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Abstract

In kernel based methods such as Regular-
ization Networks large datasets pose signifi-
cant problems since the number of basis func-
tions required for an optimal solution equals
the number of samples. We present a sparse
greedy approximation technique to construct
a compressed representation of the design
matrix. Experimental results are given and
connections to Kernel-PCA, Sparse Kernel
Feature Analysis, and Matching Pursuit are
pointed out.

1. Introduction

Many recent advances in machine learning such as
Support Vector Machines [Vapnik, 1995], Regulariza-
tion Networks [Girosi et al., 1995], or Gaussian Pro-
cesses [Williams, 1998] are based on kernel methods.
Given an m-sample {(z1,y1),.-.,(Zm,Ym)} of pat-
terns z; € X and target values y; € Y these algorithms
minimize the regularized risk functional
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Here H denotes a reproducing kernel Hilbert space
(RKHS) [Aronszajn, 1950], || - ||3 the correspond-
ing norm, A > 0 a regularization constant, and c :
X XY xY — R a cost function penalizing the devia-
tion between f(z;) and y; at location z;.

1.1 Representer Theorem

Kimeldorf and Wahba [1971] and later Cox and
O’Sullivan [1990] proved the following which charac-
terizes the optimal solution of (1).

Theorem 1 (Representer Theorem)
Denote by k : X x X — Y the kernel of the corre-
sponding RKHS H. Then the minimizer of (1) can be

described by (the x; are the training patterns):
r) = Z a;k(z;, ) (2)
i=1

Thus rather than dealing with a (possibly) infinite di-
mensional Hilbert space #H all one has to do is find a
finite set of parameters o; to obtain an optimal solu-
tion in #. This finding led to successful algorithms
such as the ones described above.

1.2 Sparsity

While (2) is easy to deal with if m is not too large (the
memory requirements for storing the symmetric posi-
tive semidefinite matrix K;; := k(x;, z;) are quadratic
in m), large datasets pose a serious problem. Hence
one has to find means to limit the number of nonzero
coefficients o; occuring in expansion (2). Support Vec-
tor Machines address this problem by introducing a
cost function ¢(z, y, f(z)) that eliminates the contribu-
tion of basis functions k(z;, ) corresponding to points
which have a large margin (classification) [Scholkopf
et al., 1995] or are close to their target values[Vapnik
et al., 1997]. However, if the data is noisy the improve-
ment can be negligible [Smola, 1998].

Another approach is to add (yet another) regulariza-
tion term penalizing the ¢; norm of the expansion coef-
ficients [Mangasarian, 1965, Chen et al., 1999, Girosi,
1998]. However, this does not alleviate the prob-
lem that we have to compute (and invert) the matrix
K;; == k(miamj) for 4,5 € [m] ([m] = {17 7m})
Since the latter scales with O(m?®) (except for spe-
cial matrices) this approach is not suitable for large
datasets either.

1.3 Specific Assumptions

Unless specified otherwise we assume that

@y, f(z)) = 3 (v~ f(2))" 3)



This is done for the simplicity of the presentation and
Section 6 will show how under different conditions on ¢
the proposed techniques could be applied, too. Using
Theorem 1, (3), and the fact that in RKHS

<k(.’L‘i,.’L‘),k($j,.’L‘)>H = k(miamj) (4)

the problem (1) becomes [Girosi et al., 1995]
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The minimum of (5) is given by
a=(K'K+mAK) 'Ky = (K +mA1)"'y (6)

if K = K (which is the case for reproducing ker-
nel Hilbert spaces) and K is of full rank. If, how-
ever, we pick only a subset of basis functions, say
I = {i1...in} C [m], the optimization problem can
be stated as follows

. 1 mn 2 A T grnn
min Riggla] = 5 ly — K™"al” + Sa’ K™a.
Here a € R*, K™ is the n X n submatrix of K given
by K;‘j" = K,'jij, and K]T’;," = Kjij,. The minimum
can be found by

a = (KmnTKmn_i_mAKnn)flenTy (7)

which is only an O(m - n + n®) rather than an O(m?)
operation.

1.4 Matrix Approximations

This leads us to a third method how to solve this
dilemma. The idea is to find a good subset I before-
hand. One has to bear in mind that such a subset is
not optimal in terms of Theorem 1 any more. However,
if one manages to eliminate irrelevant basis functions
the solution on the subset (of basis functions) may be
close to optimal. This is the case in particular, if the
spectrum of of the design matrix K decays rapidly:
hence there exists a subspace S such that K = KPg
is similar to K, namely the space corresponding to the
first m' largest singular values of K (Pg denotes the
projector on the subspace S).

This paper studies several ways of finding matrices K
of lower rank (and other numerical desirable proper-
ties like sparsity) such that the norm of the residual
matrix K — K is minimized. Conventionally this is the
Frobenius norm

m

1K — K o == > (K — K)F. (8)

3,j=1

It is easy to check that the Frobenius norm is the 2-
norm of the the singular values, since for any matrix X
with singular value decomposition X = LY R we have

[ X ||20r, = tr(X T X) = tr(R"ELTLER) = tr(22)(. |
9

Therefore minimization of (8) also minimizes the con-
ventional operator norm (the largest singular value)

|K — K|z := max [|(K — K)z||a. (10)
llzll2<1

Likewise, in some cases when we deal with function
spaces, rather than the entries of K explicitly, we
will try to minimize the trace of a symmetric positive
semidefinite matrix of residuals K — K. By definition,
this is then equivalent to minimizing the 1-norm of the
eigenvalues of that matrix.

See Section 6.4 for further motivation why good ap-
proximations K exist if the spectrum of K is rapidly
decaying. In particular we will look for ways of finding
such subsets I with computational cost not larger than
O(m?), and, if possible O(mn). Moreover, we seek an
algorithm that has smaller memory requirements than
O(m?) since storage of the complete design matrix K;;
may be out of question on large datasets.

1.5 Outline

The rest of the paper is organized as follows. Section 2
describes the basic approximation algorithm. Section
4 deals with ways of finding a good basis function to
add to the subset of functions under consideration, and
Section 3 describes orthogonalization procedures once
a particular set of functions has been selected. Exper-
imental results are given in Section 5. Finally, Section
6 points out applications of the basic theory to other
machine learning problems. Relations to other algo-
rithms (in particular to Sparse Kernel Feature Analy-
sis [Smola et al., 1999]) are given in Section 7.

2. Greedy Approximation Algorithms

In the following denote by K; the columns of the ma-
trix K, and by k; € H the basis functions k(z;, ) gen-
erating the columns by K;; = k;(x;). Moreover denote
by T an n X m matrix containing expansion coefficients
for an approximation of the columns of K, i.e.

n
K=Y K;Tj. (11)
j=1
Thus K; — K; are the residuals of the approximation.
A sensible requirement for any such expansion is that



T, = dij, or, in other words, that any K; in the sub-
set of selected basis functions is described by itself.
Moreover we would like to find the subset I and the
remaining coefficients T;; such that the approximation
(11) is good.!

2.1 A Matching Pursuit Variant

Finding an optimal subset I is a combinatorial prob-
lem since there exist (::L) possibilities. A possible strat-
egy to tackle this problem is to use a greedy iterative
algorithm much in the spirit of [Mallat and Zhang,
1993, Natarajan, 1995, Scholkopf et al., 1999], however
with the difference that we are not approximating one
single target function but a matrix K i.e. m columns
(or alternatively m basis functions).

Hence we proceed as follows: (1) find the index i from
the list of possible candidates [m]\I of the basis func-
tions / columns that approximates the columns K; /
basis functions k; best. (2) find a decomposition of K;
into K; involving K; and Ki,...,K; ,ie. find suit-
able matrix elements T};. (3) use the residuals K; — K;
as the new set of basis functions and repeat.

2.2 A Probabilistic Speedup

Unfortunately, step (1) may be too expensive to carry
out explicitly. Even if the computational cost for as-
sessing the improvement by using column K; was only
O(m) (which is very likely, since all other basis func-
tions should be considered), the total cost would al-
ready be O(m?). This is more than what we want to
accept in most cases.

The trick is to consider only a random subset M of
fixed size, say k, and pick the best basis function 7 from
this set rather than performing an exhaustive search
over all possible indices ¢ € [m]\I. This is a feasible
strategy due to the following lemma:

Lemma 2 (Maximum of Random Variables)
Denote by &1,... ,&n identically distributed indepen-
dent random wvariables with the common cumulative
distribution function F(&;). Then the cumulative
distribution function of £ := maxX;c[, & is (F/(€))™.

In particular, for the uniform distribution on [0, 1],
max;c[,) & is distributed according to £*. Thus, in
order to obtain an estimate that is with probability
0.95 among the best 0.05 of all estimates, a random
subsample of size [log0.05/1og0.95] = 59 will guar-

'Optimality with respect to some norms may too expen-
sive to achieve numerically since it can be of order O(m?)
or worse, thus one will have to choose a suitable norm as
well. See section 3 for possible choices of such norms.

antee nearly as good performance as if we considered
the whole set of basis functions.
2.3 Prototype of an Algorithm

This allows us to state a prototype of an algorithm for
matrix approximation (Algorithm 1).

Algorithm 1 Matrix Approximation Prototype

input: K or functions k;, bound on residuals €
input: sub PickBestColumn, ProjectOutColumn,
and BoundResiduals
n=0,I={},T=0
repeat
n++
Draw random subset M from [m]\I
i, = PickBestColumn(M, K,T)
TV = ProjectOutColumn (K, T, I)
¢ = BoundResiduals(K,T)
until e < ¢
output: n,T,1,¢

We investigated whether this assumption is true
on two real world datasets (Abalone and Boston
Housing from the UCI repository, and the USPS
database of handwritten characters). In all cases we
used Gaussian RBF kernels with 202 = 0.5d (d is the
dimensionality of the data; see Section 5 for further
details). Figure 1 shows that a subset of size 59 is
large enough to yield near optimal performance. The
same results were obtained on the USPS postal and
the Boston Housing dataset. Note, however, that in
later stages of the algorithm the distribution of im-
provements may become very long-tailed, which e.g.
led to the edge in Figure 3. Such effects, however, can
easily be taken into account by a rearrangement of the
chosen patterns afterwards.

2.4 Estimating a bound on the residuals

m

e= K~ Kl = Y (K-K);,  (12)

3,j=1

i.e. computing the error, is of cost O(m?). This is more
expensive than what we often are willing to accept per
iteration (if we strive for an O(mn) algorithm).

If we treat (12) as a sum of random variables, say
& = Z;.n:l(K—Iz')?j and the total residualsas Y ;- &;
we can apply uniform convergence theory to estimate
(12) by considering only a subset of the £. This is
useful since in the case of the Frobenius norm we will
only consider a subset M of the columns of K — K for
the selection of a suitable column anyway (cf. Section



2.2). Moreover the values of & for ¢ € M will be
readily available at no additional cost (cf. Section 4).

The following bound is a simple corollary of a theorem
of Hoeflding [1963].

Corollary 3 (Smola et al. [1999])

Let &4,...,&n be independent identically distributed
bounded random wvariables, falling into the interval
[a,a + b] with probability one. Denote their average by
Sm = % > i &i. Moreover denote by &y(1),--- ,Es(m1)
with m' < m a subset of the same random variables
(with s : {1,...,m'} = {1,...,m} being an injective
map), and Sy, = % > i&s(i)- Then for any e > 0 one
has

PI‘{Sm — Sy > 6} _ _2mm/?
< e (m—m!)b2 (13)
Pr{Sm — Sm > €}

Hence, if we are satisfied with the confidence level of
(13) we may simply reuse the values of the 2-norm of
the columns to be considered for basis function selec-
tion. Otherwise, we might as well include more basis
function in the selection process by considering a larger
subset M such that the latter would benefit from more
computations at the same time.

Finally, note that a similar technique can also be ap-
plied when computing the trace of the residual matrix
as needed in the approximation of function spaces.
There, however, this is not crucial for the numerical
feasibility of the algorithm since an exact computation
can be carried out in O(mn) steps, too (see (22)).

3. Orthogonalization Procedures

Let us assume for the moment, that by some proce-
dure, we picked 7 as the next column / basis function
to be included in our list of basis functions. Now we
have to remove the contribution of the corresponding
column / basis function from K.

3.1 Column Space

The immediate choice when dealing with approxima-
tions in the Frobenius norm is to find coefficients Tj;
such that K minimizes the distance to K in || - ||rrob-
For simplicity let us start with the first iteration (n =
1). Here we have to solve the problem (f{z =TnK;)

argmin Y || K; — T K> (14)
Ti15. T 54
Solving for T3; yields
Ty = || K| (K, K;) (15)

and consequently (K; — K;, K;) = 0 for all i. In other
words, span{(K; — K;)|i € [m]} L K;.

It is easy to check that for larger than one-dimensional
spaces this statement still holds (orthogonal projec-
tions are optimal in Hilbert spaces). Hence, in subse-
quent iterations, say, at step j, it is sufficient to apply
(14) with the residuals K; — Kfld rather than K; in
place since this will lead to a new set of residuals with

(K; — Kfew) L span{K;,|j € [n]} (16)

as required for optimality. The computational cost
per iteration is O(m?) (since each orthogonalization
costs 2m multiply-add operations). We asumed that
the residuals are cached (causing an O(m?) memory
requirement). The algorithm would be O(n - m?) oth-
erwise, since one has to recompute the residuals at
every step again. This may be more expensive than
what we are willing to accept in practice.

3.2 Function Space

An alternative is to orthogonalize in function space
rather than column space. The advantage is that the
dot product (k(z;,-),k(zj,-)) = k(z;,z;) is O(1), at
least if dependencies on the dimensionality of the in-
puts are ignored. Moreover, we obtain an approxima-
tion that is close to the basis functions in the RKHS
under consideration and not only at the training pat-
terns x; where k is evaluated. Finally, as we shall see,
both the approximating matrix K and the matrix of
residuals K — K are symmetric and positive semidefi-
nite.

The disadvantage is, that by such a decomposition we
will not achieve an optimal decrease in the Frobenius
norm of the residuals. But it will allow an exact mea-
surement of the 1-norm at O(mn) cost. The strategy
works as follows, again, starting from the first itera-
tion. Denote by

j=1
and thus for n = 1 we have l::l = T;1k;. If we want to
minimize

S ki — Eill3 = Ik — Taksl3,  (18)
=1 1=1

we obtain in analogy to Section 3.1

T = |

ks

o ki k) = K2 Ky (19)

Again, the same considerations regarding the orthog-
onality of the residuals k; — k; wrt. the chosen basis



functions k;,, ... k;; apply:

span{(k; — k;)|i € [m]} L span{k;,|j € [n]}  (20)

Caching k; as in column space is not an option since
the basis functions are abstract quantities. Therefore,
at iteration n computing the dot product between all
residuals (k; — k;) and (k; — k;) is of order O(mn): if
k; was chosen optimally according to the orthogonal-
ization procedure described above it follows from (20)

<kl — ki,kj — k]> = <ki7kj - ié]> (21)

This implies that, as pointed out before, the matrix of
residuals K — K is symmetric and positive semidefinite.
Moreover we can compute the trace of K — K (which
is also the sum of the eigenvalues) by

which is an O(mn) operation, and in particular, in-
volves no additional cost over the orthogonalization.

3.3 Kronecker Metric

As one can see from (15) and (19) the metric on the
space of columns / kernel functions plays the cru-
cial role in defining how projections are carried out.
Rather than using a data-dependent metric we could
think of a much more drastic simplification: to define
the dot product between two columns / basis functions
to be the Kronecker delta, i.e.

(kiy kj) i == 0ij. (23)

This is a very crude simplification, however, it still
leads to a practical projection rule: to remove the ba-
sis function 7 and leave to the rest of the basis func-
tions / columns untouched. One can check that this
is equivalent to finding the best approximation of the
columns K; if we choose K2 as the metric tensor,
since then K, K 2K; = §;;.

Unfortunately this is quite meaningless so we leave it
at the observation that other metrics could be used,
too.

4. Selection Rules

The problem which basis function should be selected
naturally involves a tradeoff between the quality of the
selection and the amount of computational resources
needed to compute the latter. Therefore we present
three possible choices for selecting a suitable column
or basis function.

4.1 Frobenius Norm

One possibility is to seek the column K; that yields
the largest improvement in minimizing |K — K||2,,,
where during the previous i iterations the columns of
K were chosen such that (16) holds. Since optimal
projections have to be orthogonal to the previous ones
we can write (for fixed 2)

1K — K o (24)

SOk K9
=1

ti(K; — KP)II? (25)

where

t; = | K; — K29 "%(K; — K K — K9, (26)

Thus the reduction in the residuals is given by

1K — K E o — 1K —
KoldH 22

Therefore the selection criterion is to evaluate (27) for
all possible 2 € M (the subset of size k to be analyzed).
The complexity per evaluation of (27) is O(m?) if the
residuals are cached, and O(nm?) otherwise.

f{new ||?rob (27)

_ HK Kold K01d>

4.2 Function Space

If we choose the function space perspective, a very
similar selection rule can be developed, however with
lower computational complexity. In analogy to (24)
we minimize

> ks — B — (ke — k)15 (28)
i=1
where
ti = |k — k9157 (ke — B ks — K99 (29)

Again, the reduction in the residuals is given by

D ks = kB, — 1k — R 3 (30)
i=1
= ks — &M Z<kl — RO gy — Roldy2
i=1
= <kl,k — kOId -1 Z kold (31)
i=1

where (31) follows from the orthogonality between the
residuals k; — k; and the approximations k;. Comput-
ing (31) is an O(mn) operation and thus cheaper than
selection criteria involving the Frobenius norm.



4.3 Columns

A third criterion can be obtained from a related algo-
rithm - Sparse Kernel Feature Analysis [Smola et al.,
1999]. There, the selection criterion is to choose the
basis function accounting for the largest variance on
the training data.

In the present context this translates into choosing the
column / basis function with the largest 2-norm of the
column, i.e.

i = argmax || K; —R’iHZ. (32)
ieEM

This criterion can be even cheaper to compute than
the previous ones. If the residuals are cached (which
is an O(m?) by itself, though) the rhs of (32) is of order
O(m). Without caching the cost is comparable to the
previous section, i.e. it is O(mn).

It is impossible to claim superiority of one of the three
presented approaches (or at least not for Section 4.1
and Section 4.2). They all represent design choices
regarding which target function is minimized and how
much computational effort one is willing to spend in
order to obtain a satisfactory solution.

While the Frobenius norm perspective may seem the
most appealing at first glance, the function space view
offers decompositions that leave symmetric, positive
semidefinite matrices both in K and K — K which is
a big advantage, e.g. in Interior Point codes for math-
ematical programming [Vanderbei, 1994].

5. Experiments
5.1 Datasets

In order to compare the algorithm with a convenvional
regularization network we looked at regression prob-
lems of moderate size (up to 5000 samples) in order
to be able to invert matrices and compute the spec-
trum of the design matrix. Our algorithm would be
amenable to much larger datasets, however, no com-
parison would have been possible in the latter case.

We chose the Boston Housing and the Abalone
dataset from the UCI Repository [Blake et al., 1998]
and the USPS database of handwritten digits. The
first data is of size 506 (350 training, 156 testing), the
Abalone dataset of size 4177 (3000 training and 1177
testing). In the first two cases the data was rescaled
to zero mean and unit variance, coordinate-wise, while
the USPS dataset remained unchanged. Finally, the
gender encoding in Abalone (male/female/infant) was
mapped into {(1,0,0),(0,1,0),(0,0,1)}. We used
Gaussian RBF-kernels where the kernel width o and

the regularization constant A were chosen to yield op-
timal performance on the test set.>

"2
_llz—=]|

k(z,z') =e™ 202

where 0 > 0 (33)

We obtain o /d = 1, Am = 0.1 for the Abalone dataset,
and o/d = 10,Am = 0.01 on the Boston Housing
database. The parameter range was analyzed in loga-
rithmic scale, i.e. ...,0.1,0.2,0.5,1,....

5.2 Algorithms

For convenience we give an explicit description of a
projection algorithm working in function space (Algo-
rithm 2). Since it is O(nm) per iteration (rather than
O(m?) for the Frobenius norm), all experiments were
carried out using Algorithm 2.

Algorithm 2 Approximation in Function Space
input: basis functions k;, bound on residuals €
n=0,I={},T =0,K%h =0
{K* stores the matrix K;;, }
repeat
n++
Draw random subset M from [m]\I
{Select best basis function}
Compute (k;, k;) = K;; where i € [m] and j € M
Compute (k;, k;) = KTM where TM is an n x
|M| submatrix of T
for alli € M do

Improvement,; =

T (K= (K°TM)5)?
Kii—(K°TM);;

end for
ip, = % = argmax;. ,,; Improvement,
{Project out k;}
t= (Kii - (KCTM)55)71(7%17 Tty 7T’inv 1)
dot = (ky, k; — k;) {use K¢ and K°TM}
T =T +dot 't {Rank 1 update}
K¢ = (K¢ K;)
{Bound the Residuals}
€n = 2o Kii — 200y Z?=1 KT
until €, < €
output: n,T,1,¢,

5.3 Random Subset Selection

The first thing to check is whether the reasoning of
Section 2.2 applies to real world datasets. We used
the USPS and the Abalone dataset to investigate this
issue. In both cases we used 20% = 0.5d, where d is
the dimensionality of the data.

2This is a very conservative setting: the chosen param-
eters (0, A) may not be optimal for the other algorithms
presented.
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Figure 1. Size of the Residuals tr(K — K) for the Abalone
dataset. From top to bottom: subsets of size 1, 2, 5, 10, 20,
50, 59, 100, 200. Note that for subsets of size 50 and more,
no noticeable difference in performance can be observed.
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Regularized Risk and Expected Risk on the Abalone Dataset (Sparse Decomposition)
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Figure 2. Top: optimal reduced system generated by prin-
cipal component analysis (the bottom line is the value ob-
tained by solving the full regularized risk functional); re-
duced system generated by sparse decomposition (again,
baseline is the full matrix K).

Figure 1 shows that a subset of size 59 is large enough
to yield near optimal performance. The same results
were obtained on the USPS postal dataset.
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Figure 3. Size of the Residuals tr(K — K) for the Abalone
datset. Top: projection on basis functions given by the
greedy approximation scheme. Bottom: projection on sub-
spaces given by principal component analysis.

5.4 Regularized Risk and Generalization

We compare the following three algorithms: a plain
standard regularization network where « is obtained
according to (6), solutions of reduced dimensional-
ity where the reduction is obtained by PCA, and a
sparse expansion obtained by minimizing the residu-
als in function space. Since A and o were chosen to
be optimal for regularization the key point is to check
how many basis functions are needed to obtain similar
performance.

Figures 2 and 5 compare the performance obtained by
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Figure 4. Left to Right, Top to Bottom. Patterns corre-
sponding to the first basis functions. Note that 9 out of 10
digits are chosen among the first 10 patterns and that all
patterns are sufficiently different (or shifted).

using lower dimensional subspaces generated by PCA
or sparse greedy approximation. One can see that their
difference in terms of performance is only marginal.
The crucial advantage of sparse greedy approximation,
however, is, that it is much faster (O(nm) rather than
O(m?) per iteration), leads to sparse decompositions
(PCA may speed up training but has no effect on test-
ing speed since it yields dense decompositions), and
requires O(nm) rather than O(m?) memory.

Even more striking — the qualitative behaviour of the
generalization performance is very similar (see Figure
5). This can be understood by considering Figure 3:
the subspaces selected by the two methods are proba-
bly very similar since the trace of the residual matrix
also exhibits almost identical behaviour.

Hence, sparse decompositions can easily account for a
speedup of between 4 and 10 with no penalty in terms
of generalization performance (and possibly even more
dramatic improvements on larger datasets) but much
reduced classification time. The size of the residuals
indicates when to stop (three oders of magnitude in
trace reduction proved to be sufficient in all cases).

6. Applications

While the approximation scheme in Hilbert spaces cer-
tainly could be applied to solving linear systems of
equations Az = y directly, it would be unreasonable
to do so, since in the latter case we do not want to
approximate a matriz but rather just a single vector.
Good approximations of the matrix guarantee good
approximations of a vector, however, better approx-
imations with less iterations can be obtained by an
application of a matching pursuit technique directly
in Hilbert space [Scholkopf et al., 1999]. Furthermore,
subspace methods such as [Skilling, 1988] also provide
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Figure 5. Top to bottom: Size of the Residuals tr(K — K)
for the Boston Housing datset; optimal reduced system
generated by principal component analysis (the bottom
line is the value obtained by solving the full regularized
risk functional); reduced system generated by sparse de-
composition. Note the similar increase in training error for
both algorithms (again, baseline is the full matrix K).



a fast means of approximate solutions of linear sys-
tems. But there exist cases where the knowledge of an
approximation of the design matrix may be useful.

6.1 Support Vector Machines

Interior Point Codes are used frequently to solve the
quadratic and linear programs of Support Vector Ma-
chines. While being very precise, they do not scale well
to large problems since they require that the complete
design matrix be stored in memory and inverted. Un-
fortunately, it is not exactly K but Kxxr = K +
diag{o1,...0,} that has to be inverted (the so-called
reduced KKT system Vanderbei [1994]). This happens
several times during optimization.

While K itself in general has rapidly decaying eigenval-
ues [Williamson et al., 1998], the actual matrix Kxkr
does not exhibit this property. However, if we consider
the approximation Kxkr = Iz'—i—diag{al, ...Om}, the
latter can be inverted by O(nm?) operations. This is
so, since the inversion of the diagonal part is O(m),
and K can be seen as a rank n matrix. Furthermore,
rank n updates of the inverse of an m x m matrix are
O(nm?).3 This will be the topic of further research.

6.2 Linear Programming Machines

A modification of the regularization term in the regu-
larized risk functional leads to linear programming ma-
chines [Mangasarian, 1965]. While these have a spar-
sity term already included by penalizing the 1-norm of
the expansion coefficients, it can be numerically very
demanding to solve the optimization problem exactly.

Again, by choosing a subset of basis functions to start
with (which has approximately the same expressive
power as the overall set of basis functions) we can find
a solution that is almost as good as the general solution
but much cheaper to compute.

Modern mathematical programming codes such as
CPLEX have a so-valled Hotstart feature which en-
ables them to solve larger problems efficiently, given
a solution on a subset of variables. This suggests the
following algorithm: find a subset of basis functions
approximating K, solve the reduced subproblem; if
the approximation quality is sufficiently high in com-
parison to the size of the residuals K — K (e.g. large
margin in classification) stop, otherwise generate more
basis functions and continue.

3Thanks to Chris Williams for suggesting this approach.

6.3 Random Projections

Random Projection techniques can be used to cre-
ate (local) hashing functions for neighbourhood and
search queries in high dimensional spaces (cf. e.g. [Gio-
nis et al., 1999]). They work by randomly projecting
on a lower dimensional space and replacing the high
dimensional neighbourhood query by a search oper-
ation that can be computed more easily. In general
these methods operate directly in the Fuclidean space
given by data.

Defining a proximity measure on discrete data (e.g.
webpages and other text documents or gene sequences)
by a Euclidean metric will have problems in reflecting
the specific structure of the data. Metrics based on
generative models (see [Jaakkola and Haussler, 1999]
and subsequent work) can provide a much more ade-
quate representation. Yet, a full neighbourhood search
in these spaces is out of question due to the computa-
tional cost.

Sparse matrix approximations, however, are able to
recover most of the structure of the space by project-
ing on just a few basis functions (e.g. a 99% approx-
imation on the Abalone dataset involves just 200 out
of 3000 kernels). We expect the effects to be even
more dramatic as the sample size increases. Conse-
quently sparse matrix approximation methods are a
good candidate for fast and cheap search criteria in
high-dimensional spaces.

6.4 Further Applications

Results such as [Makovoz, 1996] show that under cer-
tain conditions sparse aproximations of matrices exist.
Morever, optimality results for sparse greedy approxi-
mation algorithms [Natarajan, 1995] give good bounds
on the number of terms required by such non-optimal
approximation schemes. Combining both statements
may show that the algorithms presented in this paper
are actually close to optimal. This is the subject of
further research.

Another application of our methods are precondition-
ers, used in numerical mathematics, to transform ma-
trices before e.g. inverting them. The core part is to
find an easy to compute approximation to the matrix
under consideration. Since the present techniques can
be applied to any positive semidefinite matrix regard-
less whether it was generated by a kernel function or
not (such an equivalent representation always exists),
we hope that our approximation schemes will be useful
in this area, too.



7. Relations to other Algorithms

7.1 Sparse Kernel Feature Analysis

This algorithm [Smola et al., 1999] is very similar in
its structure to the techniques presented in the current
paper. Its main differences are the additional normal-
ization step in the ¢; norm, carried out on the basis
functions after projection and the fact that either the
column selection criterion (Section 4.3) or a Projec-
tion Pursuit-type criterion is chosen in order to pick
the best basis functions.

7.2 Clustering

A popular method for finding a subset of functions k;
in the special case of RBF-kernels is clustering (see
e.g. [Scholkopf et al., 1997]): the cluster centers ob-
tained from a dataset are used to generate the basis
functions. Since e~I*=='I* is monotonic in ||z — @[,
approximations of the latter (i.e. || — z’|| rather than
||lz—2'|| for all z in the Voronoi region of ) one can see
that such an algorithm has the side effect of generating
an approximating matrix K. However, this is not the
immediate objective of the algorithm, convergence on
large datasets may be problematic, and the number of
cluster centers has to be specified beforehand. Finally,
for all kernels other than RBFs, the technique is not
applicable at all.

8. Discussion

We presented a general scheme to approximate sym-
metric positive semidefinite matrices by subsets of
columns or basis functions. The function space algo-
rithm, in particular, has the advantage of being O(nm)
per iteration which is significantly lower than any al-
gorithm operating in column space directly (they all
require O(m?) complexity per iteration).

First experiments show that the algorithm is both fast
and has very good approximation characteristics which
will help overcome some of the limitations of current
kernel methods. We believe that it is the starting point
for an exciting new class of optimization procedures
and approximation methods, some of which were al-
ready pointed out in Section 6.
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