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Abstract

The concept of Support Vector Regression is extended to a more general
class of convex cost functions� It is shown how the resulting convex con�
strained optimization problems can be e�ciently solved by a Primal�Dual
Interior Point path following method� Both computational feasibility and
improvement of estimation is demonstrated in the experiments�

� Introduction

In the following we will consider the problem of regression estimation� For some
probability density function p�x� y
 on Rn �R and some cost function C��
 	nd
a function f that minimizes the following risk functional


R�f � �

Z
C�y � f�x

p�x� y
dxdy ��


However we do not know p�x� y

 Instead we only have � observations at hand
drawn iid from p�x� y
 with f�x�� y�
� � � � � �x�� y�
g � R

n�� 
 Hence the 	rst
guess would be to replace p by the empirical density derived from our observa�
tions and minimize the corresponding empirical risk


Remp�f � �
�

�

X
i

C�yi � f�xi

 ��


Although having the advantage of being relatively easy to compute� the attempt
to minimize Remp directly may lead to heavy over	tting� i
e
 poor generaliza�
tion in the case of a very powerful class of models


Hence one will try to minimize Rreg �f � �� Remp�f � � �T �f � where T �f �
is a complexity term and � � � is a regularization constant to control the
tradeo� beween model complexity and approximation in order to ensure good
generalization performance


Still it may be computationally very expensive to 	nd some f that minimizes
Rreg as the cost function C��
 may lead to di�cult �nonconvex
 optimization
problems
 Therefore we will minimize a functional that di�ers from R�f � even
more by replacing C by �C


This is the case for Support Vector �SV
 regression in its form as it has been
introduced in ��� �� as generalization of the corresponding pattern recognition

�



algorithm
 It inherited from the latter a new type of cost function� Vapnik�s so
called ��insensitive loss j�j� � maxf�� j�j��g for some previously chosen � � �

The advantage of this cost function is that it leads to sparse decompositions
�cf
 ���
 and quadratic programming problems


However sometimes the restriction to �C��
 � j�j� instead of C��
 may be too
strong and not lead to a good minimization of R�f � as j�j� may have only little
to do with the correct cost function stemming from a real world application

Finally� under the assumption that the samples were generated by an underlying
functional dependency plus additive noise yi � f�xi
 � �i with density p��

the optimal cost function in a maximum likelihood sense would be C��
 �
� log p��



So far only Vapnik�s ��insensitive� Huber�s robust and in	nite�potential�
well type cost functions have been admissible as only those lead to quadratic
programming problems
 Other convex cost functions result in more complicated
convex programming problems which are much harder to solve by standard
techniques
 In this paper we will show that in our case these problems can be
solved e�ciently by an interior point primal�dual path following approach in
the spirit of ���


� Support Vectors

The basic idea of the SV algorithm for regression estimation is to compute a
linear function in some high dimensional feature space F �furnished with a dot
product
 and thereby compute a nonlinear function in the space of the input
data Rn 
 The functions take the form

f�x
 � �� � ��x

 � b ��


with � � Rn � F and � � F 
 Here a natural choice for the complexity term
R�f � is �

�
k�k�� i
e
 to choose the �attest function in feature space


For the sake of simplicity we will only assume C to be symmetric� convex�
to have two �for symmetry
 discontinuities at ��� � � � in the 	rst derivative�
and to be zero in the interval ���� ��
 Hence C will take on the following form��

C�x
 �

�
� for jxj � �

c�jxj � �
 otherwise
��


where c denotes some convex� nonnegative� and monotonously increasing func�
tion
 By using slack variables �i� �

�

i � � �one for each discontinuity
 we can
remove the discontinuities and transform the problem into a convex constrained
optimization problem
 This leads to

minimize
�

�
k��k� �

�X
i��

�c��i
 � c���i 

 ��


�It is rather straightforward to extend this special choice �made for simplicity of presen�
tation� to more general convex cost functions� E�g� for nonzero cost functions in the interval
���� �� use an additional pair of slack variables�



subject to
f�xi
� yi � �i � �

yi � f�xi
 � ��i � � for all i
�i� �

�

i � �
��


By using standard Lagrange multiplier techniques �for details see e
g
 ���
 we
compute Wolfe�s dual of ��

 Moreover we de	ne a kernel as a dot product in
feature space kij �� k�xi�xj
 �� ���xi
 � ��xj




� It can be shown that the
setting of ��
 leads to a maximization problem in terms of the slacks� � and
the Lagrange multipliers 	�

��

�

�X
i�j��

�	i�	
�

i 
�	j�	
�

j 
kij�
�X

i��

��	�i�	i
��	i�	
�

i 
yi�
T ��i
 � T ���i 


�
��


� � inff� j 
�c��
 � �	g
subject to �� 	 � �

� �
P�

i���	
�

i � 	i


��


with f�x
 �
P�

i���	
�

i � 	i
k�xi�x
 � b and T ��
 �� c��
� �
�c��

 Note that
by ��
 � is always well de	ned and is a monotonically increasing function of 	
due to the convexity of c��



� Optimization Algorithm

We need a few results from the theory of convex optimization in order to con�
struct a suitable optimization algorithm
 Every strictly convex constrained
optimization problem has a unique solution
 This is obtained for feasible pri�
mal and dual variables that also satisfy the KKT conditions �i
e
 constraint �
dual variable � �

 The primal objective function is always greater than the
dual � the di�erence is called the duality gap
 Equality is only achieved at the
optimal solution


In a nutshell the idea of a primal�dual path following interior point algo�
rithm for convex programming is to only gradually enforce the KKT conditions
to iteratively 	nd a feasible solution and to use the duality gap between primal
and dual objective function to determine the quality of the current set of vari�
ables
 The same considerations as for quadratic programming apply� for details
see ���
 In order to avoid tedious notation we will consider the slightly more
general problem

minimize �

�
q�	
 � �c � 	


subject to A	 � b� 	� g � l� 	� t � u� g� t � �� 	 free
��


The Wolfe dual of ��
 is

maximize �

�

�
q�	
 � ��
q�	
 � 	


�
� �b � y
 � �l � z
� �u � s


subject to �

�
�
q�	
 � c� �Ay
� � s � z� s� z � �� y free

���


�There exists a general condition on symmetric functions k�xi�xj�� formulated in Mercer�s
theorem� under which k corresponds to a dot product in some space� For more details on
kernels see ����

�For simplicity of notation we will omit the indices i and � unless needed�



Moreover we get the KKT conditions� namely

gizi � � and siti � � for all i � f�� � � � � �g� ���


As we know� a necessary and su�cient condition for the optimal solution to be
found is that the primal � dual variables satisfy both the feasibility conditions
of ��
 and ���
 and the KKT conditions ���

 Now we will proceed to solve the
system of equations iteratively by a method called path�following
 Hence we
will not try to satisfy ���
 as it is� but try to solve a modi	ed version instead
for some � � � in the 	rst place and decrease � while iterating


gizi � � and siti � � for all i � f�� � � � � �g ���


Still it is rather di�cult to solve the nonlinear system of constraints in ��
� ���
�
and ���
 exactly
 However we are not interested in obtaining getting the exact
solution � instead our aim is to 	nd a somewhat more feasible solution for a
given �� then decrease � and keep on iterating
 This can be done by linearizing
the above system and solving the resulting equations by a predictor�corrector�

approach until the duality gap is small enough
 This method is described in
great detail in ��� for quadratic programming


In each iteration a Cholesky decomposition of the hessian� i
e
 
�ijq�	
 is

required� which is of O���

 Therefore this is the dominating factor in the whole
algorithm as it typically converges after a number of iterations �each of them
entailing a Cholesky decomposition
 independent of �
 Moreover we do not
have to compute the whole Hessian for each iteration in the SV case as here
q�	
 assumes the form �here 	 � �	�� � � � 	�� 	

�

�� � � � 	
�

� 




q�	
 �
�

�

�X
i�j��

�	i � 	�i 
�	j � 	�j 
kij �
�

�

�X
i��

T �	i
 � T �	�i 
 ���


Therefore only the diagonal part of 
�ijq�	
 actually depends on 	
 Hence the
update of the Hessian is only of cost O��
 which is negligible in comparison to
the Cholesky decomposition


Finally convergence is determined by the size of the duality gap
 It is worth
while to observe that the dual variable y� which in our case is only a scalar�
equals to �b in ��

 The reason being that problem ���
 being the dual of ��

is the dual dual of ��



� Experimental Results

The purpose of the experimental results carried out here is twofold
 Firstly
it has to be demonstrated that the algorithm proposed here is really feasible

Secondly it has to be shown that it is really an improvement over the existing
approach in terms of approximation quality


�A predictor	corrector approach in this case means that we will solve the linearized system
for the variables in 
 once � this is the predictor step � then substitute these variables into
the quadratic terms in 
 and solve the linearized system again �corrector�� The advantage
of this method is that we will get approximately equal performance as in an attempt to solve
the quadratic system directly� provided that the terms in 
� are small enough�



It has been shown that interior point primal�dual path following methods
are computationally very e�cient in comparison to classical techniques ���
 We
compared an implementation of this algorithm for quadratic programming� i
e

the standard SV problem with a version modi	ed to cope with more general
cost functions


Figure � gives the computational complexity for both algorithms
 The mod�
i	ed SV algorithm is as fast as the standard one even though it solves a convex
optimization problem �it converges in even fewer iterations

 The underlying
functional dependency was yi � sinc�xi
� � where � was additive normal noise
with standard deviation ���


Our aim was to demonstrate that the additional freedom of choosing a
more suitable cost function �with respect to the noise model
 leads to better
generalization performance
 Hence we used data generated by an additive noise
model with p��
 	 exp��j�j���
 and standard deviation ���
 It is necessary to
start with toy data as only in this case we can control the properties of the noise
exactly
 Clearly in this case� neither an L� nor an L� cost function would be
optimal in a maximum likelihood sense
 The generalization error was measured
in terms of the k�k��� norm


Figure � shows the generalization error depending on di�erent values of the
exponent p of the cost function
 As one can observe we get a minimum close to
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Figure �� Generalization error depend�
ing on the noise model
 We chose Gaus�
sian rbf�kernels with 
� � ���� cost
functions of the piecewise polynomial
type with � � �� and polynomial degree
p � ��� ��
 The functional dependency
was y � sincx� x � R and the data dis�
tributed equidistantly over the interval
����� ��� with sample size ��
 The gen�
eralization error was averaged over ���
runs with � selected independently by
crossvalidation for each run


p � ��� which was the exponent of the exponential distribution that generated
the noise
 Observe the improvement w
r
t
 L� �p � �
 and Huber�s �p � �




robust loss� i
e
 the values at the boundary of the interval
 This experimentally
proves that the additional freedom in adapting the noise model can improve
generalization performance in SV regression�


� Conclusion and Perspectives

We proposed a framework for generalized cost functions for SV machines
 As
we have demonstrated this can be dealt with e�ciently at the same computa�
tional cost as in the classical SV setting when solving the resulting optimization
problem with a primal�dual interior point path following algorithm


This new technique allows us to minimize the actual cost function more di�
rectly instead of being restricted to the ��insensitive cost function
 Experiments
showed that this leads to an improvement in the generalization performance of
SV machines


The proposed method also can be applied to SV pattern recognition in a
straightforward way � simply remove all variables with an asterisk
 A similar
setting for nonlinear cost functions in the pattern recognition case already had
been proposed in ���� though no solution for the nonlinear case was given as it
proved computationally less e�cient
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�The large error bars are due to the overall variation of the generalization error caused by
the fact that both sample size �� � 
�� and signal to noise ratio ����
� are rather small�


