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On a Kernel-Based Method for Pattern Recognition,
Regression, Approximation, and Operator Inversion1

A. J. Smola2 and B. Sch¨olkopf3

Abstract. We present a kernel-based framework for pattern recognition, regression estimation, function
approximation, and multiple operator inversion. Adopting a regularization-theoretic framework, the above are
formulated as constrained optimization problems. Previous approaches such as ridge regression, support vector
methods, and regularization networks are included as special cases. We show connections between the cost
function and some properties up to now believed to apply to support vector machines only. For appropriately
chosen cost functions, the optimal solution of all the problems described above can be found by solving a
simple quadratic programming problem.
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Recognition.

1. Introduction. Estimating dependences from empirical data can be viewed asrisk
minimization[43]: we are trying to estimate a function such that the risk, defined in terms
of some a priori chosen cost function measuring the error of our estimate for (unseen)
input–outputtestexamples, becomes minimal. The fact that this has to be done based
on a limited amount oftraining examples comprises the central problem of statistical
learning theory. A number of approaches for estimating functions have been proposed in
the past, ranging from simple methods like linear regression over ridge regression (see,
e.g., [3]) to advanced methods like generalized additive models [16], neural networks, and
support vectors [4]. In combination with different types of cost functions, as for instance
quadratic ones, robust ones in Huber’s sense [18], orε-insensitive ones [41], these yield
a wide variety of different training procedures which at first sight seem incompatible
with each other. The purpose of this paper, which was inspired by the treatments of [7]
and [40], is to present a framework which contains the above models as special cases
and provides a constructive algorithm for finding global solutions to these problems.
The latter is of considerable practical relevance insofar as many common models, in
particular neural networks, suffer from the possibility of getting trapped in local optima
during training.

Our treatment starts by giving a definition of the risk functional general enough to
deal with the case of solving multiple operator equations (Section 2). These provide a
versatile tool for dealing with measurements obtained in different ways, as in the case
of sensor fusion, or for solving boundary constrained problems. Moreover, we show that
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they are useful for describing symmetries inherent to the data, be it by the incorporation
of virtual examples or by enforcing tangent constraints. To minimize risk, we adopt
a regularization approach which consists in minimizing the sum of training error and
a complexity term defined in terms of a regularization operator [38]. Minimization is
carried out over classes of functions written as kernel expansions in terms of the training
data (Section 3). Moreover, we describe several common choices of the regularization
operator. Following that, Section 4 contains a derivation of an algorithm for practically
obtaining a solution of the problem of minimizing the regularized risk. For appropriate
choices of cost functions, the algorithm reduces to quadratic programming. Section 5
generalizes a theorem by Morozov from quadratic cost functions to the case of convex
ones, which will give the general form of the solution to the problems stated above.
Finally, Section 6 contains practical applications of multiple operators to the case of
problems with prior knowledge. Appendices A and B contain proofs of the formulae
of Sections 4 and 5, and Appendix C describes an algorithm for incorporating prior
knowledge in the form of transformation invariances in pattern recognition problems.

2. Risk Minimization. In regression estimation we try to estimate a functional depen-
dency f between a set of sampling pointsX = {x1, . . . , x`} taken from a spaceV , and
target valuesY = {y1, . . . , y`}. We now consider a situation where we cannot observe
X, but some other corresponding pointsXs = {xs1, . . . , xs`s}, nor can we observeY, but
Ys = {ys1, . . . , ys`s}. We call the pairs(xss′ , yss′) measurementsof the dependencyf .
Suppose we know that the elements ofXs are generated from those ofX by a (possibly
nonlinear) transformation̂T :

xss′ = T̂xs′ (s′ = 1, . . . , `).(1)

The corresponding transformationAT̂ acting on f ,

(AT̂ f )(x) := f (T̂x),(2)

is then generally linear: for functionsf, g and coefficientsα, β we have

(AT̂ (α f + βg))(x) = (α f + βg)(T̂x)(3)

= α f (T̂x)+ βg(T̂x)

= α(AT̂ f )(x)+ β(AT̂ g)(x).

Knowing AT̂ , we can use the data to estimate the underlying functional dependency. For
several reasons, this can be preferable to estimating the dependencies in the transformed
data directly. For instance, there are cases where we specifically want to estimate the
original function, as in the case of magnetic resonance imaging [42]. Moreover, we may
have multiple transformed data sets, but only estimateoneunderlying dependency. These
data sets might differ in size; in addition, we might want to associate different costs with
estimation errors for different types of measurements, e.g., if we believe them to differ in
reliability. Finally, if we have knowledge of the transformations, we may as well utilize it
to improve the estimation. Especially if the transformations are complicated, the original
function might be easier to estimate. A striking example is the problem of backing up a
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truck with a trailer to a given position [14]. This problem is a complicated classification
problem (steering wheel left or right) when expressed in cartesian coordinates; in polar
coordinates, however, it becomes linearly separable.

Without restricting ourselves to the case of operators acting on the arguments off
only, but for general linear operators, we formalize the above as follows. We consider
pairs of observations(xı̄ , yı̄ ), with sampling pointsxı̄ and corresponding target valuesyı̄ .
The first entryi of the multi-indexı̄ := (i, i ′) denotes the procedure by which we have
obtained the target values; the second entryi ′ runs over the observations 1, . . . , `i . In
the following, it is understood that variables without a bar correspond to the appropriate
entries of the multi-indices. This helps us to avoid multiple summation symbols. We
may group these pairs inq pairs of setsXi andYi by defining

Xi = {xi 1, . . . , xi `i } with xı̄ ∈ Vi ,

Yi = {yi 1, . . . , yi `i } with yı̄ ∈ R,(4)

with Vi being vector spaces.
We assume that these samples have been drawn independently fromq corresponding

probability distributions with densitiesp1(x1, y1), . . . , pq(xq, yq) for the setsXi andYi ,
respectively.

We further assume that there exists a Hilbert space of real-valued functions onV ,
denoted byH(V), and a set of linear operatorŝA1, . . . , Âq onH(V) such that

Âi : H(V)→ H(Vi )(5)

for some Hilbert spaceH(Vi ) of real-valued functions onVi . (In the case of pattern
recognition, we consider functions with values in{±1} only.)

Our aim is to estimate a functionf ∈ H(V) such that therisk functional

R[ f ] =
q∑

i=1

∫
ci ((Âi f )(xi ), xi , yi )pi (xi , yi )dxi dyi(6)

is minimized.4 (In some cases, we restrict ourselves to subsets ofH(V) in order to control
the capacity of the admissible models.)

The functionsci are cost functions determining the loss for deviations between the
estimate generated bŷAi f and the target valueyi at the positionxi . We require these
functions to be bounded from below and therefore, by adding a constant, we may as
well require them to be nonnegative. The dependence ofci on xi can, for instance,
accommodate the case of a measurement device whose precision depends on the location
of the measurement.

4 A note on underlying functional dependences: for eachVi together withpi one might define a function

ȳi (xi ) :=
∫

yi pi (yi |xi )dyi(7)

and try to find a corresponding functionf such thatÂi f = ȳi holds. This intuition, however, is misleading, as
ȳi need not even lie in the range ofÂi , andÂi need not be invertible either. We resort to finding a pseudosolution
of the operator equation. For a detailed treatment see [26].
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EXAMPLE 1 (Vapnik’s Risk Functional). By specializing

q = 1, Â = 1(8)

we arrive at the definition of the risk functional of [40]:5

R[ f ] =
∫

c( f, x, y)p(x, y)dx dy.(9)

Specializing toc( f (x), x, y) = ( f (x)− y)2 leads to the definition of the least mean
square error risk [11].

As the probability density functionspi are unknown, we cannot evaluate (and mini-
mize) R[ f ] directly. Instead we only can try to approximate

fmin := argminH(V)R[ f ](10)

by some function f̂ , using the given data setsXi and Yi . In practice, this requires
considering theempirical risk functional, which is obtained by replacing the integrals
over the probability density functionspi (see (6)) with summations over the empirical
data:

Remp[ f ] =
∑

ı̄

1

`i
ci ((Âi f )(xı̄ ), xı̄ , yı̄ )).(11)

Here the notation
∑

ı̄ is a shorthand for
∑q

i=1

∑`i
i ′=1 with ı̄ = (i, i ′). The problem that

arises now is how to connect the values obtained fromRemp[ f ] with R[ f ]: we can only
compute the former, but we want to minimize the latter. A naive approach is to minimize
Remp, hoping to obtain a solution̂f that is close to minimizingR, too. The ordinary
least mean squares method is an example for these approaches, exhibiting overfitting
in the case of a high model capacity, and thus poor generalization [11]. Therefore it is
not advisable to minimize the empirical risk without any means of capacity control or
regularization [40].

3. Regularization Operators and Additive Models. We assume a regularization term
in the spirit of [38] and [23], namely, a positive semidefinite operator

P̂: H(V)→ D(12)

mapping into a dot product spaceD (whose closureD̄ is a Hilbert space), defining a
regularized risk functional

Rreg[ f ] = Remp[ f ] + λ
2
‖P̂ f ‖2D(13)

5 Note that (9) already includes multiple operator equations for the special case whereVi = V and pi = p
for all i , even though this is not explicitly mentioned in [40]:c is a functional of f and therefore it may also
be a sum of functionalŝAi f for severalÂi .
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with a regularization parameterλ ≥ 0. This additional term effectively reduces our
model space and thereby controls the complexity of the solution. Note that the topic of
this paper is not finding the best regularization parameter, which would require model
selection criteria as, for instance, VC-theory [43], Bayesian methods [22], the minimum
description length principle [30], AIC [2], NIC [25]—a discussion of these methods,
however, would go beyond the scope of this work. Instead, we focus on how and un-
der which conditions,givena value ofλ, the function minimizingRreg can be found
efficiently.

We do not require positive definiteness ofP̂, as we may not want to attenuate contri-
butions of functions stemming from a given class of modelsM (e.g., linear and constant
ones): in this case, we constructP̂ such thatM ⊆ Ker P. Making more specific as-
sumptions about the type of functions used for minimizing (13), we assumef to have
a function expansion based on a symmetric kernelk(x, x′)(x, x′ ∈ V) with the property
that, for allx ∈ V , the function onV obtained by fixing one argument ofk to x is an
element ofH(V). To formulate the expansion, we use the tensor product notation for
operators onH(V)⊗H(V),

((Â⊗ B̂)k)(x, x′).(14)

Here Â acts onk as a function ofx only (with x′ fixed), andB̂ vice versa. The class of
models that we investigate as admissible solutions for minimizing (13) are expansions
of the form

f (x) =
∑

ı̄

αı̄ ((Âi ⊗ 1)k)(xı̄ , x)+ b, with αı̄ ∈ R.(15)

This may seem to be a rather arbitrary assumption; however, kernel expansions of the
type

∑
ı̄ αı̄ k(xı̄ , x) are quite common in regression and pattern recognition models [16],

and in the case of support vectors even follow naturally from optimality conditions with
respect to a chosen regularization [4], [42]. Moreover, an expansion with as many basis
functions as data points is rich enough to interpolate all measurements exactly, except for
some pathological cases, e.g., if the functionskı̄ (x) := k(xı̄ , x) are linearly dependent,
or if there are conflicting measurements at one point (different target values for the same
x). Finally, using additive models is a useful approach insofar as the computations of the
coefficients may be carried out more easily.

To obtain an expression for‖P̂ f ‖2D in terms of the coefficientsαı̄ , we first note

(P̂ f )(x) =
∑

ı̄

αı̄ ((Âi ⊗ P̂)k)(xı̄ , x).(16)

For simplicity we have assumed the constant function to lie in the null space ofP̂, i.e.,
P̂b= 0. Exploiting the linearity of the dot product inD, we can express‖P̂ f ‖2D as

(P̂ f · P̂ f ) =
∑
ı̄,̄

αı̄α̄ (((Âi ⊗ P̂)k)(xı̄ , x) · ((Âj ⊗ P̂)k)(x̄ , x)).(17)

For a suitable choice ofk and P̂, the coefficients

Dı̄ ̄ := (((Âi ⊗ P̂)k)(xı̄ , .) · ((Âj ⊗ P̂)k)(x̄ , .))(18)
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can be evaluated in closed form, allowing an efficient implementation (here, the dot in
k(xı̄ , .) means thatk is considered as a function of its second argument, withxı̄ fixed).
Positivity of (17) implies positivity of the regularization matrixD (arranginḡı and̄ in
dictionary order). Conversely, any positive semidefinite matrix will act as a regularization
matrix. As we minimize the regularized risk (13), the functions corresponding to the
largest eigenvalue ofDı̄ ̄ will be attenuated most; functions with expansion coefficient
vectors lying in the null space ofD, however, will not be dampened at all.

EXAMPLE 2 (Sobolev Regularization). Smoothness properties of functionsf can be
enforced effectively by minimizing the Sobolev norm of a given order. Our exposition
at this point follows [15]: The Sobolev spaceHs,p(V) (s ∈ N, 1 ≤ p ≤ ∞) is defined
as the space of thoseL p functions onV whose derivatives up to the orders are L p

functions. It is a Banach space with the norm

‖ f ‖Hs,p(V) =
∑
|γ |≤s

‖D̂γ f ‖L p,(19)

whereγ is a multi-index andD̂γ is the derivative of orderγ . A special case of the
Sobolev embedding theorem [37] yields

Hs,p(V) ⊂ Ck for k ∈ N and s> k+ d

2
.(20)

Hered denotes the dimensionality ofV andCk is the space of functions with continuous
derivatives up to orderk. Moreover, there exists a constantc such that

max
|γ |≤k

sup
x∈V
|D̂γ f (x)| ≤ c‖ f ‖Hs,p(V),(21)

i.e., convergence in the Sobolev norm enforces uniform convergence in the derivatives
up to orderk.

For our purposes, we usep = 2, for whichHs,p(V) becomes a Hilbert space. In this
case, the coefficients ofD are

Dı̄ ̄ =
∑
|γ |≤s

(((Âi ⊗ D̂γ )k)(xı̄ , x) · ((Âj ⊗ D̂γ )k)(x̄ , x)).(22)

EXAMPLE 3 (Support Vector Regularization). Weconsider functionswhichcanbewrit-
ten as linear functions in some Hilbert spaceH ,

f (x) = (9 ·8(x))+ b(23)

with8: V → H and9 ∈ H . The weight vector9 is expressed as a linear combination
of the images ofxı̄

9 =
∑

ı̄

αı̄8(xı̄ ).(24)

The regularization operator̂P is chosen such that̂P f = 9 for all αı̄ (in view of the
expansion (15), this defines a linear operator). Hence using the term‖P̂ f ‖2D = ‖9‖2H
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corresponds to looking for the flattest linear function (23) onH . Moreover,8 is chosen
such that we can express the terms(8(xı̄ ) · 8(x)) in closed form as some symmetric
functionk(xı̄ , x), thus the solution (23) reads

f (x) =
∑

ı̄

αı̄ k(xı̄ , x)+ b,(25)

and the regularization term becomes

‖9‖2H =
∑
ı̄ ̄

αı̄α̄k(xı̄ , x̄ ).(26)

This leads to the optimization problem of [4]. The mapping8 need not be known
explicitly: for any continuous symmetric kernelk satisfying Mercer’s condition [9]∫

f (x)k(x, y) f (y)dx dy> 0 if f ∈ L2\{0},(27)

one can expandk into a uniformly convergent seriesk(x, y) = ∑∞
i=1 λiϕi (x)ϕi (y)

with positive coefficientsλi for i ∈ N. Using this, it is easy to see that8(x) :=∑∞
i=1

√
λiϕi (x)ei ({ei } denoting an orthonormal basis of`2) is a map satisfying(8(x) ·

8(x′)) = k(x, x′). In particular, this implies that the matrixDı̄ ̄ = k(xı̄ , x̄ ) is positive.
Different choices of kernel functions allow the construction of polynomial classifiers

[4] and radial basis function classifiers [33]. Although formulated originally for the case
where f is a function of one variable, Mercer’s theorem also holds iff is defined on a
space of arbitrary dimensionality, provided that it is compact [12].6

In the next example, as well as in the remainder of the paper, we use vector notation;
e.g.,Eα denotes the vector with entriesαı̄ , with ı̄ arranged in dictionary order.

EXAMPLE 4 (Ridge Regression). If we definêP such that all functions used in the
expansion off are attenuated equally and decouple,D becomes the identity matrix,
Dı̄ ̄ = δı̄ ̄ . This leads to

‖P̂ f ‖2D =
∑
ı̄ ̄

αı̄α̄ Dı̄ ̄ = ‖Eα‖2(28)

and

Rreg[ f ] = Remp[ f ] + λ
2
‖Eα‖2,(29)

which is exactly the definition of a ridge-regularized risk functional, known in the neural
network community asweight decayprinciple [3]. The concept of ridge regression
appeared in [17] in the context of linear discriminant analysis.

Poggio and Girosi [28] give an overview over some more choices of regularization
operators and corresponding kernel expansions.

6 The expansion of9 in terms of the images of the data follows more naturally if viewed in the support vector
context [41]; however, the idea of selecting the flattest function in a high-dimensional space is preserved in
the present exposition.
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4. Risk Minimization by Quadratic Programming. The goal of this section is to
transform the problem of minimizing the regularized risk (13) into a quadratic program-
ming problem which can be solved efficiently by existing techniques. In the following
we only require the cost functions to be convex in the first argument and

ci (yi , xi , yi ) = 0 for all xi ∈ Vi and all yi ∈ R.(30)

More specifically, we requireci (., xı̄ , yı̄ ) to be zero exactly on the interval [−ε∗ı̄ +yı̄ , εı̄+
yı̄ ] with 0 ≤ εı̄ , ε

∗
ı̄ ≤ ∞, andC1 everywhere else. For brevity we write

cı̄ (ηı̄ ) := 1

`i
ci (yı̄ + εı̄ + ηı̄ , xı̄ , yı̄ ) with ηı̄ ≥ 0,

c∗ı̄ (η
∗
ı̄ ) := 1

`i
ci (yı̄ − ε∗ı̄ − η∗ı̄ , xı̄ , yı̄ ) with η∗ı̄ ≥ 0,

(31)

with xı̄ andyı̄ fixed and

ηı̄ := max((Âi f )(xı̄ )− yı̄ − εı̄ ,0),

η∗ı̄ := max(−(Âi f )(xı̄ )+ yı̄ − ε∗ı̄ ,0).
(32)

The asterisk is used for distinguishing positive and negative slack variables and corre-
sponding cost functions. The functionscı̄ andc∗ı̄ describe the parts of the cost functions
ci at the location(xı̄ , yı̄ ) which differ from zero, split up into a separate treatment of
(Âi f )−yı̄ ≥ εı̄ and(Âi f )−yı̄ ≤ −ε∗ı̄ . This is done to avoid the (possible) discontinuity
in the first derivative ofci at the point where it starts differing from zero.

In pattern recognition problems, the intervals [−ε∗ı̄ , εı̄ ] are either [−∞,0] or [0,∞].
In this case, we can eliminate one of the two appearing slack variables, thereby getting a
simpler form for the optimization problem. In the following, however, we deal with the
more general case of regression estimation.

We may rewrite the minimization ofRregas a constrained optimization problem, using
ηı̄ andη∗ı̄ , to render the subsequent calculus more amenable:

(33) minimize
1

λ
Rreg= 1

λ

∑
ı̄

(cı̄ (ηı̄ )+ c∗ı̄ (η
∗
ı̄ ))+ 1

2‖P̂ f ‖2D
subject to (Âi f )(xı̄ ) ≤ yı̄ + εı̄ + ηı̄ ,

(Âi f )(xı̄ ) ≥ yı̄ − ε∗ı̄ − η∗ı̄ ,
ηı̄ , η

∗
ı̄ ≥ 0.

The dual of this problem can be computed using standard Lagrange multiplier techniques.
In the following, we make use of the results derived in Appendix A, and discuss some
special cases obtained by choosing specific loss functions.

EXAMPLE 5 (Quadratic Cost Function). We use (71) (Appendix A, Example 12) in the
special casep = 2, ε = 0 to get the following unconstrained optimization problem:

maximize ( Eβ∗ − Eβ)>Ey− λ
2
(‖ Eβ‖2+ ‖ Eβ∗‖2)− 1

2(
Eβ∗ − Eβ)>K D−1K ( Eβ∗ − Eβ)(34)

subject to
∑

ı̄

(Âi 1)(β∗ı̄ − βı̄ ) = 0, βı̄ , β
∗
ı̄ ∈ R+0 .
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Transformation back toαı̄ is done by

Eα = D−1K ( Eβ − Eβ∗).(35)

Here, the symmetric matrixK is defined as

Kı̄ ̄ := ((Âi ⊗ Âj )k)(xı̄ , x̄ ),(36)

(Âi 1) is the operatorÂi acting on the constant function with value1. Of course there
would have been a simpler solution to this problem (by combiningβı̄ andβ∗ı̄ into one
variable resulting in an unconstrained optimization problem) but in combination with
other cost functions we may exploit the full flexibility of our approach.

EXAMPLE 6 (ε-Insensitive Cost Function). Hereweuse (75) (AppendixA,Example13)
for σ = 0. This leads to

maximize ( Eβ∗ − Eβ)>Ey− ( Eβ∗ + Eβ)>Eε − 1
2(
Eβ∗ − Eβ)>K D−1K ( Eβ∗ − Eβ)(37)

subject to
∑

ı̄

(Âi 1)(β∗ı̄ − βı̄ ) = 0, βı̄ , β
∗
ı̄ ∈

[
0,

1

λ

]
with the same back substitution rules (35) as in Example 5. For the special case of support
vector regularization, this leads to exactly the same equations as in support vector pattern
recognition or regression estimation [41]. In that case, one can show thatD = K , and
therefore the termsD−1K cancel out, with only the support vector equations remaining.
This follows directly from (25) and (26) with the definitions ofD andK .

Note that the Laplacian cost function is included as a special case forε = 0.

EXAMPLE 7 (Huber’s Robust Cost Function). Setting

p = 2, ε = 0(38)

in Example 13 leads to the following optimization problem:

maximize ( Eβ∗− Eβ)>Ey− λ
2

∑
ı̄

(σı̄β
2
ı̄ +σ ∗ı̄ β2∗

ı̄ )− 1
2(
Eβ∗− Eβ)>K D−1K ( Eβ∗− Eβ)(39)

subject to
∑

ı̄

(Âi 1)(β∗ı̄ − βı̄ ) = 0, βı̄ , β
∗
ı̄ ∈

[
0,

1

λ

]
with the same backsubstitution rules (35) as in Example 5.

The cost functions described in the Examples 5, 6, 7, 12, and 13 may be linearly com-
bined into more complicated ones. In practice, this results in using additional Lagrange
multipliers, as each of the cost functions has to be dealt with using one multiplier. Still,
by doing so computational complexity is not greatly increased as only the linear part
of the optimization problem is increased, whereas the quadratic part remains unaltered
(except for a diagonal term for cost functions of the Huber type). M¨uller et al. [24] report
excellent performance of the support vector regression algorithm for bothε-insensitive
and Huber cost function matching the correct type of the noise in an application to time
series prediction.
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5. A Generalization of a Theorem of Morozov. We follow and extend the proof of a
theorem originally stated by Morozov [23] as described in [28] and [7]. As in Section 4,
we require the cost functionsci to be convex andC1 in the first argument with the extra
requirement

ci (yi , xi , yi ) = 0 for all xi ∈ Vi and yi ∈ R.(40)

We use the notation̄D for the closure ofD, andP̂∗ to refer to the adjoint7 of P̂,

P̂ : H(V)→ D,
P̂∗ : D̄→ P̂∗D̄ ⊆ H(V).(41)

THEOREM1 (Optimality Condition). Under the assumptions stated above, a necessary
and sufficient condition for

f = fopt := argminf ∈H(V)Rreg[ f ](42)

is that the following equation holds true:

P̂∗ P̂ f = −1

λ

∑
ı̄

1

`i
∂1ci ((Âi f )(xı̄ ), xı̄ , yı̄ )Â

∗
i δxı̄ .(43)

Here,∂1 denotes the partial derivative ofci by its first argument, andδxı̄ is the Dirac
distribution, centered onxı̄ . For a proof of the theorem see Appendix B.

In order to illustrate the theorem, we first consider the special case ofq = 1 andÂ = 1,
i.e., the well-known setting of regression and pattern recognition. Green’s functions
G(x, xj ) corresponding to the operatorP̂∗ P̂ satisfy

(P̂∗ P̂G)(x, xj ) = δxj (x),(44)

as previously described in [28]. In this case we derive from (43) the following system of
equations which has to be solved in a self-consistent manner:

f (x) =
∑̀
i=1

γi G(x, xi )+ b(45)

with

γi = − 1

γ
∂1c( f (xi ), xi , yi ).(46)

Here the expansion off in terms of kernel functions follows naturally withγi correspond-
ing to Lagrange multipliers. It can be shown thatG is symmetric in its arguments, and

7 The adjoint of an operator̂O: HO → DO mapping from a Hilbert spaceHO to a dot product spaceDO is
the operatorÔ∗ such that, for allf ∈ HO andg ∈ D̄O,

(g · Ô F)HO = (Ô∗g · f )D̄O
.
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translation invariant for suitable regularization operatorsP̂. Equation (46) determines
the size ofγi according to how muchf deviates from the original measurementsyi .

For the general case, (44) becomes a little more complicated, namely we haveq
functionsGi (x, xı̄ ) such that

(P̂∗ P̂Gi )(x, xı̄ ) = (Â∗i δxı̄ )(x)(47)

holds. In [28] Green’s formalism is used for finding suitable kernel expansions corre-
sponding to the chosen regularization operators for the case of regression and pattern
recognition. This may also be applied to the case of estimating functional dependen-
cies from indirect measurements. Moreover, (43) may also be useful for approximately
solving some classes of partial differential equations by rewriting them as optimization
problems.

6. Applications of Multiple Operator Equations. In the following we discuss some
examples of incorporating domain knowledge by using multiple operator equations as
contained in (6).

EXAMPLE 8 (Additional Constraints on the Estimated Function). Suppose we have ad-
ditional knowledge on the function values at some points, for instance saying that
−ε ≤ f (0) ≤ ε∗ for someε, ε∗ > 0. This can be incorporated by adding the points
as an extra setXs = {xs1, . . . , xs`s} ⊂ X with corresponding target valuesYs =
{ys1, . . . , ys`s} ⊂ Y, an operatorÂs = 1, and a cost function (defined onXs)

cs( f (xs̄), xs̄, ys̄) =
{

0 if − εs̄ ≤ f (xs̄)− ys̄ ≤ ε∗s̄,
∞ otherwise

(48)

defined in terms ofεs1, . . . , εs`s andε∗s1, . . . , ε
∗
s`s

.

These additional hard constraints result in optimization problems similar to those ob-
tained in theε-insensitive approach of support vector regression [42]. See Example 14
for details.

Monotonicity and convexity of a functionf , along with other constraints on deriva-
tives of f , can be enforced similarly. In that case, we use

Âs =
(
∂

∂x

)p

(49)

instead of thêAs = 1used above. This requires differentiability of the function expansion
of f . If we want to use general expansions (15), we have to resort to finite difference
operators.

EXAMPLE 9 (Virtual Examples). Suppose we have additional knowledge telling us that
the function to be estimated should be invariant with respect to certain transformations
T̂i of the input. For instance, in optical character recognition these transformations might
be translations, small rotations, or changes in line thickness [34]. We then define corre-
sponding linear operatorŝAi acting onH(V) as in (2).
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As the empirical risk functional (11) then contains a sum over original and trans-
formed (“virtual”) patterns, this corresponds to training on an artificially enlarged data
set. Unlike previous approaches such as the one of [32], we may assign different weight
to the enforcement of the different invariances by choosing different cost functionsci . If
theT̂i comprise translations of different amounts, we may, for instance, use smaller cost
functions for bigger translations. Thus, deviations of the estimated function on these ex-
amples will be penalized less severely, which is reflected by smaller Lagrange multipliers
(see (62)). Still, there are more general types of symmetries, especially nondeterministic
ones, which also could be taken care of by modified cost functions. For an extended
discussion of this topic see [21]. In Appendix C we give a more detailed description of
how to implement a virtual examples algorithm.

Much work on symmetries and invariances (e.g., [44]) is mainly concerned with
global symmetries (independent of the training data) that have a linear representation in
the domain of the input patterns. This concept, however, can be rather restrictive. Even
for the case of handwritten digit recognition, the above requirements can be fulfilled
for translation symmetries only. Rotations, for instance, cannot be faithfully represented
in this context. Moreover would a full rotation invariance not be desirable (thereby
transforming a6 into a9)—only local invariances should be admitted. Some symmetries
only exist for a class of patterns (mirror symmetries are a reasonable concept for the
digits8 and0 only) and some can only be defined on the patterns themselves, e.g., stroke
changes, and do not make any sense on a random collection of pixels at all. This requires
a model capable of dealing with nonlinear, local, pattern dependent, and possibly only
approximate symmetries, all of which can be achieved by the concept of virtual examples.

EXAMPLE 10 (Hints). We can also utilize prior knowledge where target values or ranges
for the function are not explicitly available. For instance, we might know thatf takes
the same value at two different pointsx1 andx2 [1]; e.g., we could use unlabeled data
together with known invariance transformations to generate such pairs of points. To
incorporate this type of invariance of the target function, we use a linear operator acting
on the direct sum of two copies of input space, computing the difference betweenf (x1)

and f (x2),

(Âs f )(x1⊕ x2) := f (x1)− f (x2).(50)

The technique of Example 8 then allows us to constrain(Âs f ) to be small, on a set of
sampling points generated as direct sums of the given pairs of points.

As before (49), we can modify the above methods using derivatives off . This will
lead to tangent regularizers as the ones proposed by [35], as we shall presently show.

EXAMPLE 11 (Tangent Regularizers). We assume thatG is a Lie group of invariance
transformations. Similar to (2), we can define an action ofG on a Hilbert spaceH(V)
of functions onV , by

(g · f )(x) := f (gx) for g ∈ G, f ∈ H(V).(51)

The generators in this representation, call themŜi , i = 1, . . . , r, generate the group
in a neighborhood of the identity via the exponential map exp(

∑
i αi Ŝi ). As first-order
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(tangential) invariance is a local property at the identity, we may enforce it by requiring

(Ŝi f )(x) = 0 for i = 1, . . . , r.(52)

To motivate this, note that

∂

∂αi

∣∣∣∣
α=0

f

(
exp

(∑
j

αx j Ŝj

)
x

)
=
((

∂

∂αi

∣∣∣∣
α=0

exp

(∑
j

αj Ŝj

))
f

)
(x)(53)

= (Ŝi f )(x),

using (51), the chain rule, and the identity exp(0) = 1.
Examples of operatorŝSi that can be used are derivative operators, which are the

generators of translations. Operator equations of the type (52) allow us to use virtual
examples which incorporate knowledge about derivatives off . In the sense of [35],
this corresponds to having a regularizer enforcing invariance. Interestingly, our analy-
sis suggests that this case is not as different from a direct virtual examples approach
(Example 9) as it might appear superficially.

As in Example 8, prior knowledge could also be given in terms of allowed ranges or
cost functions [20] for approximate symmetries, rather than enforced equalities as (52).
Moreover, we can apply the approach of Example 11 to higher-order derivatives as well,
generalizing what we said above about additional constraints on the estimated function
(Example 8).

We conclude this section with an example of a possible application where the latter
could be useful. In three-dimensional surface mesh construction (e.g., [19]), one tries
to represent a surface by a mesh of few points, subject to the following constraints.
First, the surface points should be represented accurately—this can be viewed as a
standard regression problem. Second, the normal vectors should be represented correctly,
to make sure that the surface will look realistic when rendered. Third, if there are specular
reflections, say, geometrical optics comes into play, and thus surface curvature (i.e.,
higher-order derivatives) should be represented accurately.

7. Discussion. We have shown that we can employ fairly general types of regulariza-
tion and cost functions, and still arrive at a support vector type quadratic optimization
problem. An important feature of support vector machines, however, sparsity of the de-
compositions off , is due to a special type of cost function used. The decisive part is the
nonvanishing interval [yı̄−ε∗ı̄ , yı̄+εı̄ ] inside of which the cost for approximation, regres-
sion, or pattern recognition is zero. Therefore there exists a range of values(Âi f )(xı̄ )

in which (32) holds withηı̄ , η
∗
ı̄ = 0 for somēı . By virtue of the Karush–Kuhn–Tucker

conditions, stating that the product of constraints and Lagrange multipliers have to vanish
at the point of optimality, (33) implies

βı̄ (yı̄ + εı̄ + ηı̄ − (Âi f )(xı̄ )) = 0,(54)

β∗ı̄ ((Âi f )(xı̄ )− yı̄ + ε∗ı̄ + ηı̄ ) = 0.(55)



224 A. J. Smola and B. Sch¨olkopf

Therefore, theβı̄ andβ∗ı̄ have to vanish for the constraints of (33) that become strict
inequalities. This causes sparsity in the solution ofβı̄ andβ∗ı̄ .

As shown in Examples 3 and 6, the special choice of a support vector regularization
combined with theε-insensitive cost function brings us to the case of support vector
pattern recognition and regression estimation. The advantage of this setting is that, in
the low noise case, it generates sparse decompositions off (x) in terms of the training
data, i.e., in terms of support vectors. This advantage, however, vanishes for noisy data
as the number of support vectors increases with the noise (see [36] for details).

Unfortunately, independent of the noise level, the choice of a different regularization
prevents such an efficient calculation scheme due to (35), asD−1K may not generally
be assumed to be diagonal. Consequently, the expansion off is only sparse in terms of
β but not inα. Yet this is sufficient for someencodingpurposes asf is defined uniquely
by the matrixD−1K and the set ofβı̄ . Hence storingαı̄ is not required.

The computational cost ofevaluating f(x0) also can be reduced. For the case of a
kernelk(x, x′) satisfying Mercer’s condition (27), the reduced set method [6] can be
applied to the initial solution. In that case, the final computational cost is comparable
with the one of support vector machines, with the advantage of regularization in input
space (which is the space we are really interested in) instead of high-dimensional space.

The computational cost is approximately cubic in the number of nonzero Lagrange
multipliersβı̄ , as we have to solve a quadratic programming problem whose quadratic part
is as large as the number of basis functions of the functional expansion off . Optimization
methods like the Bunch–Kaufman decomposition [5], [10] have the property of incuring
computational cost only in the number of nonzero coefficients, whereas for cases with
a large percentage of nonvanishing Lagrange multipliers, interior point methods (e.g.,
[39]) might be computationally more efficient.

We deliberately omitted the case of having fewer basis functions than constraints,
as (depending on the cost function) optimization problems of this kind may become
infeasible, at least for the case of hard constraints. However, it is not very difficult to see
how a generalization to an arbitrary number of basis functions could be achieved: denote
by n the number of functions of whichf is a linear combination,f (x) = ∑n

i=1 fi (x),
and bym the number of constraints or cost functions onf . Then D will be an n · n
matrix andK ann ·m matrix, i.e., we haven variablesαi andm Lagrange multipliers
βi . The calculations will lead to a similar class of quadratic optimization problems as
described in (33) and (56), with the difference that the quadratic part of the problem will
be at most of rankn, whereas the quadratic matrix will be of sizem ·m. A possible way
of dealing with this degeneracy is to use a singular value decomposition [29] and solve
the optimization equations in the reduced space.

To summarize, we have embedded the support vector method into a wider regulari-
zation-theoretic framework, which allow us to view a variety of learning approaches,
including but not limited to least mean squares, ridge regression, and support vector
machines as special cases of risk minimization using suitable loss functions. We have
shown that general Arsenin–Tikhinov regularizers may be used while still preserving
important advantages of support vector machines. Specifically, for particular choices
of loss function, the solution to the above problems (which can often be obtained only
through nonlinear optimization, e.g., in regression estimation by neural networks) was
reduced to a simple quadratic programming problem. Unlike many nonlinear optimiza-
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tion problems, the latter can be solved efficiently without the danger of getting trapped
in local minima. Finally, we have shown that the formalism is powerful enough to deal
with indirect measurements stemming from different sources.

Acknowledgments. We would like to thank Volker Blanz, L´eon Bottou, Chris Burges,
Patrick Haffner, J¨org Lemm, Klaus-Robert M¨uller, Noboru Murata, Sara Solla, Vladimir
Vapnik, and the referees for helpful comments and discussions. The authors are indebted
to AT&T and Bell Laboratories for the possibility to profit from an excellent research
environment during several research stays.

Appendix A. Optimization Problems for Risk Minimization. From (17) and (33)
we arrive at the following statement of the optimization problem:

(56) minimize
1

λ

∑
ı̄

(cı̄ (ηı̄ )+ c∗ı̄ (η
∗
ı̄ ))+ 1

2 Eα>DEα
subject to (Âi f )(xı̄ ) ≤ yı̄ + εı̄ + ηı̄ ,

(Âi f )(xı̄ ) ≥ yı̄ − ε∗ı̄ − η∗ı̄ ,
ηı̄ , η

∗
ı̄ ≥ 0 for all ı̄ .

To this end, we introduce a Lagrangian:

L = 1

λ

∑
ı̄

(cı̄ (ηı̄ )+ c∗ı̄ (η
∗
ı̄ ))+ 1

2

∑
ı̄ ̄

αı̄α̄ Dı̄ ̄ −
∑

ı̄

(ηı̄ξı̄ + η∗ı̄ ξ ∗ı̄ )(57)

−
∑

ı̄

βı̄ (yı̄ + εı̄ + ηı̄ − (Âi f )(xı̄ ))−
∑

ı̄

β∗ı̄ ((Âi f )(xı̄ )− yı̄ + ε∗ı̄ + η∗ı̄ )

with

βı̄ , β
∗
ı̄ , ξı̄ , ξ

∗
ı̄ ≥ 0.

In (57), the regularization term is expressed in terms of the function expansion coefficients
αı̄ . We next do the same for the terms stemming from the constraints on(Âi f )(xı̄ ), and
computeÂi f by substituting the expansion (15) to get

(Âi f )(xı̄ ) =
∑
̄

α̄ ((Âj ⊗ Âi )k)(x̄ , xı̄ )+ Âi b =
∑
̄

α̄K ̄ ı̄ + Âi b.(58)

See (36) for the definition ofK . Now we can compute the derivatives with respect to the
primary variablesαı̄ ,b, ηı̄ . These have to vanish for optimality.

∂

∂α̄
L =

∑
ı̄

(D̄ ı̄αı̄ − K ̄ ı̄ (βı̄ − β∗ı̄ )) = 0.(59)

Solving (59) forEα yields

Eα = D−1K ( Eβ − Eβ∗),(60)
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whereD−1 is the pseudoinverse in caseD does not have full rank. We proceed to the
next Lagrange condition, reading

1

b
· ∂
∂b

L =
∑

ı̄

(Âi 1)(β∗ı̄ − βı̄ ) = 0,(61)

using Âi b = bÂi 1. Summands for which(Âi 1) = 0 vanish, thereby removing the
constraint imposed by (61) on the corresponding variables. Partial differentiation with
respect toηı̄ andη∗ı̄ yields

1

λ

d

dηı̄
cı̄ (ηı̄ ) = βı̄ + ξı̄ and

1

λ

d

dη∗ı̄
c∗ı̄ (η

∗
ı̄ ) = β∗ı̄ + ξ ∗ı̄ .(62)

Now we may substitute (60), (61), and (62) back into (57), taking into account the
substitution (58), and eliminateαı̄ andξı̄ , obtaining

L = 1

λ

∑
ı̄

(
cı̄ (ηı̄ )− ηı̄

d

dηı̄
cı̄ (ηı̄ )+ c∗ı̄ (η

∗
ı̄ )− η∗ı̄

d

dη∗ı̄
c∗ı̄ (η

∗
ı̄ )

)
(63)

+( Eβ∗ − Eβ)>Ey− ( Eβ∗ + Eβ)>Eε − 1
2(
Eβ∗ − Eβ)>K D−1K ( Eβ∗ − Eβ).

The next step is to fill in the explicit form of the cost functionscı̄ , which will enable us
to eliminateηı̄ , with programming problems in theβı̄ remaining. However (as one can
see), each of thecı̄ andc∗ı̄ may have its own special functional form. Therefore we carry
out the further calculations with

T(η) := 1

λ

(
c(η)− η d

dη
c(η)

)
(64)

and
1

λ

d

dη
c(η) = β + ξ,(65)

where(ı̄) and possible asterisks have been omitted for clarity. This leads to

L=
∑

ı̄

Tı̄ (ηı̄ )+T∗ı̄ (η
∗
ı̄ )+( Eβ∗− Eβ)>Ey−( Eβ∗+ Eβ)>Eε− 1

2(
Eβ∗− Eβ)>K D−1K ( EB∗− Eβ).(66)

EXAMPLE 12 (Polynomial Loss Functions). We assume the general case of functions
with ε-insensitive loss zone (which may vanish, ifε = 0) and polynomial loss of degree
p > 1. In [8] this type of cost function was used for pattern recognition. This contains all
L p loss functions as special cases(ε = 0), with p > 1, which is treated in Example 13.
We use

c(η) = 1

p
ηp.(67)

From (64), (65), and (67) it follows that

1

λ
ηp−1 = β + ξ,(68)
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T(η) = 1

λ

(
1

p
ηp − ηηp−1

)
= −

(
1− 1

p

)
λ1/(p−1)(β + ξ)p/(p−1).(69)

As we want to find the maximum ofL in terms of the dual variables we getξ = 0 asT
is the only term whereξ appears andT becomes maximal for that value. This yields

T(β) = −
(

1− 1

p

)
λ1/(p−1)β p/(p−1) with β ∈ R+0 .(70)

Moreover, we have the following relation betweenβ andη;

η = (λβ)1/(p−1).(71)

EXAMPLE 13 (Piecewise Polynomial and Linear Loss Functions). Herewediscusscost
functions with polynomial growth for [0, σ ] with σ ≥ 0 and linear growth for [σ,∞)
such thatc(η) is C1 and convex. A consequence of the linear growth for largeη is that
the range of the Lagrange multipliers becomes bounded, namely, by the derivative of
c(η). Therefore we will have to solve box constrained optimization problems:

c(η) =
{
σ 1−p 1

pη
p for η < σ,

η +
(

1
p − 1

)
σ for η ≥ σ,(72)

T(η) = 1

λ

−σ
1−p

(
1− 1

p

)
ηp for η < σ,

−σ
(
1− 1

p

)
for n ≥ σ,

(73)

β + ξ = 1

λ

{
σ 1−pηp−1 for η < σ,

1 for η ≥ σ.(74)

By the same reasoning as above we find that the optimal solution is obtained forξ = 0.
Furthermore, we can see through the convexity ofc(η) thatη < σ iff β < 1/λ. Hence
we may easily substituteβ for 1/λ in the case ofη > σ . β ∈ [0,1/λ] is always true as
ξ ≥ 0. Combining these findings leads to a simplification of (73):

T(β) = −λ1/(p−1)

(
1− 1

p

)
σβ p/(p−1) for σ ∈ R+0 .(75)

Analogously to Example 12 we can determine the error forβ ∈ [0,1/λ) by

η = σ(λβ)1/(p−1).(76)

EXAMPLE 14 (Hardε-Constraints). The simplest case to consider, however, are hard
constraints, i.e., the requirement that the approximation of the data is performed with
at mostε deviation. In this case defining a cost function does not make much sense
in the Lagrange framework and we may skip all terms containingη

(∗)
i j . This leads to a

simplified optimization problem:

maximize ( Eβ∗ − Eβ)>Ey− ( Eβ∗ + Eβ)>Eε − 1
2(
Eβ∗ − Eβ)>K D−1K ( Eβ∗ − Eβ)(77)

subject to
∑

ı̄

(Âi 1)(β
∗
ı̄ − βı̄ ) = 0, βı̄ , β

∗
ı̄ ∈ R+0 .
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Another way to see this is to use the result of Example 6 and take the limitλ → 0.
Loosely speaking, the interval [0,1/λ] then converges toR+0 .

Appendix B. Proof of Theorem 1. We modify the proof given in [7] to deal with the
more general case stated in Theorem 1. AsRreg is convex for allλ ≥ 0, minimization of
Rreg is equivalent to fulfilling the Euler–Lagrange equations. Thus a necessary and suffi-
cient condition forf ∈ H(V) to minimizeRreg onH(V) is that the Gateaux functional
derivative [13](δ/δ f )Rreg[ f, ψ ] vanish for allψ ∈ H(V). We get

δ

δ f
Rreg[ f, ψ ] = lim

k→0

Rreg[ f + kψ ] − Rreg[ f ]

k
(78)

= lim
k→0

1

k

[∑
ı̄

1

`i
ci ((Âi ( f + kψ)))(xı̄ ), xı̄ , yı̄ )

−
∑

ı̄

1

`i
ci ((Âi f )(xı̄ ), xı̄ , yı̄ )

+ λ
2
(‖P̂( f + kψ)‖2D − ‖P̂ f ‖2D)

]
.

Expanding (78) in terms ofk and taking the limitk→ 0 yields

δ

δ f
Rreg[ f, ψ ] =

∑
ı̄

1

`i
∂1ci ((Âi f )(xı̄ ), xı̄ , yı̄ )(Âiψ)(xı̄ )+ λ(P̂ f · P̂ψ)D.(79)

Equation (79) has to vanish forf = fopt. As D̄ is a Hilbert space, we can define the
adjoint P̂∗ and get

(P̂ f · P̂ψ)D = (P̂∗ P̂ f · ψ)H(V).(80)

Similarly, we rewrite the first term of (79) to get∑
ı̄

1

`i
∂1ci ((Âi f )(xı̄ ), xı̄ , yı̄ )(δxı̄ · Âiψ)H(V) + λ(P̂∗ P̂ f · ψ)H(V).(81)

Using(δxı̄ · Âiψ)H(V) = (Â∗i δxī
·ψ)H(V), the whole expression (81) can be written as a

dot product withψ . Asψ was arbitrary, this proves the theorem.8

8 Note that this can be generalized to the case of convex functions which need not beC1. We next briefly sketch
the modifications in the proof. Partial derivatives ofci now become subdifferentials, with the consequence that
the equations only have to hold for some variables

αi ∈ ∂1ci ((Âi f )(xı̄ ), xı̄ , yı̄ ).

In this case,∂1 denotes the subdifferential of a function, which consists of an interval rather than just a single
number. For the proof, we convolve the non-C1 cost functions with a positiveC1 smoothing kernel which
preserves convexity (thereby rendering themC1), and take the limit to smoothing kernels with infinitely small
support. Convergence of the smoothed cost functions to the nonsmooth originals is exploited.
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Appendix C. An Algorithm for the Virtual Examples Case. We discuss an appli-
cation of this algorithm to the problem of optical character recognition. For the sake
of simplicity we assume the case of a dichotomy problem, e.g., having to distinguish
between the digits0 and1, combined with a regularization operator of the support vector
type, i.e.,D = K .

We start with an initial set of training dataX0 = {x01, . . . , x0`0} together with class
labelsY0 = {y01, . . . , y0`0 | y0i ∈ {−1,1}}. Additionally we know that the decision
function should be invariant undersmalltranslations, rotations, changes of line thickness,
radial scaling, and slanting or deslanting operations.9

Assume transformationŝTs associated with the aforementioned symmetries, together
with confidence levelsCs ≤ 1 regarding whether̂Tsx0i will still belong to classy0i . As
in Example 9, we useXs := X0, (Âs f )(x) := f (T̂sx), andT̂0 := 1. As we are dealing
with the case of pattern recognition, i.e., we are only interested in sgn( f (x)), not in f (x)
itself, it is beneficial to use a corresponding cost function, namely, the soft margin loss
as described in [8]:

c0( f (x), x, y) =
{

0 for f (x)y ≥ 1,
1− f (x)y otherwise.

(82)

For the transformed data setsXs we define cost functionscs := Csc0 (i.e., we are going
to penalize errors onXs less than onX0). As the effective cost functions (see (31)) are
0 for an interval unbounded in one direction (either(−∞,0] or [0,∞), depending on
the class labels), half of the Lagrange multipliers vanish. Therefore our setting can be
simplified by usingγı̄ := αı̄ yı̄ instead ofαı̄ , i.e.,

f (x) =
∑

ı̄

yı̄γı̄ (Âi k)(xı̄ , x)+ b.(83)

This allows us to eliminate the asterisks in the optimization problem, reading

maximize
∑

ı̄

γı̄ − 1
2 Eγ> K̄ Eγ subject to

∑
ı̄

yı̄γı̄ = 0, γi ∈
[
0,

Ci

λ

]
,(84)

with

K̄ı̄ ̄ := k(T̂i xı̄ , T̂j x̄ )yı̄ y̄ .(85)

The fact that less confidence has been put on the transformed samplesT̂sx0i leads to a
decrease in the upper boundaryCs/λ for the corresponding Lagrange multipliers. In this
point our algorithm differs from the virtual support vector algorithm as proposed in [32].
Moreover, their algorithm proceeds in two stages by first finding the support vectors and
then training on a database generated only from the support vectors and their transforms.

If one was to tackle the quadratic programming problem with all variables at a time,
the proposed algorithm would incur a substantial increase of computational complexity.

9 Unfortunately no general rule can be given on the number or the extent of these transformations, as they
depend heavily on the data at hand. A database containing only a very few (but very typical) instances of a
class may benefit from a large number of additional virtual examples. A large database instead possibly may
already contain realizations of the invariances in an explicit manner.



230 A. J. Smola and B. Sch¨olkopf

However, only a small fraction of Lagrange multipliers corresponding to data relevant for
the classification problem will differ from zero (e.g., [31]). Therefore it is advantageous
to minimize the target function only on subsets of theᾱi , keeping the other variables
fixed (see [27]), possibly starting with the original data setX0.
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