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Abstract. We derive new bounds for the generalization error of feature
space machines, such as support vector machines and related regular-
ization networks by obtaining new bounds on their covering numbers.
The proofs are based on a viewpoint that is apparently novel in the field
of statistical learning theory. The hypothesis class is described in terms
of a linear operator mapping from a possibly infinite dimensional unit
ball in feature space into a finite dimensional space. The covering num-
bers of the class are then determined via the entropy numbers of the
operator. These numbers, which characterize the degree of compactness
of the operator, can be bounded in terms of the eigenvalues of an inte-
gral operator induced by the kernel function used by the machine. As a
consequence we are able to theoretically explain the effect of the choice
of kernel functions on the generalization performance of support vector
machines.

1 Introduction, Definitions and Notation

In this paper we give new bounds on the covering numbers for feature space
machines. This leads to improved bounds on their generalization performance.
Feature space machines perform a mapping from input space into a feature
space construct regression functions or decision boundaries based on this map-
ping, and use constraints in feature space for capacity control. Support Vector
(SV) machines, which have recently been proposed as a new class of learning
algorithms solving problems of pattern recognition, regression estimation, and
operator inversion [32] are a well known example of this class.
A key feature of the present paper is the manner in which we directly bound the
covering numbers of interest rather than making use of a Combinatorial dimen-
sion (such as the VC-dimension or the fat-shattering dimension) and subsequent
application of a general result relating such dimensions to covering numbers. We
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bound covering numbers by viewing the relevant class of functions as the image
of a unit ball under a particular compact operator. The results can be applied to
bound the generalization performance of SV regression machines, although we
do not explictly indicate the results so obtained in this brief paper.

Capacity control. In order to perform pattern recognition using linear hyper-
planes, often a maximum margin of separation between the classes is sought for,
as this leads to good generalization ability independent of the dimensionality
[28]. It can be shown that for separable training data (x1, y1), . . . , (xm, ym) ∈
R

d × {±1}, this is achieved by minimizing ‖w‖2 subject to the constraints
yj(〈w,xj〉 + b) ≥ 1 for j = 1, . . . ,m, and some b ∈ R. The decision func-
tion then takes the form f(x) = sgn(〈w,x〉 + b). Similarly, a linear regression
f(x) = 〈w,x〉+ b can be estimated from data (x1, y1), . . . , (xm, ym) ∈ R

d×R by
finding the flattest function which approximates the data within some margin
of error: in this case, one minimizes ‖w‖2 subject to |f(xj) − yj| ≤ ε, where
the parameter ε > 0 plays the role of the margin, albeit not in the space of the
inputs x, but in that of the outputs y.

Nonlinear kernels. In order to apply the above reasoning to a rather general
class of nonlinear functions, one can use kernels computing dot products in
high-dimensional spaces nonlinearly related to input space [1,7]. Under certain
conditions on a kernel k, to be stated below (Theorem 1), there exists a nonlinear
map Φ into a reproducing kernel Hilbert space F such that k computes the dot
product in F , i.e. k(x,y) = 〈Φ(x), Φ(y)〉F . Given any algorithm which can be
expressed in terms of dot products exclusively, one can thus construct a nonlinear
version of it by substituting a kernel for the dot product.

By using the kernel trick for SV machines, the maximum margin idea is thus
extended to a large variety of nonlinear function classes (e.g. radial basis func-
tion networks, polynomial networks, neural networks), which in the case of
regression estimation comprise functions written as kernel expansions f(x) =∑m

j=1 αjk(xj ,x) + b, with αj ∈ R, j = 1, . . . ,m. It has been noticed that dif-
ferent kernels can be characterized by their regularization properties [30]. This
provides insight into the regularization properties of SV kernels. However, it
does not give us a comprehensive understanding of how to select a kernel for
a given learning problem, and how using a specific kernel might influence the
performance of a SV machine.

Definitions and Notation For d ∈ N, R
d denotes the d-dimensional space

of vectors x = (x1, . . . , xd). We define spaces `dp as follows: as vector spaces,
they are identical to R

d, in addition, they are endowed with p-norms: for 0 <

p < ∞, ‖x‖`d
p

:= ‖x‖p =
(∑d

j=1 |xj |p
)1/p

; for p = ∞, ‖x‖`d∞ := ‖x‖∞ =
maxj=1,...,d |xj |. Analogously `p is the space of infinite sequences with the obvious
definition of the norm. Given m points x1, . . . ,xm ∈ `dp, we use the shorthand
Xm = (xT

1 , . . . ,x
T
m). Suppose F is a class of functions defined on R

d. The `d∞
norm with respect to Xm of f ∈ F is defined as ‖f‖`Xm

∞ := maxi=1,...,m |f(xi)|.
Given some set X, a measure µ on X, some 1 ≤ p <∞ and a function f : X → R
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we define ‖f‖Lp :=
(∫ |f(x)|pdµ(x)

)1/p if the integral exists and ‖f‖L∞ :=
ess supx∈X |f(x)|. For 1 ≤ p ≤ ∞, we let Lp(X) := {f : X → R: ‖f‖Lp <∞}.
Let L(E,F ) be the set of all bounded linear operators T between the normed
spaces (E, ‖·‖E) and (F, ‖·‖F ), i.e. operators such that the image of the (closed)
unit ball UE := {x ∈ E: ‖x‖E ≤ 1} is bounded. The smallest such bound is called
the operator norm, ‖T ‖ := supx∈UE

‖Tx‖F . The nth entropy number of a set
M ⊂ E, for n ∈ N, is

εn(M) := inf{ε > 0: ∃ an ε-cover for M in E containing n or fewer points}.
The entropy numbers of an operator T ∈ L(E,F ) are defined as εn(T ) :=
εn(T (UE)). Note that ε1(T ) = ‖T ‖, and that εn(T ) certainly is well defined
for all n ∈ N if T is a compact operator, i.e. if T (UE) is compact. The dyadic
entropy numbers of an operator are defined by en(T ) := ε2n−1(T ), n ∈ N. A very
nice introduction to entropy numbers of operators is [8]. The ε-covering number
of F with respect to the metric d denoted N(ε,F, d) is the size of the smallest
ε-cover for F using the metric d. By log and ln, we denote the logarithms to base
2 and e, respectively. By i, we denote the imaginary unit i =

√−1, k will always
be a kernel, and d and m will be the input dimensionality and the number of
examples (x1, y1), . . . , (xm, ym) ∈ R

d × R, respectively. We will map the input
data into a feature space via a mapping Φ. We let x̃ := Φ(x).

2 Operator Theory Methods for Entropy Numbers

In this section we briefly explain the new viewpoint implicit in the present pa-
per. With reference to Figure 1, consider the traditional viewpoint in statistical
learning theory. One is given a class of functions F, and the generalization per-
formance attainable using F is determined via the covering numbers of F. More
precisely, for some set X, and xi ∈ X for i = 1, . . . ,m, define the ε-Growth
function of the function class F on X as

Nm(ε,F) := sup
x1,...,xm∈X

N(ε,F, `X
m

∞ ), (1)

where N(ε,F, `X
m

∞ ) is the ε-covering number of F with respect to `X
m

∞ . Many
generalization error bounds can be expressed in terms of Nm(ε,F). An example
is given in the following section.
The key novelty in the present work solely concerns the manner in which the
covering numbers are computed. Traditionally, appeal has been made to a re-
sult such as the so-called Sauer’s lemma (originally due to Vapnik and Chervo-
nenkis). In the case of function learning, a generalization due to Pollard (called
the pseudo-dimension), or Vapnik and Chervonenkis (called the VC-dimension
of real valued functions), or a scale-sensitive generalization of that (called the
fat-shattering dimension) is used to bound the covering numbers. These results
reduce the computation of Nm(ε,F) to the computation of a single “dimension-
like” quantity. An overview of these various dimensions, some details of their
history, and some examples of their computation can be found in [5].
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In the present work, we view the class F as being induced by an operator T̄k

depending on some kernel function k. Thus F is the image of a “base class” G

under T̄k. The analogy implicit in the picture is that the quantity that matters
is the number of ε-distinguishable messages obtainable at the information sink.
(Recall the equivalence up to a constant factor of packing and covering number-
s.) In a typical communications problem, one tries to maximize the number of
distinguisable messages (per unit time), in order to maximize the information
transmission rate. But from the point of view of the receiver, the job is made eas-
ier the smaller the number of distinct messages that one needs to be concerned
with decoding. The significance of the picture is that the kernel in question is
exactly the kernel that is used, for example, in support vector machines. As a
consequence, the determination of Nm(ε,F) can be done in terms of properties
of the operator T̄k. The latter thus plays a constructive role in controlling the
complexity of F and hence the difficulty of the learning task. We believe that the
new viewpoint in itself is potentially very valuable, perhaps more so than the
specific results in the paper. A further exploitation of the new viewpoint can be
found in [36]. There are in fact a variety of ways to define exactly what is meant
by T̄k, and we have deliberately not been explicit in the picture. We make use
of one particular T̄k in this paper. A slightly different approach is taken in [36].

We conclude this section with some brief historical remarks.

The concept of the metric entropy of a set has been around for some time. It
seems to have been introduced by Pontriagin and Schnirelmann [24] and was
studied in detail by Kolmogorov and others [19]. The use of metric entropy to
say something about linear operators was developed independently by several
people. Prosser [25] appears to have been the first to make the idea explicit. He
determined the effect of an operator’s spectrum on its entropy numbers. In par-
ticular, he proved a number of results concerning the asymptotic rate of decrease
of the entropy numbers in terms of the asymptotic behaviour of the eigenvalues.
A similar result is actually implicit in section 22 of Shannon’s famous paper [27],
where he considered the effect of different convolution operators on the entropy of
an ensemble. Prosser’s paper [25] led to a handful of papers (see e.g. [26,15,3,21])
which studied various convolutional operators. A connection between Prosser’s
ε-entropy of an operator and Kolmogorov’s ε-entropy of a stochastic process was
shown in [2]. Independently, another group of mathematicians including Carl
and Stephani [8] studied covering numbers [31] and later entropy numbers [23]
in the context of operator ideals. (They seem to be unaware of Prosser’s work
— see e.g. [9, p. 136].)

Connections between the local theory of Banach spaces and uniform convergence
of empirical means has been noted before (e.g. [22]). More recently Gurvits [14]
has obtained a result relating the Rademacher type of a Banach space to the fat-
shattering dimension of linear functionals on that space and hence via the key
result in [4] to the covering numbers of the induced class. We will make further
remarks concerning the relationship between Gurvits’ approach and ours in [36];
for now let us just note that the equivalence of the type of an operator (or of
the space it maps to), and the rate of decay of its entropy numbers has been
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(independently) shown by Kolchinskĭı [17,18] and Defant and Junge [12,16]. Note
that the exact formulation of their results differs. Kolchinskĭı was motivated by
probabilistic problems not unlike ours.

3 Generalization Bounds via Uniform Convergence

The generalization performance of learning machines can be bounded via uniform
convergence results as in [34]. The key thing about these results is the role of
the covering numbers of the hypothesis class — the focus of the present paper.
Results for both classification and regression are now known. For the sake of
concreteness, we quote below a result suitable for regression which was proved
in [4]. Let Pm(f) := 1

m

∑m
j=1 f(xj) denote the empirical mean of f on the sample

x1, . . . ,xm.

Lemma 1 (Alon, Ben–David, Cesa–Bianchi, and Haussler, 1997). Let
F be a class of functions from X into [0, 1] and let P be a distribution over X.
then, for all ε > 0 and all m ≥ 2

ε2 ,

Pr

{
sup
f∈F

|Pm(f)− P (f)| > ε

}
≤ 12m · E

[
N

(
ε
6 ,F, `

X̃2m

∞
)]
e−ε2m/36 (2)

where Pr denotes the probability w.r.t. the sample x1, . . . ,xm drawn i.i.d. from
P , and E the expectation w.r.t. a second sample X̃m = (x̃T

1 , . . . , x̃
T
2m) also drawn

i.i.d. from P .

In order to use this lemma one can make use of the fact that E
[
N(ε,F, `X̃

m

∞ )
]
≤

Nm(ε,F). The above result can be used to give a generalization error result by
applying it to the loss-function induced class using standard techniques. Further-
more, one can obtain bounds on the generalization error of classifiers in terms
of the margin achieved on a training sample in terms of these covering numbers
— see [28].

4 Entropy Numbers for Kernel Machines

In the following we will mainly consider machines where the mapping into feature
space is defined by Mercer kernels k(x,y) as they are easier to deal with using
functional analytic methods. Such machines have become very popular due to
the success of SV machines. Nonetheless in Subsection 4.3 we will show how a
more direct approach could be taken towards upper–bounding entropy numbers.

4.1 Mercer’s Theorem, Feature Spaces and Scaling

Our goal is to make statements about the shape of the image of the input
space X under the feature map Φ(·). We will make use of Mercer’s theorem. The
version stated below is a special case of the theorem proven in [20, p. 145]. In the
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following we will assume (X, µ) to be a finite measure space, i.e. µ(X) <∞. As
usual, by “almost all” we mean for all elements of Xn except a set of µn-measure
zero.

Theorem 1 (Mercer). Suppose k ∈ L∞(X2) such that the integral operator
Tk : L2(X) → L2(X),

Tkf(·) :=
∫

X

k(·,y)f(y)dµ(y) (3)

is positive. Let ψj ∈ L2(X) be the eigenfunction of Tk associated with the eigen-
value λj 6= 0 and normalized such that ‖ψj‖L2 = 1 and let ψj denote its complex
conjugate. Then

1. (λj(T ))j ∈ `1.
2. ψj ∈ L∞(X) and supj ‖ψj‖L∞ <∞.
3. k(x,y) =

∑
j∈N

λjψj(x)ψj(y) holds for almost all (x,y), where the series con-

verges absolutely and uniformly for almost all (x,y).

We will call a kernel satisfying the conditions of this theorem a Mercer kernel.
From statement 2 of Mercer’s theorem there exists some constant Ck ∈ R

+

depending on k(·, ·) such that

|ψj(x)| ≤ Ck for all j ∈ N and x ∈ X. (4)

(Actually (4) holds only for almost all x ∈ X, but from here on we gloss over these
measure-theoretic niceties in the exposition.) Moreover from statement 3 it fol-
lows that k(x,y) corresponds to a dot product in `2 i.e. k(x,y) = 〈Φ(x), Φ(y)〉`2
with

Φ : X → `2
x 7→ (φj(x))j := (

√
λjψj(x))j

(5)

for almost all x ∈ X. In the following we will (without loss of generality) assume
the sequence of (λj)j be sorted in nonincreasing order. From the argument above
one can see that Φ(X) lives not only in `2 but in an axis parallel parallelepiped
with lengths 2Ck

√
λj .

It will be useful to consider maps that map Φ(X) into balls of some radius R
centered at the origin. The following proposition shows that the class of all these
maps is determined by elements of `2 and the sequence of eigenvalues (λj)j .

Proposition 1 (Mapping Φ(x) into `2). Let S be the diagonal map

S : R
N → R

N

S : (xj)j 7→ S(xj)j = (sjxj)j .
(6)

Then S maps Φ(X) into a ball of finite radius RS centered at the origin if and
only if (

√
λjsj)j ∈ `2.
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Proof.
(⇐) Suppose (sj

√
λj)j ∈ `2 and let R2

S := C2
k‖(sj

√
λj)j‖2`2 <∞. For any x ∈ X,

‖SΦ(x)‖2`2 =
∑
j∈N

s2jλj |ψj(x)|2 ≤
∑
j∈N

s2jλjC
2
k = R2

S . (7)

Hence SΦ(X) ⊆ `2.
(⇒) Suppose (sj

√
λj)j is not in `2. Hence the sequence (An)n with An :=

n∑
j=1

s2jλj is unbounded. Now define

an(x) :=
n∑

j=1

s2jλj |ψj(x)|2. (8)

Then ‖an(·)‖L1(X) = An due to the normalization condition on ψj . However, as
µ(X) <∞ there exists a set X̃ of nonzero measure such that

an(x) ≥ An

µ(X)
for all x ∈ X̃. (9)

Combining the left side of (7) with (8) we obtain ‖SΦ(x)‖2`2 ≥ an(x) for all
n ∈ N and almost all x. Since an(x) is unbounded for a set X̃ with nonzero
measure in X, we can see that SΦ(X) 6⊂ `2. �

The consequence of this result is that there exists no axis parallel ellipsoid E

not completely containing the (also) axis parallel parallelepiped B of sidelength
(2Ck

√
λj)j , such that E would contain Φ(X). More formally

B ⊂ E if and only if Φ(X) ⊂ E.

Hence Φ(X) contains a set of nonzero measure of elements near the corners of
the parallelepiped.
Once we know that Φ(X) “fills” the parallelepiped described above we can use
this result to construct an inverse mapping A from the unit ball in `2 to an
ellipsoid E such that Φ(X) ⊂ E as in the following diagram.

X
Φ // Φ(X) A−1

//

T

U`2

A

wwppppppppppppppp

E

(10)

The operator A will be useful for computing the entropy numbers of concatena-
tions of operators. (Knowing the inverse will allow us to compute the forward
operator, and that can be used to bound the covering numbers of the class of
functions, as shown in the next subsection.) We thus seek an operatorA : `2 → `2
such that

A(U`2) ⊆ E. (11)
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We can ensure this by constructing A such that

A: (xj)j 7→ (RAajxj)j (12)

with RA := Ck‖(
√
λj/aj)j‖`2 . From Proposition 1 it follows that all those op-

erators A for which RA < ∞ will satisfy (11). We call such scaling (inverse)
operators admissible.

4.2 Entropy Numbers

The next step is to compute the entropy numbers of the operator A and use this
to obtain bounds on the entropy numbers for kernel machines like SV machines.
We will make use of the following theorem due to Gordon, König and Schütt
[13, p. 226] (stated in the present form in [8, p. 17]).

Theorem 2. Let σ1 ≥ σ2 ≥ · · · ≥ σj ≥ · · · ≥ 0 be a non–increasing sequence of
non–negative numbers and let

Dx = (σ1x1, σ2x2, . . . , σjxj , . . .) (13)

for x = (x1, x2, . . . , xj , . . .) ∈ `p be the diagonal operator from `p into itself,
generated by the sequence (σj)j , where 1 ≤ p ≤ ∞. Then for all n ∈ N,

sup
j∈N

n−
1
j (σ1σ2 · · ·σj)

1
j ≤ εn(D) ≤ 6 sup

j∈N

n−
1
j (σ1σ2 · · ·σj)

1
j . (14)

We can exploit the freedom in choosing A to minimize an entropy number as
the following corollary shows. This will be a key ingredient of our calculation of
the covering numbers for SV classes, as shown below.

Corollary 1 (Entropy numbers for Φ(X)). Let k: X × X → R be a Mercer
kernel and let A be defined by (12). Then

εn(A: `2 → `2) ≤ inf
(as)s:(

√
λs/as)

s
∈`2

sup
j∈N

6Ck

∥∥∥(√
λs/as

)
s

∥∥∥
`2
n−

1
j (a1a2 · · · aj)

1
j .

(15)

This result follows immediately by identifying D and A and exploiting the free-
dom that we still have in choosing a particular operator A among the class of
admissible ones.
As already described in Section 1 the hypotheses that a SV machine generates
can be expressed as 〈w, x̃〉 + b where both w and x̃ are defined in the feature
space S = span(Φ(X)) and b ∈ R. The kernel trick as introduced by [1] was then
successfully employed in [7] and [11] to extend the Optimal Margin Hyperplane
classifier to what is now known as the SV machine. (The “+b” term is readily
dealt with; we omit such considerations here though.) Consider the class

FRw := {〈w, x̃〉: x̃ ∈ S, ‖w‖ ≤ Rw} ⊆ R
S.

Note that FRw depends implicitly on k since S does.
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What we seek are the `m∞ covering numbers for the class FRw induced by the
kernel in terms of the parameter Rw which is the inverse of the size of the margin
in feature space, or equivalently, the size of the weight vector in feature space
as defined by the dot product in S (see [33,32] for details). In the following we
will call such hypothesis classes with length constraint on the weight vectors in
feature space SV classes. Let T be the operator T = SX̃mRw where Rw ∈ R and
the operator SX̃m is defined by

SX̃m : `2 → `m∞
SX̃m : w 7→ (〈x̃1,w〉, . . . , 〈x̃m,w〉) . (16)

with x̃j ∈ Φ(X) for all j. The following theorem is useful when computing entropy
numbers in terms of T and A. It is originally due to Maurey, and was extended
by Carl [10]. See [36] for some extensions and historical remarks.

Theorem 3 (Carl and Stephani [8, p. 246]). Let S ∈ L(H, `m∞) where H is
a Hilbert space. Then there exists a constant c > 0 such that for all m ∈ N, and
1 ≤ j ≤ m

en(S) ≤ c‖S‖
(
n−1 log

(
1 +

m

n

))1/2

.

The restatement of Theorem 3 in terms of ε2n−1 = en will be useful in the
following. Under the assumptions above we have

εn(S) ≤ c‖S‖
(

(logn+ 1)−1 log
(

1 +
m

logn+ 1

))1/2

. (17)

Now we can combine the bounds on entropy numbers of A and SXm to obtain
bounds for SV classes. First we need the following lemma.

Lemma 2 (Carl and Stephani [8, p. 11]). Let E,F,G be Banach spaces,
R ∈ L(F,G), and S ∈ L(E,F ). Then, for n, t ∈ N,

εnt(RS) ≤ εn(R)εt(S) (18)
εn(RS) ≤ εn(R)‖S‖ (19)
εn(RS) ≤ εn(S)‖R‖. (20)

Note that the latter two inequalities follow directly from the fact that ε1(R) = ‖R‖
for all R ∈ L(F,G).

Theorem 4 (Bounds for SV classes). Let k be a Mercer kernel, let Φ be
induced via (5) and let T := SX̃mRw where SX̃m is given by (16) and Rw ∈ R

+.
Let A be defined by (12) and suppose x̃j = Φ(xj) for j = 1, . . . ,m. Then the
entropy numbers of T satisfy the following inequalities:

εn(T ) ≤ c‖A‖Rw log−1/2 n log−1/2
(
1 + m

log n

)
(21)

εn(T ) ≤ Rwεn(A) (22)

εnt(T ) ≤ cRw log−1/2 n log−1/2
(
1 + m

log n

)
εt(A)

where Ck and c are defined as in Corollary 1 and Lemma 3.
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This result gives several options for bounding εn(T ). The reason for using εn
instead of en is that the index only may be integer in the former case (whereas
it can be in [1,∞) in the latter), thus making it easier to obtain tighter bounds.
We shall see in examples later that the best inequality to use depends on the rate
of decay of the eigenvalues of k. The result gives effective bounds on Nm(ε,FRw)
since

εn(T : `2 → `m∞) ≤ ε0 ⇒ Nm(ε0,FRw) ≤ n.

Proof. We will use the following factorization of T to upper bound εn(T ).

U`2
T //

Rw

��

`m∞

RwU`2

SX̃m

<<yyyyyyyyyyyyyyyyyy
A // RwE

S(A−1X̃m)

OO (23)

The top left part of the diagram follows from the definition of T . The fact that
remainder commutes stems from the fact that sinceA is diagonal, it is self-adjoint
and so

〈w, x̃〉 = 〈w, AA−1x̃〉 = 〈Aw, A−1x̃〉. (24)

Instead of computing the covering number of T = SX̃mRw directly, which is
difficult or wasteful, as the the bound on SX̃m does not take into account that
x̃ ∈ E but just makes the assumption of x̃ ∈ ρU`2 for some ρ > 0, we will
represent T as S(A−1X̃m)ARw. This is more efficient as we constructed A such
that Φ(X)A−1 ∈ U`2 filling a larger proportion of it than just 1

ρΦ(X).
By construction ofA and the Cauchy-Schwarz inequality we have ‖SA−1X̃m‖ = 1.
Thus applying lemma 2 to the factorization of T and using Theorem 3 proves
the theorem. �

One can give (see below) asymptotic rates of decay for εn(A). (In fact we can
determine non-asymptotic results with explicitly evaluable constants.) It is thus
of some interest to give overall asymptotic rates of decay of εn(T ) in terms of
the order of εn(A).

Lemma 3 (Rate bounds on εn). Let k be a Mercer kernel and suppose A is
the scaling operator associated with it as defined by (12).

1. If εn(A) = O(log−α n) for some α > 0 then εn(T ) = O(log−(α+2) n).
2. If log εn(A) = O(log−β n) for some β > 0 then log εn(T ) = O(log−β n).

This Lemma (the proof of which is omitted; see [35]) shows that in the first
case, Maurey’s result (theorem 3) allows an improvement in the exponent of the
entropy number of T , whereas in the second, it affords none (since the entropy
numbers decay so fast anyway). The Maurey result may still help in that case
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though for nonasymptotic n. In a nutshell we can always obtain rates of con-
vergence better than those due to Maurey’s theorem because we are not dealing
with arbitrary mappings into infinite dimensional spaces. In fact, for logarithmic
dependency of εn(T ) on n, the effect of the kernel is so strong that it completely
dominates the 1/ε2 behaviour for arbitrary Hilbert spaces. An example of such
a kernel is k(x, y) = exp(−(x− y)2).

4.3 Empirical Bounds

Instead of theoretically determining the shape of Φ(X) a priori one could use the
training and/or test data to empirically estimate its shape and use this quantity
to compute an operator Bemp analogously to (10) which performs the mapping
described above. We merely flag this here — the full development of these ideas
requires considerable further work and will be deferred to a subsequent paper.
There are some remarks in the full version of this paper [35]. Furthermore the
statistical argument needed to exploit such techniques (bounding generalization
error in terms of empirical covering numbers has now been developed — see [29].

5 Eigenvalue Decay Rates

The results presented above show that if one knows the eigenvalue sequence
(λi)i of a compact operator, one can bound its entropy numbers. A commonly
used kernel is k(x, y) = e−(x−y)2 which has noncompact support. The induced
integral operator (Tkf)(x) =

∫∞
−∞ k(x, y)f(y)dy then has a continuous spectrum

and thus Tk is not compact [6, p.267]. The question arises: can we make use
of such kernels in SV machines and still obtain generalization error bounds of
the form developed above? This problem can be readily resolved by analysing
the v-periodic extension of the kernel in question kv(x) :=

∑∞
j=−∞ k(x− jv). A

simple argument gives

Lemma 4. Let k: R → R be a symmetric convolution kernel, let K(ω) = F [k(x)](ω)
denote the Fourier transform of k(·) and kv denote the v–periodic kernel de-
rived from k (also assume that kv exists). Then kv has a representation as a

Fourier series with ω0 := 2π
v and kv(x− y) =

∞∑
j=−∞

√
2π
v K(jω0)eijω0x Moreover

λj =
√

2πK(jω0) for j ∈ Z and Ck =
√

2
v .

This lemma tells one how to compute the discrete eigenvalue sequence for kernels
with infinite support; for more details see [35].
The above results show the overall covering numbers of a SV machine are con-
trolled by the entropy numbers of the admissible scaling operator A: εn(A: `2 →
`2). One can work this out (with constants), although it is somewhat intricate to
do so. Here we simply state how εn(A) depends asymptotically on the eigenvalues
of Tk for a certain class of kernels.
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Proposition 2 (Exponential–Polynomial decay). Suppose k is a Mercer
kernel with λj = β2e−αjp

for some α, β, p > 0. Then ln ε−1
n (A: `2 → `2) =

O(ln
p

p+1 n)

An example of such a kernel (for p = 2) is k(x) = e−x2
. It can also be shown

that the rate in the above proposition is asymptotically tight. For a proof, and
related results, see [35].

6 The Missing Pieces and Some Conclusions

In this short version we have omitted many details and extensions such as

Discretization How should one choose v in periodizing a non-compact kernel?
Higher Dimensions The results need to be extended to multi-dimensional k-

ernels to be practically useful. Several additional technical complications
arise in doing so.

Glueing it all Together We have given the ingredients but not baked the
cake. Since the approach we have taken is new, and since there are a wide
range of different uniform convergence results one may use we have refrained
from putting it all together into “master generalization error theorem.” It
should be clear that it is possible to do so.

Combining all these pieces together does give an (albeit complicated) answer
to the question “what is the effect of the kernel?” Different kernels, or even
different widths of the same kernel, give rise to different covering numbers and
hence different generalization performance. We hope eventually to be able to
give simple rules of thumb concerning the overall effect. The mere fact that
entropy number techniques provide a handle on the question is interesting in
itself though.
In summary, we have shown how to connect properties known about mappings
into feature spaces with bounds on the covering numbers. Our reasoning relied
on the fact that this mapping exhibits certain decay properties to ensure rapid
convergence and a constraint on the size of the weight vector in feature space.
This means that the corresponding algorithms have to restrict exactly this quan-
tity to ensure good generalization performance. This is exactly what is done in
Support Vector machines. The method used to obtain the results (reasoning vi-
a entropy numbers of operators) would seem to be a nice new viewpoint and
valuable for other problems.
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Fig. 1. Schematic picture of the new viewpoint.
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