
Regularized Principal Manifolds?

Alex J. Smola1, Robert C. Williamson2,
Sebastian Mika1, Bernhard Schölkopf1

1 GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany
2 Department of Engineering, Australian National University, Canberra, Australia

Abstract. Many settings of unsupervised learning can be viewed as
quantization problems — the minimization of the expected quantization
error subject to some restrictions. This allows the use of tools such as
regularization from the theory of (supervised) risk minimization for un-
supervised settings. Moreover, this setting is very closely related to both
principal curves and the generative topographic map.

We explore this connection in two ways: 1) we propose an algorithm for
finding principal manifolds that can be regularized in a variety of ways.
Experimental results demonstrate the feasibility of the approach. 2) We
derive uniform convergence bounds and hence bounds on the learning
rates of the algorithm. In particular, we give good bounds on the covering
numbers which allows us to obtain a nearly optimal learning rate of order

O(m− 1
2+α) for certain types of regularization operators, where m is the

sample size and α an arbitrary positive constant.

1 Introduction

The problems of unsupervised learning are much less precisely defined than
those of supervised learning. Usually no explicit cost function exists by which
the hypthesis can be compared with training data. Instead, one has to make
assumptions on the data, with respect to which questions may be asked.

A possible goal would be to look for reliable feature extractors, a setting that
can be shown to lead to Kernel Principal Component Analysis [8]. Another
option is to look for properties that represent the data best. This means leads
to a descriptive model of the data (and possibly also a quite crude model of
the underlying probability distribution). Principal Curves [6], the Generative
Topographic Mapping [2], several linear Gaussian models, or also simple vector
quantizers [1] are examples thereof.

We will study this type of models in the present paper. As many problems of
unsupervised learning can be formalized in a quantization functional setting,
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this will allow to use techniques from regularization theory. In particular this
leads to a natural generalization (to higher dimensionality and different criteria
of regularity) of the principal curves algorithm with a length constraint [7]. See
also [4] for an overview and background on principal curves. Experimental results
demonstrate the feasibility of this approach.

In the second part we use the quantization functional approach to give uniform
convergence bounds. In particular we derive a bound on the covering/entropy
number, using functional analytic tools with respect to the L∞(`d

2) metric. This
allows us to give a bound on the rate of convergence by O(m− 1

2+α) for arbitrary
positive α where m is the number of examples seen. For specific kernels this
improves on the rate in [7] which is O(m− 1

3 ). Curiously, using our approach
and a regularization operator equivalent to that implicitly used in [7] results
in a weaker bound of O(m− 1

4 ). We suggest a possible reason for this in the
penultimate section of the paper.

2 The Quantization Error Functional

Denote by X a vector space and X := {x1, . . . , xm} ⊂ X a dataset drawn iid
from an underlying probability distribution µ(x). Moreover consider index sets
Z, maps f : Z → X , and classes F of such maps (with f ∈ F).

Here the map f is supposed to describe some basic properties of µ(x). In par-
ticular one seeks such f that the so–called quantization error

R[f ] :=
∫
X

min
z∈Z

‖x − f(z)‖2dµ(x) (1)

is minimized. Unfortunately, this is unsolvable, as µ is generally unknown. Hence
one replaces µ by the empirical density µm(x) := 1

m

∑m
i=1 δ(x − xi) and instead

of (1) analyzes the empirical quantization error

Remp[f ] :=
1
m

m∑
i=1

min
z∈Z

‖xi − f(z)‖2. (2)

Many problems of unsupervised learning can be cast in the form of finding a
minimizer of (1) or (2). Let us consider some practical examples.

Example 1 (Sample Mean). Define Z := {1}, f : 1 → f1 with f1 ∈ X , and F to
be the set of all such functions. Then the minimum of

R[f ] :=
∫
X
‖x − f1‖2dµ(x) (3)

denotes the variance of the data and the minimizers of the quantization func-
tionals can be determined analytically by

argmin
f∈F

R[f ] =
∫
X

xdµ(x) and argmin
f∈F

Remp[f ] =
1
m

m∑
i=1

xi. (4)
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This is the (empirical) sample mean. Via the law of large numbers Remp[f ] and
its minimizer converge to R[f ] and the corresponding minimizer (which is already
a uniform convergence statement).

Example 2 (k–Vectors Quantization). Define Z := {1, . . . , k}, f : i → fi with
fi ∈ X , and F to be the set of all such functions. Then

R[f ] :=
∫
X

min
z∈{1,...,k}

‖x − fz‖2dµ(x) (5)

denotes the canonical distortion error of a vector quantizer. In practice one uses
the k–means algorithm to find a set of vectors {f1, . . . , fk} minimizing Remp[f ].
Also here [1], one can prove convergence properties of (the minimizer) of Remp[f ]
to (the one of) R[f ].

Instead of discrete quantization one can also consider a mapping onto a manifold
of lower dimensionality than the input space. PCA can also be viewed in this
way [6]:

Example 3 (Principal Components). Define Z := R, f : z → f0 + z · f1 with
f0, f1 ∈ X , ‖f1‖ = 1, and F to be the set of all such line segments. Then the
minimizer of

R[f ] :=
∫
X

min
z∈[0,1]

‖x − f0 − z · f1‖2dµ(x) (6)

yields a line parallel to the direction of largest variance in µ(x) [6].

Based on the properties of the current example, Hastie & Stuetzle [6] carried
this idea further by also allowing other than linear functions f(z).

Example 4 (Principal Curves and Surfaces). Denote Z := [0, 1]D (with D > 1
for principal surfaces), f : z → f(z) with f ∈ F be a class of continuous R

d-
valued continuous functions (possibly with further restrictions). The minimizer
of

R[f ] :=
∫
X

min
z∈[0,1]D

‖x − f(z)‖2dµ(x) (7)

is not well defined, unless F is a compact set. Moreover, even the minimizer of
Remp[f ] is not well defined either, in general. In fact, it is an ill posed problem
in the sense of Arsenin and Tikhonow [10]. Until recently [7], no convergence
properties of Remp[f ] to R[f ] could be stated.

Kégl et al. [7] modified the original “principal–curves” algorithm, in order to
prove bounds on R[f ] in terms of Remp[f ] and to show that the resulting estimate
is well defined. The changes imply a restriction of F to polygonal lines with a
fixed number of knots and, most importantly, fixed length L.1 Instead of the
1 In practice Kegl et al. use a constraint on the angles of a polygonal curve rather

than the actual length constraint to achieve sample complexity rates on the training
time. For the uniform convergence part, however, the length constraint is used.
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latter we now consider smoothness constraints on the estimated curve f(x). This
is done via a regularization operator. As well as allowing greater freedom in the
choice of regularizer (which, as we show, can lead to faster convergence), the
regularization operator framework can be extended to situations where D > 1.
Thus we can provide theoretical insight into principal manifold algorithms.

3 Invariant Regularizers

As a first step we will show that the class of admissible operators can be re-
stricted to scalar ones, provided some basic assumption about scaling behavior
and permutation symmetry are imposed.

Proposition 1 (Homogeneous Invariant Regularization). Any regularizer
Q[f ] that is both homogeneous quadratic and invariant under an irreducible or-
thogonal representation ρ of the group G on X , i.e. satisfies

Q[f ] ≥ 0 for all f ∈ F (8)
Q[af ] = a2Q[f ] for all scalars a (9)

Q[ρ(g)f ] = Q[f ] for all ρ(g) ∈ G (10)

is of the form Q[f ] = 〈Pf, Pf〉 where P is a “scalar” operator.

Proof. It follows directly from (9) and Euler’s “homogeneity property”, that
Q[f ] is a quadratic form, thus Q[f ] = 〈f, Mf〉 for some operator M . Moreover
M can be written as P ∗P as it has to be positive (cf. (8)).

Finally from 〈Pf, Pf〉 = 〈Pρ(g)f, Pρ(g)f〉 and the polarization equation it fol-
lows that P ∗Pρ(g) = ρ(g)P ∗P has to hold for any ρ(g) ∈ G. Thus, by virtue of
Schur’s lemma (cf. e.g. [5]) P ∗P only may be a scalar operator. Without loss of
generality, also P may be assumed to be scalar.

A consequence is that there exists no “vector valued” regularization operator
satisfying the invariance conditions. Hence it is useless to look for other operators
P in the presence of a sufficiently strong invariance.

Under the assumptions of proposition 1 both the canonical representation of
the permutation group in a finite dimensional vector space X and the group
of orthogonal transformations on X enforce scalar operators P . This follows
immediately from the fact that these groups are unitary and irreducible on X
by construction. Thus in the following we will only consider scalar operators P .

4 A Regularized Quantization Functional

We now propose a variant to minimizing the empirical quantization functional
which leads to an algorithm that is more amenable to implementation. Moreover,
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uniform convergence bounds can be obtained for the classes of smooth curves
induced by this approach. For this purpose, a regularized version of the empirical
quantization functional is needed.

Rreg[f ] := Remp[f ] +
λ

2
‖Pf‖2 =

m∑
i=1

minz∈Z‖xi − f(z)‖2 +
λ

2
‖Pf‖2. (11)

Here P is a scalar regularization operator in the sense of Arsenin and Tikho-
nov, penalizing unsmooth functions f (see [9] for details). (See some examples in
section 4.2.) For the sake of finding principal manifolds, utilizing a scalar regu-
larization operator simply means all curves or surfaces which can be transformed
into each other by rotations should be penalized equally.

Using the results of [9] regarding the connection between regularization operators
and kernels it appears suitable to choose a kernel expansion of f matching the
regularization operator P , i.e. 〈Pk(xi, ·), Pk(xj , ·)〉 = k(xi, xj). Finally assume
P ∗Pf0 = 0, i.e. constant functions are not regularized. For an expansion like

f(z) = f0 +
M∑
i=1

αik(zi, z) with zi ∈ Z, αi ∈ X , and k : Z2 → R (12)

with some previously chosen nodes z1, . . . , zM (of which one takes as many as
one may afford in terms of computational cost) the regularization term can be
written as

‖Pf‖2 =
M∑

i,j=1

〈αi, αj〉k(zi, zj). (13)

What remains is to find an algorithm that minimizes Rreg. This is achieved by
coordinate descent. In the following we will assume the data to be centered and
therefore drop the term f0. This greatly simplifies the notation.

4.1 An Algorithm for minimizing Rreg[f ]

Minimizing the regularized quantization functional for a given kernel expansion
is equivalent to solving

min
{α1,...,αM }⊂X
{ζ1,...,ζm}⊂Z


 m∑

i=1

∥∥∥∥∥∥xi −
M∑

j=1

αjk(ζi, zj)

∥∥∥∥∥∥
2

+
λ

2

M∑
i,j=1

〈αi, αj〉k(zi, zj)


 . (14)

This is achieved in an iterative fashion analogously to how the EM algorithm
operates. One iterates over minimizing (14) with respect to {ζ1, . . . , ζm}, equiv-
alent to the projection step, and {α1, . . . , αM}, which corresponds to the expec-
tation step. This is repeated until convergence, in practice, until the regularized
quantization functional does not decrease significantly any further. One obtains:
Projection: For each i ∈ {1, . . . , m} choose ζi := argmin ζ∈Z ‖f(ζ) − xi‖2.
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Clearly, for fixed αi, the so chosen ζi minimizes the term in (14), which in turn is
equal to Rreg[f ] for given αi and X . Adaptation: Now the parameters ζi are fixed
and αi is adapted such that Rreg[f ] decreases further. For fixed ζi differentiation
of (14) with respect to αi yields(

λ

2
Kz + K>

ζ Kζ

)
α = K>

ζ X (15)

where (Kz)ij := k(zi, zj) is an M ×M matrix and (Kζ)ij := k(ζi, zj) is m×M .
Moreover, with slight abuse of notation, α, and X denote the matrix of all
parameters, and samples, respectively. The term in (14) keeps on decreasing
until the algorithm converges to a (local) minimum. What remains is to find
good starting values. Initialization If not dealing, as assumed, with centered
data, set f0 to the sample mean, i.e. f0 = 1

m

∑m
i=1 xi. Moreover, choose the

coefficients αi such that f approximately points into the directions of the first
D principal components given by the matrix V := (v1, . . . , vD). This is done as
follows, analogously to the initialization in the generative topographic map [2,
eq. (2.20)].

min
{α1,...,αM}⊂X


 M∑

i=1

∥∥∥∥∥∥V (zi−z0)−
M∑

j=1

αjk(zi, zj)

∥∥∥∥∥∥
2

+
λ

2

M∑
i,j=1

〈αi, αj〉k(zi, zj)


.

(16)
Thus α is given by the solution of

(
λ
21 + Kz

)
α = V (Z − Z0) where Z denoted

the matrix of zi, z0 the mean of zi, and Z0 the matrix of z0 correspondingly.

The derivation of this algorithm was quite ad hoc, however, there are simi-
lar precursors in the literature. An example are principal curves with a length
constraint. We will show below that for a particular choice of a regularizer,
minimizing (11) is equivalent to the latter.

4.2 Examples of Regularizers

By choosing P := ∂z, i.e. the differentiation operator, ‖Pf‖2 becomes an integral
over the squared “speed” of the curve. Reparameterizing f to constant speed
leaves the empirical quantization error unchanged, whereas the regularization
term is minimized. This can be seen as follows: by construction

∫
[0,1] ‖∂zf(z)‖dz

does not depend on the (re)parameterization. The variance, however, is minimal
for a constant function, hence ‖∂zf(z)‖ has to be constant over interval [0, 1].
Thus ‖Pf‖2 equals the squared length L2 of the curve at the optimal solution.

One can show that minimizing the empirical quantization error plus a regularizer
is equivalent to minimizing the empirical quantization error for a fixed value of
the regularization term (for λ adjusted suitably). Hence the proposed algorithm
is equivalent to finding the optimal curve with a length constraint, i.e. it is
equivalent to the algorithm proposed by [7].2
2 The reasoning is slightly incorrect — f cannot be completely reparameterized to

constant speed, as it is an expansion in terms of a finite number of nodes. However
the basic properties still hold, provided the number of kernels is sufficiently high.
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In the experiments we chose a Gaussian RBF kernel k(x, x′) = exp(− ‖x−x′‖2

2σ2 ).
This corresponds to a regularizer penalizing all orders of derivatives simultane-
ously. In particular [14] show that this kernel corresponds to the pseudodiffer-
ential operator defined by

‖Pf‖2 =
∫

dx

∞∑
n=0

σ2n

n!2n
(Onf(x))2 (17)

with O2n = ∆n and O2n+1 = ∇∆n, ∆ being the Laplacian and ∇ the gradient
operator. This means that one is looking not only for smooth functions but also
curves whose curvature and other higher–order properties change very slowly.
For more details on regularization operators see e.g. [9].

4.3 The Connection to the GTM

Just considering the basic algorithm of the GTM (without the Bayesian frame-
work), one can observe that it minimizes a rather similar quantity to Rreg[f ].
It differs in its choice of Z, which is chosen to be a grid, identical with the
points zi in our setting, and the different regularizer (called Gaussian prior in
that case) which is of `2 type. In other words instead of using ‖Pf‖2 Bishop et
al. [2] choose

∑
i ‖αi‖2 as a regularizer. Finally in the GTM several ζi may take

on “responsibility” for having generated a data-point xi (this follows naturally
from the generative model setting in the latter case).

Note that unlike in the GTM (cf. [2, sec. 2.3]) the number of nodes (for the
kernel expansion) is not a critical parameter. This is due to the fact that there
is a coupling between the single centers of the basis functions k(zi, zj) via the
regularization operator. If needed, one could also see the proposed algorithm in
a Gaussian Process context (see [12]) — the data X then should be interpreted
as created by a homogeneous process mapping from Z to X . Finally the use of
periodical kernels (cf. [9]) allows one to model circular structures in X .

5 Experiments

In order to show that the basic idea of the proposed algorithm is sound, we
ran several toy experiments (cf. figure 1). In all cases Gaussian rbf kernels,
as discussed in section 4.2, were used. We generated different data sets in 2
and 3 dimensions from 1 or 2 dimensional parameterizations. Then we applied
our algorithm using the prior knowledge about the original parameterization
dimension of the data set in choosing the latent variable space to have the
appropriate size. For almost any parameter setting (λ, M , and width of basis
functions) we obtained reasonable results.

We found that for a suitable choice of the regularization factor λ a very close
match to the original distribution can be achieved. The number and width of the
basis functions had of course an effect on the solution, too. But their influence
on the basic characteristics is quite small.
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Fig. 1. Upper 4 images. We generated a dataset (small dots) by adding noise to
a distribution indicated by the dotted line. The resulting manifold generated by
our approach is given by the solid line (over a parameter range of Z = [−1, 1]).
From left to right we used different values for the regularization parameter λ =
0.1, 0.5, 1, 4. The width and number of basis function was constant 1, and 10
respectively. Lower 4 images. Here we generated a dataset by sampling (with
noise) from a distribution depicted in the left most image (small dots are the
sampled data). The remaining three images show the manifold yielded by our
approach over the parameter space Z = [−1, 1]2 for λ = 0.001, 0.1, 1. The width
and number of basis functions was constant (1 and 36).

Finally, figure 2 shows the convergence properties of the algorithm. One can
clearly observe that the overall regularized quantization error decreases for each
step, while both the regularization term and the quantization error term are free
to vary. This experimentally shows that the algorithm finds a (local) minimum
of Rreg[f ].

6 Uniform Convergence Bounds

We now proceed to an analysis of the rate of convergence of the above algo-
rithm. To avoid several technicalities (like boundedness of some moments of the
distribution µ(x) [11]) we will assume that there exists a ball of radius r such
that Pr{‖x‖ ≤ r} = 1 for all x. Kégl et al. [7] showed that under these assump-
tions also the prinicipal manifold f is contained in the ball Ur of radius r, hence
the quantization error will be no larger than (2r)2 for all x. In order to derive
uniform convergence bounds let us introduce the L∞(`d

2) norm on F (assumed
continuous)

‖f‖L∞(`d
2) := sup

z∈Z
‖f(z)‖`d

2
(18)

where the ‖ · ‖`d
2

denotes the Euclidean norm in d dimensions. The metric is
induced by the norm in the usual fashion. Given a metric ρ and a set F , the
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Fig. 2. Left: regularization term, middle: empirical quantization error, right:
regularized quantization error vs. number of iterations.

ε covering number of F , denoted N (ε,F , ρ) (also Nε when the dependency is
obvious), is the smallest number of ρ-balls of radius the union of which contains
F .

The next two results are similar in their style to the bounds obtained in [7], how-
ever slightly streamlined, as they are independent of some technical conditions
on F as needed in [7].

Proposition 2 (L∞(`d
2) bounds for Principal Manifolds).

Denote by F a class of continuous functions from Z into X ⊆ Ur and let µ be a
distribution over X . If m points are drawn i.i.d. from µ, then for all η > 0, ε ∈
(0, η/2)

Pr

{
sup
f∈F

∣∣Rm
emp[f ] − R[f ]

∣∣ > η

}
≤ 2N (

ε
8r ,F , L∞(`d

2)
)
e−m(η−ε)2/(2r2).

Proof. By definition of Rm
emp[f ] =

∑m
i=1 minz ‖f(z) − xi‖2 the empirical quan-

tization functional is a sum of m iid random variables which are each bounded
by 4r2 due to the fact that x is contained in a ball of radius r. Hence we may
apply Hoeffding’s inequality to obtain

Pr
{∣∣Rm

emp[f ] − R[f ]
∣∣ ≥ η

} ≤ 2e−mη2/(2r2). (19)

By the Lipschitz property of the `d
2 norm (the ‘target‘ values are bounded by

r), a ε
8r cover of F is an ε

2 cover of the loss function induced class: For every
f ∈ F there exists some fi ∈ Nε/8r such that ‖fi − f‖2

L2m∞ (`d
2)

≤ ε
2 . Hence also

|Rm
emp[f ] − Rm

emp[fi]| ≤ ε
2 and |R[f ] − R[fi]| ≤ ε

2 . Consequently

Pr
{∣∣Rm

emp[f ] − R[f ]
∣∣ ≥ η

} ≤ Pr
{∣∣Rm

emp[fi] − R[fi]
∣∣ ≥ η − ε

}
(20)

Substituting (20) into (19) and taking the union bound over Nε/8r gives the
desired result.

This result is useful to assess the quality of an empirically found manifold. In
order to obtain rates of convergence we also need a result connecting the expected
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quantization error of the principal manifold f∗
emp minimizing Rm

emp[f ] and the
manifold f∗ with minimal quantization error R[f∗].

Proposition 3 (Rates of Convergence for Optimal Estimates).
With the definitions of Proposition 2 and the definition of f∗

emp and f∗ one has

Pr

{
sup
f∈F

∣∣R[f∗
emp] − R[f∗]

∣∣ > η

}
≤ 2

(N (
ε
4r ,F , L∞(`d

2)
)

+ 1
)
e−

m(η−ε)2

8r2 .

Proof. The proof is similar to the one of proposition 2, however uses Nε/4r and
η/2 to bound R[f∗

emp]

R[f∗
emp] − R[f∗] = R[f∗

emp] − Remp[f∗
emp] + Remp[f∗

emp] − R[f∗] (21)
≤ ε + R[fi] − Remp[fi] + Remp[f∗

emp] − R[f∗] (22)
≤ ε + 2 max

f∈Nε∪{f∗}
|R[f ]− Remp[f ]| (23)

where fi ∈ Nε and clearly Remp[f∗
emp] ≤ Remp[f∗]. Now apply Hoeffding’s in-

equality, the union bound and change η + ε into η to prove the claim.

After that we provided a number of uniform convergence bounds it is now nec-
essary to bound N in a suitable way.

7 Covering and Entropy Numbers

Before going into details let us briefly review what already exists in terms of
bounds on the covering number N for L∞(`d

2) metrics. Kégl et al. [7] essentially
show that

logN (ε,F) = O(1
ε ) (24)

under the following assumptions: They consider polygonal curves f(·) of length
L in a sphere Ur of radius r in X . The distance measure (no metric!) for N (ε)
is defined as supx∈Ur

|∆(x, f) − ∆(x, f ′)| ≤ ε. Here ∆(x, f) is the minimum
distance between a curve f(·) and x ∈ Ur.

By using functional analytic tools [13] one can obtain more general results, which
then, in turn, can replace (24) to obtain better bounds on the expected quanti-
zation error by using the properties of the regularization operator.

Denote by L(E, F ) the set of all bounded linear operators T between two normed
spaces (E, ‖ · ‖E), (F, ‖ · ‖F ). The nth entropy number of a set M ⊂ E relative
to a metric ρ, for n ∈ N, is

εn(M) := inf{ε:N (ε, M, ρ) ≤ n}
The entropy numbers of an operator T ∈ L(E, F ) are defined as

εn(T ) := εn(T (UE)). (25)
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Note that ε1(T ) = ‖T ‖, and that εn(T ) certainly is well defined for all n ∈ N if
T is a compact operator, i.e. if T (UE) is compact.

What will be done in the following is to bound the entropy number of parametrized
curves in L∞(`d

2) satisfying the constraint ‖Pf(·)‖2 ≤ Λ by viewing

FΛ := {f :Z 3 z 7→ f(z) ∈ R
d: f is continuous, ‖Pf‖ ≤ Λ}

as the image of the unit ball under an operator T . A key tool in bounding the
relevant entropy number is the following factorization result.

Lemma 1 (Carl and Stephani [3, p. 11]). Let E, F, G be Banach spaces,
R ∈ L(F, G), and S ∈ L(E, F ). Then, for n, t ∈ N,

εnt(RS) ≤ εn(R)εt(S), εn(RS) ≤ εn(R)‖S‖, εn(RS) ≤ εn(S)‖R‖. (26)

As one is dealing with vector valued functions FΛ, it handy to view f(·) as
generated by a linear d = dimX dimensional operator in feature space, i.e.
f(z) = WΦ(z) = (〈w1, Φ(z)〉, . . . , 〈wd, Φ(z)〉) with ‖W‖2 :=

∑d
i=1 ‖w‖2. Here

the inner product 〈·, ·〉 is given by the regularization operator P as

〈f, g〉 := 〈Pf, Pg〉L2 =
∫

(Pf)(x)dx (27)

where the latter was described in section 3. In practice w is expanded in terms
of kernel functions k(xi, ·). The latter can be shown to represent the map from
Z into the associated Reproducing Kernel Hilbert Space (RKHS) [9] (sometimes
called feature space). Hence Φ(x) = k(xi, ·), where the dot product is given by
(27). These techniques may be used to give uniform convergence bounds, which
are stated in terms of the eigenvalues λi of the RKHS.

Proposition 4 (Williamson, Smola, and Schölkopf [13]). Let Φ(·) be the
map onto the eigensystem introduced by a Mercer kernel k with eigenvalues λi,
Ck a constant of the kernel, and A be the diagonal map

A : R
N → R

N, A : (xj)j 7→ A(xj)j = (ajxj)j . (28)

Then A−1 maps Φ(X ) into a ball of finite radius RA = Ck‖(
√

λjaj)j‖`2 , centered
at the origin if and only if (

√
λjaj)j ∈ `2.

The evaluation operator S plays a crucial role to deal with entire classes of
functions (instead of just a single f(·)). It is defined as

SΦ(Z) : (`2)d → L∞(`d
2) and SΦ(Z) : W 7→ (〈w1, Φ(Z)〉, . . . , 〈wd, Φ(Z)〉) . (29)

By a technical argument one can see that it is possible to replace (`2)d by `2

without further worry — simply reindex the coefficients by

Id : (`2)
d → `2

Id :
((w11, w12, . . .), (w21, w22, . . .), . . . , (wd1, wd2, . . .)) →

(w11, w21, . . . , wd1, w12, w22, . . . , wd2, w13, . . .)
(30)
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By construction IdU(`2)d = U`2 and vice versa, thus ‖Id‖ = ‖I−1
d ‖ = 1. Before

proceeding to the actual theorem one has to define a scaling operator Ad for the
multi output case as the d times tensor product of A, i.e.

Ad : (`2)d → (`2)d and Ad := A × A × . . . × A︸ ︷︷ ︸
d–times

(31)

Theorem 1 (Bounds for Principal Curves Classes). Let k be a Mercer
kernel, be Φ the corresponding map into feature space, and let T := SΦ(Z)Λ
where SΦ(Z) is given by (29) and Λ ∈ R

+. Let A be defined by (28) and Ad by
(31). Then the entropy numbers of T satisfy the following inequality:

εn(T ) ≤ Λεn(Ad) (32)

Proof. As pointed out before one has to use a factorization argument. In partic-
ular one uses the following property.

(33)

In other words one exploits

εn

(
SΦ(Z)

(
ΛU(`2)d

))
= εn

(
S(A−1Φ(Z))AdΛI−1

d

)
(34)

≤ ∥∥S(A−1Φ(Z))

∥∥ εn(Ad)Λ
∥∥I−1

d

∥∥ ≤ Λεn(Ad). (35)

Here we have relied on Proposition 4 which says A−1Φ(Z) ⊂ U and thus by
Cauchy-Schwarz, ‖S(A−1Φ(Z))‖ ≤ 1.

The price for dealing with vector valued functions is a degeneracy in the eigen-
values of Ad — scaling factors appear d times, instead of only once in the single
output situation. From a theorem for degenerate eigenvalues of scaling operators
[13] one immediately obtains the following corollary.

Corollary 1 (Entropy numbers for the vector valued case). Let k be a
Mercer kernel, let A be defined by (28) and Ad by (31). Then

εn(Ad: `2 → `2) ≤ inf
(as)s:

�√
λs

as

�
s

∈`2

sup
j∈N

6Ck

√
d

∥∥∥∥
(√

λs

as

)
s

∥∥∥∥
`2

n− 1
j·d (a1a2 · · · aj)

1
j .

Note that the dimensionality of Z does not affect these considerations directly,
however it has to be taken into account implicitly by the decay of the eigenvalues
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[13] of the integral operator induced by k. d appears twice — once due to the
increased operator norm (the

√
d term) for the scaling operator Ad, and secondly

due to the slower decay properties (each scaling factor ai appears d times).

The same techniques that led to the bounds on entropy numbers in [13] can also
be applied here. As this is rather technical, we only sketch a similar result for
the case of principal manifolds, for dimZ = 1 and exponential polynomial decay
of the eigenvalues λi of the kernel k.

Proposition 5 (Exponential–Polynomial decay). Suppose k is a Mercer
kernel with λj = β2e−αjp

for some α, β, p > 0. Then

ln ε−1
n (Ad: `2 → `2) = O(ln

p
p+1 n) (36)

Proof. We use a series (aj)j = e−τ/2jp

. Then we bound

√
d

∥∥∥∥∥
(√

λj

aj

)
j

∥∥∥∥∥
`2

=
√

dβ
(∑∞

j=0 e(τ−α)jp
) 1

2 ≤ √
dβ

√
1 +

∫ ∞
0

e(τ−α)tpdt

=
√

dβ
√

1 + Γ (1/p)
p(α−τ)1/p

and (a1a2 . . . aj)
1
j = e

− 1
2j τ

jP
s=1

sp

≤ e−τφjp

for some positive number φ. For the
purpose of finding an upper bound, supj∈N

can be replaced by supj∈[1,∞]. One

computes supj∈[1,∞] n
− 1

dj e−τφjp

which is obtained for some j = φ′ ln
1

p+1 n and
some φ′ > 0. Resubstitution yields the claimed rate of convergence for any
τ ∈ (0, α) which proves the theorem.3

Possible kernels for which proposition 5 applies are Gaussian rbf, i.e. k(x, x′) =
exp(−‖x− x′‖2) (p = 2) and the “Damped Harmonic Oscillator”, i.e. k(x, x′) =

1
1+‖x−x′‖2 with p = 1. For more details on this issue see [13]. Finally one has to
invert (36) to obtain a bound on N (ε,FΛ). We have:

lnN
( ε

Λ
,FΛ, L∞(`d

2)
)

= O(− ln
p+1

p ε) (37)

A similar result may be obtained for the case of polynomial decay in the eigen-
values of the Mercer kernel. Following [13] one gets:

Proposition 6 (Polynomial decay). Suppose k is a Mercer kernel with λj =
β2j−α−1 for some α, β > 0. Then ε−1

n (Ad : `2 → `2) = O(ln
α
2 n).

8 Rates of Convergence

It is of theoretical interest how well Principal Manifolds can be learned. Kégl et
al. [7] have show a O(m−1/3) result for principal curves (D = 1) with length
3 See [13] how exact constants can be obtained instead of solely asymptotical rates.
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contraint regularizer. We show that if one utilizes a more powerful regularizer (as
one can do using our algorithm) one can obtain a bound of the form O(m− α

2(α+1) )
for polynomial rates of decay of the eigenvalues of k (α+1 is the rate of decay); or
O(m−1/2+α) for exponential rates of decay (α is an arbitrary positive constant).
The latter is nearly optimal, as supervised learning rates are no better than
O(m−1/2).

Proposition 7 (Learning Rates for Principal Manifolds).
For any fixed FΛ the learning rate of principal manifolds can be lower bounded
by O(m−1/2+α) where α is an arbitrary positive constant, i.e.

R[f∗
emp] − R[f∗] ≤ O(m−1/2+α) for f∗

emp, f
∗ ∈ FΛ (38)

if the eigenvalues of k decay exponentially. Moreover the learning rate can be
bounded by O(m− α

2(α+1) ) in the case of polynomially decaying eigenvalues with
rate α + 1. We obtain

R[f∗
emp] − R[f∗] ≤ O(m− α

2(α+1) ) for f∗
emp, f

∗ ∈ FΛ (39)

Proof. We use a clever trick from [7], however without the difficulty of also
having to bound the approximation error. Proposition 3 will be useful.

R[f∗
emp] − R[f∗] =

∫ ∞
0 Pr

{
R[f∗

emp] − R[f∗] > η
}

dη

≤ u + ε + 2(N (ε/4r) + 1)
∫ ∞
u+ε e−

m(η−ε)2

8r2 dη

≤ u + ε + 8r2

um (N (ε/4r) + 1)e−
mu2

8r2

≤
√

8r2 ln(N (ε/4r)+1)
m + ε +

√
8r2

m ln(N (ε/4r)+1)

(40)

Here we used
∫ ∞

x exp(−t2/2)dt ≤ exp(−x2/2)/x in the second step. The third
inequality was derived by substituting u2 = 8r2

m log(N (ε/4r) + 1).

Setting ε =
√

1/m and exploiting (37) yields

R[f∗
emp] − R[f∗] = O

(√
ln

p+1
p m/m

)
+ O(m− 1

2 ). (41)

As ln
p+1

p m can be bounded by any cαmα for suitably large cα and α > 0 one ob-
tains the desired result. For polynomially decaying eigenvalues one obtains from
proposition 6 that for a sufficiently large constant c lnN (

ε/4r,F , L∞(`d
2)

) ≤
cε−

2
α . Substituting this into (40) yields

R[f∗
emp] − R[f∗] ≤

√
23− 4

α r2− 2
α c

m
ε−

1
α + 2ε + O(m− 1

2 ). (42)

The minimum is obtained for ε = c′m− α
2(α+1) for some c′ > 0. Hence m− 1

2 ε−
1
α

is of order O(m− α
2(α+1) ), which proves the theorem.
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Interestingly the above result is slightly weaker than the result in [7] for the case
of length constraints, as the latter corresponds to the differentiation operator,
thus polynomial eigenvalue decay of order 2, i.e. α = 1 and therefore to a rate

α
2(α+1) = 1

4 (Kégl et al. [7] obtain 1
3 ). It is unclear, whether this is due to a

(possibly) not optimal bound on the entropy numbers induced by k, or the fact
that our results were stated in terms of the (stronger) L∞(`d

2) metric. This yet
to be fully understood weakness should not detract from the fact that we can get
better rates by using stronger regularizers, and our algorithm can utilize such
regularizers.

9 Summing Up

We proposed a framework for unsupervised learning that can draw on the tech-
niques available in minimization of risk functionals in supervised learning. This
yielded an algorithm suitable to deal with principal manifolds. The expansion in
terms of kernel functions and the treatment by regularization operators made it
easier to decouple the algorithmic part (of finding a suitable manifold) from the
part of specifying a class of manifolds with desirable properties. In particular,
our algorithm does not crucially depend on the number of nodes used.

Sample size dependent bounds for principal manifolds were given which depend
on the underlying distribution µ in a very mild way. These may be used to
perform capacity control more effectively. Moreover our calculations have shown
that regularized principal manifolds are a feasible way to perform unsupervised
learning. The proofs largely rest on a connection between functional analysis
and entropy numbers [13]. This fact also allowed us to give good bounds on the
learning rate.
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