Classification on Proximity Data with LP—Machines
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Abstract

We provide a new linear program to deal with clas-
sification of data in the case of functions written in
terms of pairwise proximities. This allows to avoid
the problems inherent in using feature spaces with in-
definite metric in Support Vector Machines, since the
notion of a margin is purely needed in input space
where the classification actually occurs. Moreover in
our approach we can enforce sparsity in the proxim-
ity representation by sacrificing training error. This
turns out to be favorable for proximity data. Similar to
v—SV methods, the only parameter needed in the algo-
rithm is the (asymptotical) number of data points be-
ing classified with a margin. Finally, the algorithm is
successfully compared with »—SV learning in proxim-
ity space and K —nearest-neighbors on real world data
from Neuroscience and molecular biology.

1 Introduction

Support Vector (SV) learning has proven to be an ef-
fective algorithm for data classification. However, it
is inherently connected to using quadratic (or even
general convex) programming and kernels & satisfying
Mercer’s condition [16]. Whilst this is not a restriction
in general it may sometimes be desirable to overcome
this limitation. Such a case occurs if the data is avail-
able only in terms of an implicit proximity measure
[4], which may not satisfy the properties of a metric

at all. Proximity data are frequently encountered in
fields like psychology, Neuroscience, molecular biol-
ogy, and economics [5]. Whereas previous approaches
focused on constructing a proper Euclidean metric by
furnishing the feature space with a positive signature
(see also [12]), we avoid the problem completely by
switching to a different regularization approach that
does not require these properties at all.

Moreover it is sometimes important to obtain solu-
tions that have a pre—specified level of accuracy. In
[10] we showed how this could be taken into account
automatically in the SV case. The current modifica-
tion is geared towards providing the same versatility
also for classification of proximity data via linear pro-
gramming. We apply the following modifications to
standard SV machines:

e The relation between proximity data and kernels
(sec. 2) leads to methods to use also functions
k(x,x') that do not satisfy Mercer’s condition.

e By replacing the standard SV regularization term
corresponding to the flattest function in feature
space by a regularizer enforcing sparseness in the
proximity representation we reduce the optimiza-
tion problem from quadratic to linear (sec. 3).

e Introduction of an adaptive margin leads to an al-
gorithm that automatically selects the number of
basis functions, e.g. reference points, such that
asymptotically a specified fraction of patterns is
classified correctly with a margin (cf. sec. 4).



Finally we give a theoretical (sec. 5) and experimental
(sec. 6) analysis of the properties of the new algorithm.

2 Proximities and Kernels

Suppose we want to learn w in a linear decision func-
tion f, i.e. classification of a data point x € X is car-
ried out by computing the sign of f with

f(x) =w'x+b. (1)

Kernels are introduced in SV-type learning algorithms
by making use of an implicit representation of a fea-
ture map ® : X — F via

k(x,x') == (2(x), ®(x)). 2

Here (-, -) is the dot product in some feature space F.
Any symmetric kernel satisfying Mercer’s condition

[ ke xgx)g(x) 2 0forall g € L), G
X

where A’ is a compact set, can be written as in (2). In
practice, these assumptions may not always hold.

Kernels on Data For instance, we may not want to
(or be unable to) analyze a given kernel & analyti-
cally. However, we still may be able to compute for
a finite amount of data x1,...,X, a map ® such that
k corresponds to a dot product in the linear span of
the ®(x;), provided the original dot product matrix
K;; := k(x;,x;) is nonnegative [9]:

Proposition 1 Suppose the data x1,...,%¢ and the
kernel k are such that the matrix K;; = k(x;,x;)
is positive. Then it is possible to construct a map
® into a feature space F such that k(x;,X;) =
(®(x;), ®(x;)). Conversely, for a map ® into some
feature space F, the matrix K;; = (®(x;), ®(x;)) is
positive.

In particular, this result implies that given data
X1,...,X¢, and a kernel £ which gives rise to a pos-
itive matrix K, it is always possible to construct a fea-
ture space F of dimensionality < ¢ that we are implic-
itly working in when using kernels.

Kernels via Proximity Measures In other cases we
may be only given a proximity or “distance” mea-
sure p(x,x’). Under the assumption that p was de-
rived from a quadratic form by p(x,x') = (®(x) —
B ('), ®(x) — ®(2'))2 we may apply the polarization
equality to reconstruct the bilinear form by

B, x) = 3 (06,007 + p(x',0)7 = plx,X)?) . (4)

From a numerical point of view the kernel should be
reconstructed by choosing the origin ®(0) in F at the
center of mass 1/£3, ®(x;) (see [15]).!

If the signature of the underlying space F is indefi-
nite (e.g. relativistic space—time), one may still use (4)
to reconstruct the quadratic form. Projective methods
in F, like the classification given by (1) or kernel PCA,
however, can still be carried out (see [4, 12]).

Metrics and the Proximity Space Another way to
deal with a proximity measure p not generated by a
quadratic form with positive signature is the following:
The functions p(x;,-) can be used as basis functions
of a feature space directly [4]. Thus, given x4, . .., Xy,
we define a data—dependent mapping ¥ by

(%0, %)) " ()

and our decision functions (1) become

U x = (p(x1,X%),...

fx)=wl¥(x)+0, (6)

which will be the basis of all of subsequent consider-
ations. If we use P;; = p(x;,X;) to denote the given
proximity matrix, we see that the kernel matrix is given
by K = P2 which is positive definite by construction
and thus can be used in standard SV-learning.

3 Constructing LP-Machines

For the classification task our goal is to find a function
f that minimizes the following risk functional

Rf] = / ((fx)p) dP(xy), (D)

where c¢(+, -) is a given loss function. It is well known
[16] that this problem cannot be solved directly, since

I The freedom to choose the origin is obvious from the data given,
since inter—pattern distances only provide information about their
relative distances. The dot product, however, depends on the abso-
lute distance from the origin, too.



P(x,y) is generally unknown. Instead, we are given a
training set {(x1,v1),-.., (X¢,ye)} C X x {—1,4+1}
and try to find some suitable f based thereon. Mini-
mization of the empirical risk
14
Remp[f] 5= 5 > e(f(xi), i) ®)
i=1
is an ill-posed problem. Moreover, the solution will
have poor generalization performance, unless further
restrictions are imposed on f. Both problems can be
addressed by adding a convex regularizer Q[ f] which
effectively restricts the choice of models to a compact
set. Hence for some A > 0 we minimize

Rreg[f] = Remp[f] + AQ[f] . )]

For SV-learning one uses Q[f] = %||w||3 which leads
to flat linear functions in feature space. While this is an
appealing property for vectorial data, it is unfavorable
for proximity data represented in the data—dependent
proximity space (5). Here, it is preferable to enforce
sparseness in the components of the vector w itself,
because each component i therein requires the mea-
surement of the proximity to the respective training
example x;. The attractive reduction of the training
set achieved by SV-learning does not carry over in the
case of data—dependent representation.

Following the reasoning of [1, 2] with regard to fea-
ture selection, i.e. sparseness in the expansion coeffi-
cients of w, we employ the following regularizer

4
QL) = lIwlly = 3 . (10)
=1

Finally, the convexity criterion is easily computable in
the general case and ensures restriction of the weight
vector to a (pre)compact domain, too. One can show
[14] that efficient capacity control is possible as well
in this case. For the soft margin loss function [3], i.e.

C(f(X),y) = max(]- - yf(X),O) (11)

we obtain the following optimization problem:

minimize Ele (i +af)+C Zle &
subjectto  y; f(x;) > 1—¢; 12)
A, CK:, 52 2 0
where by virtue of (5) and (6)
¢

Fx) = (i —of) p(xi,X) + b,

i=1
wi

and C' is some trade off constant to be adjusted sepa-
rately. To convert (9) into (12) we split up «; into o;
and « in order to eliminate the | - | in the objective
function (with positive constrained a;;, o} ). Moreover
we modified (11) in a standard way [3] by introducing
slack variables to eliminate max(-, -).

Similar settings for vectorial data have been pro-
posed recently in [1, 7]. The disadvantage is that it
is quite difficult to find a meaningful interpretation of
C' and to adjust it properly.

4 Adaptive Margins

Several uniform convergence bounds (e.g. [13]) use
the size of the model class and the number of mar-
gin errors, i.e. the number of training patterns with
yif(x;) < 1 as a fundamental criterion to determine
the confidence rates of the estimate. Also for this rea-
son a modification of the algorithm described in the
previous section would be desirable.

Both goals can be achieved by a slight modifica-
tion of the original classification problem following
the lines of [10]: we make the width of the margin p,
so far set to 1 (cf. (11)) a variable of the optimization
problem.

14

Rreg[f] = Remplf] + ) _lail —vp  (13)

i=1

Note that we dropped the regularization constant A
— as in the Support Vector case [11], one can show
that keeping A adds nothing: the decision function is
invariant with respect to multiplication of «, &, b by
some positive constant. Hence we may fix a priori
Ele |a;| = 1 and solve

¢
minimize § Y & —vp
i=1
¢
subjectto Y a;+af =1 (14)
i=1

yif(xi) > p—¢&
aiaazagiap Z 0

Again we used the trick of splitting up «; into two pos-
itive variables «; and o in order to obtain a purely lin-
ear optimization problem. In matrix notation (which is
convenient when dealing with a linear optimizer) (14)
can be stated as follows:



minimize c¢'a
. a > 0
subject to dTa — 1
a = (a,0€pb) R xR
where c := (0,0,41,-1,0) € R3 2
A = (P,,-P,I-1y) c RB+2)x¢
d := (1,1,0,0,0) € R3+2

Here (Py)i; = yip(xi,%;), y = (y1,---,y¢) . 1
denotes the vector of ones, 0 the vector of zeros, and I
the unit matrix.

5 Theoretical Analysis

We may use the reasoning of [11] which was devel-
oped for SV Classification directly to analyze the the-
oretical properties of the algorithm.

Proposition 2 Suppose we run v-LP classification
with k on some data with the resulting p > 0. Then

(i) v upper—bounds the fraction of margin errors.

(ii) 1—v is an upper bound on the fraction of patterns
with a margin larger than p.

(iii) Suppose the data were drawn iid from a distri-
bution P(x,y) = P(x)P(y|x) such that neither
P(x,y = 1) nor P(x,y = —1) contains any
discrete component. Suppose, moreover, that the
kernel is analytic and non-constant. With prob-
ability 1, asymptotically, v equals the fraction of
margin errors and 1 — v the number of patterns
classified with a margin larger than p.

Proof

Ad (i) + (ii): Assume that we found the optimal so-
lution in terms of oy, o}, &;, b, p. Moreover denote by
1 — wyp the fraction of points being classified with a
margin larger than p, and by v, the fraction of points
with a margin smaller than p. Now we apply a varia-
tional argument in terms of p.

Decreasing p by a small amount A will cause a frac-
tion of vy slack variables &; to decrease by A, hence
the overall change in the objective function would be
A(v — Voyw). Since we assumed that the objective
function attains a minimum for v, we conclude that
V — Viow > 0 which proves (i). Likewise, increasing p
yields the same conclusion for (ii).

Ad (iii): It follows from the condition on P(x,y)
that apart from some set of measure zero (arising
from possible singular components), the two class
distributions are absolutely continuous and can be
written as integrals over distribution functions. As
the kernel is analytic and non-constant, it cannot
be constant in any open set — otherwise it would
be constant everywhere. Therefore, functions f
constituting the argument of the sign in the decision
function (i.e. sign(f(x))) transform the distribu-
tion over x into distributions such that for all f,
and all t € R, limy_ P(|f(z) +t| < 7) = 0.
Moreover we know that the class of these func-
tions has well-behaved covering numbers [14],
hence we get uniform convergence: for all & > 0,
lim lim P(sup; P (|f(x) +t| < v) > a) = 0.

¥—0 f{—o00

Hence, sup, Py(|f(x) + t| = 0) converges to zero in
probability. In particular (f = =£p) almost surely the
fraction of points exactly on the margin tends to zero.
Combining (i) and (ii) then shows that both fractions
converge almost surely to v. [ |

6 Experiments

Artifical Data In order to allow for proper visu-
alization we performed experiments on 2-D vecto-
rial data. We used the city—block metric (L;—metric)
p(x,x') = ||x — x'||; for the calculation of proximi-
ties (not to be confused with the L; regularizer (10)).
The binary classification problem (crosses vs. dots) —
not linearly separable in R? — is shown in Fig. 1. We
varied the parameter v in order to assess its effect on
the shape of the decision functions and the sparseness
of the representation (5). For small values of v the
empirical risk is reduced to zero at the cost of a high—
dimensional representation (proximities to all circled
training objects required). Increasing the value of v
leads to a higher fraction of margin errors (see Propo-
sition 2). However, with increasing v the number of
expansion coefficients is considerably reduced. The
lower right part of Fig. 1 illustratetes the effective em-
bedding space resulting from a learning with v = 0.7.
Note, how the algorithm not only learned a decision
function but also an appropriate representation in term
of a small number of proximities.

Real-World Data We also evaluated the algorithm
on real-world data. The data set called “cat cortex”
consists of a matrix of connection strengths between



| | A [ V [ SS [ FL |
Size [ 10 | 19 | 17 | 19 |
LP (0.05) 9.2 (15)[6.2 (16)[4.6 (17) [3.1 (10)
LP (0.1) [[7.7(14)[6.2(15)]4.6 (16) 3.1 (10)
LP(0.2) 615 [77dD]61®) [3109
LP(03) [[154)][77&® [773) [3.1(D
QP (0.05 [ 3.1 4.6 3.1 15
QP (0.1) 3.1 4.6 6.1 15
QP (0.2) 15 6.1 3.1 3.1
QP (0.3) 3.1 6.1 3.1 3.1
B-NN 3.1 15 3.1 4.6
W-NN 6.1 46 | 108 | 9.2

Table 1: Classification results for “cat cortex”. Shown
is the classification error estimated by leave—one—out
crossvalidation. For LP-Machines, the average num-
ber of non—zero coefficients (the effective dimension-
ality of the proximity space chosen) is shown. The
number in braces indicate the chosen values of v.
The last two lines contain base-line result of the best
(B-NN) and worst (W-NN) K-nearest-neighbor results
with 1 < K <5.

65 cortical areas of the cat. The data was collected
by Scannell [8] from text and figures of the avail-
able anatomical literature and the connections are as-
signed proximity values p as follows: self-connection
(p = 0), strong and dense connection (p = 1), inter-
mediate connection (p = 2), weak connection (p = 3),
and absent or unreported connection (p = 4). From
functional considerations the areas can be assigned to
four different regions: auditory (A), visual (V), so-
matosensory (SS), and frontolimbic (FL). The classi-
fication task is to discriminate between these four re-
gions, each time one against the three others.

The second data set consists of a proximity ma-
trix from the structural comparison of 224 protein se-
quences based upon the concept of evolutionary dis-
tance. The majority of these proteins can be assigned
to one of four classes of globins: hemoglobin-a (H-a),
hemoglobin-g (H-3), myoglobin (M), and heteroge-
nous globins (GH). The classification task is to assign
proteins to one of these classes, one against the rest.

We compared the LP-algorithm presented in Sec.
4 with the corresponding SV-algorithm (see [11, 4])
and K-nearest-neighbor (K € {1,2, 3,4, 5}), the nat-
ural choice of classifier for proximity data. Cross-

| | Ho | HF | M | GH |
Size | 72 | 72 | 37 | 30 |
LP (0.05) [[1.8(36)[5.0(60) [0.5(12)]0.0 (34)
LP(0.1) |[1.3(34)[5.8(55) [0.5(10) 0.9 (29)
LP(0.2) [3.1(16)[5.8(37) | 0.54) [0.9(20)
LP(03) [[5.0(13)[10.7(19)] 5.02) [13.4(14)
QP(0.05 [ 1.3 4.0 0.5 0.5
QP (0.1) 1.8 4.5 0.5 0.9
QP (0.2) 22 8.9 0.5 0.9
QP (0.3) 2.2 10.3 0.5 11.6
B-NN 13 3.6 0.0 1.8
W-NN 22 6.7 0.0 45

Table 2: Classification results for Protein data. The
experimental setup is identical to the one of table 1.

validation was performed to estimate the misclassifi-
cation probability (cf. tables 1 and 2). While the re-
sults in terms of accuracy are roughly equivalent, es-
pecially for small values of v, for LP, QP, and B (est)
K-nearest-neighbor it should be noted that only in the
case of LP—learning the dataset is reduced by up to
98% (“proteins” myoglobin and v = (.2). Consider-
ing that each proximity corresponds to a single mea-
surement of evolutionary distance between two pro-
teins, the striking advantage of sparse proximity rep-
resentation should be obvious.

7 Discussion

In this paper we considered the problem of construct-
ing decision functions for data given in terms of pair-
wise proximities. Whereas former approaches [4] reg-
ularized in proximity space via the flatness of the de-
cision function (SV—approach) we proposed a linear
programm which explicitly enforces sparsity in prox-
imity space. Thus the presented algorithm not only
finds a decision function with small error but at the
same time a computationally efficient representation
due to sparseness in the weight vector.

Apart from the sparseness considerations it should
also be noted that the choice of the L;—norm as reg-
ularizer corresponds to viewing the distance between
data in proximity space as measured by the L ,—norm
which is dual to the L;—norm [6]. This means that the
difference between two examples is dominated by the
maximum difference between proximities to the refer-



Figure 1: Decision functions (solid lines) in a simple
two—class classification problem found by v-LP Ma-
chines when using the city—block metric p(x,x') =
[[x — x'||1 (upper left: v = 0.1, upper right: v = 0.5,
lower left: v = 0.7). Circled are training examples
x; with w; # 0. The dashed lines indicate the re-
sulting margin p. By increasing v and thus sacrific-
ing margin errors, the dimensionality of the proxim-
ity space is reduced. The lower right figure shows
the data points embedded in the 2—-D proximity space
(v = 0.7). Note, that the linear decision function in
proximity space (lower right) corresponds to the non—
linear decision function in data space R? (lower left).

ence objects (training set).
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