w ∈ F such that (w · xi) ≥ ρ for i ∈ [`] (by rescaling w, this can
be seen to work for arbitrarily large ρ). The distance of the hyperplane
{z ∈ F : (w · z) = ρ} to the origin is ρ/‖w‖. Therefore the optimal hyperplane
is obtained by minimizing ‖w‖ subject to these constraints, that is, by the
solution of equation 5.3.

Proof. (Proposition 2). Ad (i). By construction, the separation of equa-
tion 5.6 is a point-symmetric problem. Hence, the optimal separating hyper-
plane passes through the origin, for, if it did not, we could obtain another
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optimal separating hyperplane by reflecting the first one with respect to
the origin this would contradict the uniqueness of the optimal separating
hyperplane (Vapnik, 1995).

Next, observe that (−w, ρ) parameterizes the supporting hyperplane for
the data set reflected through the origin and that it is parallel to the one
given by (w, ρ). This provides an optimal separation of the two sets, with
distance 2ρ, and a separating hyperplane (w, 0).

Ad (ii). By assumption, w is the shortest vector satisfying yi(w · xi) ≥ ρ
(note that the offset is 0). Hence, equivalently, it is also the shortest vector
satisfying (w · yixi) ≥ ρ for i ∈ [`].

Proof. Sketch (Proposition 3). When changing ρ, the term
∑

i ξi in equa-
tion 3.4 will change proportionally to the number of points that have a
nonzero ξi (the outliers), plus, when changing ρ in the positive direction,
the number of points that are just about to get a nonzero ρ, that is, which sit
on the hyperplane (the SVs). At the optimum of equation 3.4, we therefore
have parts i and ii. Part iii can be proven by a uniform convergence argument
showing that since the covering numbers of kernel expansions regularized
by a norm in some feature space are well behaved, the fraction of points
that lie exactly on the hyperplane is asymptotically negligible (Schölkopf,
Smola, et al., 2000).

Proof. (Proposition 4). Suppose xo is an outlier, that is, ξo > 0, hence
by the KKT conditions (Bertsekas, 1995) αo = 1/(ν`). Transforming it into
x′o := xo+ δ ·w, where |δ| < ξo/‖w‖, leads to a slack that is still nonzero, that
is, ξ ′o > 0; hence, we still have αo = 1/(ν`). Therefore,α′ = α is still feasible,
as is the primal solution (w′, ξ′, ρ′). Here, we use ξ ′i = (1+ δ · αo)ξi for i 6= o,
w′ = (1+ δ · αo)w, and ρ ′ as computed from equation 3.12. Finally, the KKT
conditions are still satisfied, as still α′o = 1/(ν`). Thus (Bertsekas, 1995),α is
still the optimal solution.

We now move on to the proof of theorem 1. We start by introducing a
common tool for measuring the capacity of a class F of functions that map
X to R.

Definition 3. Let (X, d) be a pseudometric space, and let A be a subset of X and
ε > 0. A set U ⊆ X is an ε-cover for A if, for every a ∈ A, there exists u ∈ U
such that d(a,u) ≤ ε. The ε-covering number of A, N (ε,A, d), is the minimal
cardinality of an ε-cover for A (if there is no such finite cover, then it is defined to
be∞).

Note that we have used “less than or equal to” in the definition of a cover.
This is somewhat unconventional, but will not change the bounds we use.
It is, however, technically useful in the proofs.
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The idea is that U should be finite but approximate all of A with respect
to the pseudometric d. We will use the l∞ norm over a finite sample X =
(x1, . . . , x`) for the pseudonorm on F ,

‖ f‖lX∞ := max
x∈X
| f (x)|. (B.2)

(The (pseudo)-norm induces a (pseudo)-metric in the usual way.) Suppose
X is a compact subset of X. Let N (ε,F , `) = maxX∈X ` N (ε,F , lX∞) (the
maximum exists by definition of the covering number and compactness
of X ).

We require a technical restriction on the function class, referred to as
sturdiness, which is satisfied by standard classes such as kernel-based linear
function classes and neural networks with bounded weights (see Shawe-
Taylor & Wiliamson, 1999, and Schölkopf, Platt, Shawe-Taylor, Smola, &
Williamson, 1999, for further details.)

Below, the notation dte denotes the smallest integer ≥ t. Several of the
results stated claim that some event occurs with probability 1 − δ. In all
cases, 0 < δ < 1 is understood, and δ is presumed in fact to be small.

Theorem 2. Consider any distribution P onX and a sturdy real-valued function
classF onX . Suppose x1, . . . , x` are generated i.i.d. from P. Then with probability
1− δ over such an `-sample, for any f ∈ F and for any γ > 0,

P
{

x : f (x) < min
i∈[`]

f (xi)− 2γ
}
≤ ε(`, k, δ) := 2

`
(k+ log `

δ
),

where k = dlogN (γ,F , 2`)e.

The proof, which is given in Schölkopf, Platt, et al. (1999), uses standard
techniques of VC theory: symmetrization via a ghost sample, application of
the union bound, and a permutation argument.

Although theorem 2 provides the basis of our analysis, it suffers from
a weakness that a single, perhaps unusual point may significantly reduce
the minimum mini∈[`] f (xi). We therefore now consider a technique that will
enable us to ignore some of the smallest values in the set { f (xi): xi ∈ X} at
a corresponding cost to the complexity of the function class. The technique
was originally considered for analyzing soft margin classification in Shawe-
Taylor and Cristianini (1999), but we will adapt it for the unsupervised
problem we are considering here.

We will remove minimal points by increasing their output values. This
corresponds to having a nonzero slack variable ξi in the algorithm, where
we use the class of linear functions in feature space in the application of the
theorem. There are well-known bounds for the log covering numbers of this
class. We measure the increase in terms of D (definition 2).
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Let X be an inner product space. The following definition introduces a
new inner product space based on X .

Definition 4. Let L(X ) be the set of real valued nonnegative functions f on X
with support supp( f ) countable, that is, functions in L(X ) are nonzero for at most
countably many points. We define the inner product of two functions f, g ∈ L(X ),
by

f · g =
∑

x∈supp( f )

f (x)g(x).

The 1-norm on L(X ) is defined by ‖ f‖1 =
∑

x∈supp( f ) f (x) and let LB(X ) := { f ∈
L(X ): ‖ f‖1 ≤ B}. Now we define an embedding of X into the inner product space
X × L(X ) via τ : X → X × L(X ), τ : x 7→ (x, δx), where δx ∈ L(X ) is defined
by

δx(y) =
{

1, if y = x;
0, otherwise.

For a function f ∈ F , a set of training examples X, and θ ∈ R, we define the
function gf ∈ L(X ) by

gf (y) = gX,θ
f (y) =

∑
x∈X

d(x, f, θ)δx(y).

Theorem 3. Fix B > 0. Consider a fixed but unknown probability distribution
P which has no atomic components on the input spaceX and a sturdy class of real-
valued functions F . Then with probability 1 − δ over randomly drawn training
sequences X of size `, for all γ > 0 and any f ∈ F and any θ such that gf = gX,θ

f ∈
LB(X ), (i.e.,

∑
x∈X d(x, f, θ) ≤ B),

P
{
x: f (x) < θ − 2γ

} ≤ 2
`
(k+ log `

δ
), (B.3)

where k = ⌈logN (γ /2,F , 2`)+ logN (γ /2,LB(X ), 2`)
⌉
.

The assumption on P can in fact be weakened to require only that there is
no point x ∈ X satisfying f (x) < θ − 2γ that has discrete probability.) The
proof is given in Schölkopf, Platt, et al. (1999).

The theorem bounds the probability of a new example falling in the region
for which f (x) has value less than θ − 2γ , this being the complement of the
estimate for the support of the distribution. In the algorithm described in
this article, one would use the hyperplane shifted by 2γ toward the origin
to define the region. Note that there is no restriction placed on the class of
functions, though these functions could be probability density functions.

The result shows that we can bound the probability of points falling out-
side the region of estimated support by a quantity involving the ratio of the
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log covering numbers (which can be bounded by the fat-shattering dimen-
sion at scale proportional to γ ) and the number of training examples, plus a
factor involving the 1-norm of the slack variables. The result is stronger than
related results given by Ben-David and Lindenbaum, (1997): their bound in-
volves the square root of the ratio of the Pollard dimension (the fat-shattering
dimension when γ tends to 0) and the number of training examples.

In the specific situation considered in this article, where the choice of
function class is the class of linear functions in a kernel-defined feature space,
one can give a more practical expression for the quantity k in theorem 3.
To this end, we use a result of Williamson, Smola, and Schölkopf (2000)
to bound logN (γ /2,F , 2`), and a result of Shawe-Taylor and Cristianini
(2000) to bound logN (γ /2,LB(X ), 2`). We apply theorem 3, stratifying over
possible values of B. The proof is given in Schölkopf, Platt, et al. (1999) and
leads to theorem 1 stated in the main part of this article.
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