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ABSTRACT

The last years have witnessed an increasing interest in Support Vector �SV� machines� which
use Mercer kernels for e�ciently performing computations in high�dimensional spaces� In pattern
recognition� the SV algorithm constructs nonlinear decision functions by training a classi�er
to perform a linear separation in some high�dimensional space which is nonlinearly related
to input space� Recently� we have developed a technique for Nonlinear Principal Component
Analysis �Kernel PCA� based on the same types of kernels� This way� we can for instance
e�ciently extract polynomial features of arbitrary order by computing projections onto principal
components in the space of all products of n pixels of images�

We explain the idea of Mercer kernels and associated feature spaces� and describe connections
to the theory of reproducing kernels and to regularization theory� followed by an overview of the
above algorithms employing these kernels�

�� Introduction

For the case of two�class pattern recognition� the
task of learning from examples can be formulated
in the following way� we are given a set of functions

ff� � � � �g� f� � RN � f�	g �	�

and a set of examples� i�e� pairs of patterns xi and
labels yi�

f�x�� y��� � � � � �x�� y��g � RN � f�	g� �
�

each one of them generated from an unknown prob�
ability distribution P �x� y� containing the underly�
ing dependency� We want to learn a function f��
minimizing the average error committed on inde�
pendent examples randomly drawn from the same
distribution� called the risk

R��� �

Z
	



jf��x� � yj dP �x� y�� ���

The problem is that R is unknown� since P is un�
known� Therefore an induction principle for risk
minimization is necessary� The straightforward ap�
proach to minimize the empirical risk

Remp��� �
	

�

�X
i��

	



jf��xi�� yij �
�

does not guarantee a small actual risk� if the num�
ber � of training examples is limited� Therefore�

novel statistical techniques have been developed
during the last �� years� The Structural Risk Min�
imization principle �
�� is based on the fact that
for the above learning problem� for any � � � and
� � h� with a probability of at least 	��� the bound

R��� � Remp��� � �

�
h

�
�
log���

�

�
���

holds� where the con�dence term � is de�ned as
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The parameter h is called the VC�Vapnik�
Chervonenkis��dimension of a set of functions� To
control h� one introduces a structure of nested sub�
sets Sn �� ff� � � � �ng of ff� � � � �g� For
a given set of observations �x�� y��� � � � � �x�� y��� the
Structural Risk Minimization principle chooses the
function f�n

�
in the subset ff� � � � �ng for which

the guaranteed risk bound �the right hand side of
���� is minimal�
The above remarks show that for learning� the

proper choice of a set of functions which the learn�
ing machine can implement is crucial� It should
allow a small training error yet still have small
capacity� For a problem at hand� our ability to
choose such a set of functions critically depends on
the representation of the data� A striking exam�
ple is the problem of backing up a truck with a



trailer to a given position ���� This is a complicated
classi�cation problem �steering wheel left or right�
when expressed in cartesian coordinates� in polar
coordinates� however� it becomes linearly separable�
More formally speaking� we are free to take ad�

vantage of the fact that by preprocessing our data
with a �xed map g� and constructing a function
f � f� � g� the problem is reduced to learning f��
and we need not worry anymore about potentially
overly complex functions f � By a suitably a priori
chosen g� we are often able to select a learning ma�
chine �i�e� a set of functions that f� is chosen from�
with a comparably small VC�dimension� The map g
is referred to as performing preprocessing or feature
extraction�
In this paper� we shall brie�y give examples of

algorithms performing the tasks of pattern recogni�
tion and feature extraction� respectively� In Sec� ��
we describe the Support Vector algorithm� which
approximately performs Structural Risk Minimiza�
tion� and in Sec� 
� we present a nonlinear feature
extraction algorithm called Kernel PCA� In our ex�
position� both algorithms merely serve to illustrate
a method for dealing with nonlinearities which has a
potential far exceeding these two applications� This
method will be explained in the next section�

�� Feature Spaces

Suppose we are given patterns x � RN where most
information is contained in the d�th order products
�monomials� of entries xj of x� xj� � � � � � xjd � where
j�� � � � � jd � f	� � � � � Ng� In that case� we might
prefer to extract these product features �rst� and
work in the feature space F of all products of d
entries� This approach fails for realistically sized
problems� for N �dimensional input patterns� there
exist �N �d�	����d��N�	��� di�erent monomials�
Already 	�� 	� pixel input images �e�g� in optical
character recognition� and a monomial degree d � �
yield a dimensionality of 	����
In certain cases described below� there exists�

however� a way of computing dot products in these
high�dimensional feature spaces without explicitly
mapping into them� by means of nonlinear ker�
nels in input space RN � Thus� if the subsequent
processing can be carried out using dot products
exclusively� we are able to deal with the high di�
mensionality� In order to compute dot products of
the form ���x� � ��y��� we employ kernel represen�
tations of the form k�x�y� � ���x� � ��y��� This
method was used to extend theGeneralized Portrait
hyperplane classi�er to nonlinear Support Vector
machines �	� 
�� 
�� If F is high�dimensional� we
would like to be able to �nd a closed form expression
for k which can be e�ciently computed�
What does k look like for the case of polynomial

features� We start by giving an example �

� for

N � d � 
� For the map

C� � �x�� x�� 	� �x�
�
� x�

�
� x�x�� x�x��� ���

dot products in F take the form

�C��x��C��y�� � x�
�
y�
�
�x�

�
y�
�
�
x�x�y�y� � �x�y���

i�e� the desired kernel k is simply the square of the
dot product in input space� In �
� it was noted that
the same works for arbitrary N� d � N�

Proposition ��� De�ne Cd to map x � RN to
the vector Cd�x� whose entries are all possible d�th
degree ordered products of the entries of x� Then
the corresponding kernel computing the dot product
of vectors mapped by Cd is

k�x�y� � �Cd�x� � Cd�y�� � �x � y�d� ���

Proof� We directly compute �Cd�x� � Cd�y�� �PN

j������jd��
xj� � � � � � xjd � yj� � � � � � yjd ��PN

j�� xj � yj
�d

� �x � y�d� ut

Instead of ordered products� we can use un�
ordered ones to obtain a map �d which yields the
same value of the dot product� To this end� we
have to compensate for the multiple occurence of
certain monomials in Cd by scaling the respective
monomial entries of �d with the square roots of
their numbers of occurence�
If x represents an image with the entries being

pixel values� we can use the kernel �x � y�d to work
in the space spanned by products of any d pixels �
provided that we are able to do our work solely in
terms of dot products� without any explicit usage
of a mapped pattern �d�x�� Using kernels of the
form ���� we take into account higher�order statis�
tics without the combinatorial explosion of time
and memory complexity which goes along already
with moderately high N and d�
Rather than constructing k to compute the dot

product for a given �� we may ask the question
which function k� chosen a priori� does correspond
to a dot product in some space F �
� 

�� To con�
struct a map � induced by a kernel k� i�e� a map
� such that k computes the dot product in the
space that � maps to� Mercer�s theorem of func�
tional analysis is used ���� It states that if k is a
continuous symmetric kernel of a positive integral
operator K on L��C� �C being a compact subset of
RN �� it can be expanded in a uniformly convergent
series in terms of Eigenfunctions �j and positive
Eigenvalues 	j � �NF � 
�

k�x�y� �

NFX
j��

	j�j�x��j�y�� ���

From ���� it is straightforward to construct a map
�� mapping into a potentially in�nite�dimensional



l� space� which does the job� For instance� we may
use

� � x 	� �
p
	����x��

p
	����x�� � � ��� �	��

We thus have the following result�

Proposition ��� If k is a continuous symmetric
kernel of a positive integral operator� one can con�
struct a mapping � into a space where k acts as a
dot product�

k�x�y� � ���x� ���y��� �		�

Besides ���� we can for instance use Gaussian
radial basis function kernels �	� 	��

k�x�y� � exp
��kx� yk���
 
��� �	
�

and� for certain values of � and �� sigmoid kernels

k�x�y� � tanh���x � y� � ��� �	��

We conclude this section by describing the con�
nection to the theory of reproducing kernel Hilbert
spaces �RKHS�� To this end� consider the map

 � � RN �� H
x 	� k�x� ��� �	
�

Can we endow H with a dot product h�� �i such that
h ��x��  ��y�i � k�x�y�� i�e� such that H is an alter�
native representation of the feature space that we
are working in by using k� Clearly� this dot product
would have to satisfy

hk�x� ��� k�y� ��i � k�x�y�� �	��

which amounts to saying that k is a reproducing
kernel for H�
For a Mercer kernel ���� such a dot product does

exist� Since k is symmetric� the �i �i � 	� � � � � NF �
can be chosen to be orthogonal with respect to the
dot product in L��C�� and hence we may construct
h�� �i such that

hp	j�j �
p
	n�ni � �jn� �	��

using the Kronecker �jn� Substituting ��� into �	��
then proves the desired equality�
H� the closure of the space of all functions

f�x� �

�X
i��

aik�x�xi� �

�X
i��

ai

NFX
j��

	j�j�x��j�xi��

�	��
with the dot product h�� �i� is called an RKHS �
��

�� �� 	
��
What is the connection between F and H� Let

us write h�� �i as a dot product of coordinate vectors�
by expressing f � H in the basis �

p
	n�n�n�������NF

�

f�x� �

NFX
n��

�n
p
	n�n�x�� �	��

Using the dot product in F � this can be written as
f�x� � �� � ��x��� To obtain the �n� we compute�
using �	�� and �	���

�n � hf�
p
	n�ni �

p
	n

�X
i��

ai�n�xi�� �	��

Comparing �	�� and �	��� we see that F has the
structure of a RKHS in the sense that for f given
by �	��� and g�x� � �� ���x��� we have

�� � �� � hf� gi� �
��

Therefore� we can alternatively think of the feature
space as an RKHS of functions �	�� where only
functions of the form �	
� have a pre�image in input
space�

�� Support Vector Machines

Given a dot product space Z �e�g� the input space
RN � or a feature space F �� a hyperplane fz �
Z � �w � z� � b � �g� and a set of examples
�z�� y��� � � � � �z�� y�� � Z� disjoint from the hyper�
plane� we are looking for parameters �w� b� to sep�
arate the data� i�e�

yi��w � zi� � b� � �� i � 	� � � � � � �
	�

for some � � �� First note that we can always
rescale �w� b� such that

min
i��������

j�w � zi� � bj � 	� �

�

i�e� such that the point closest to the hyperplane
has a distance of 	�kwk�� Then� �
	� becomes

yi��w � zi� � b� � 	� i � 	� � � � � �� �
��

In the case of pattern recognition� the SV algo�
rithm is based on two facts� �rst� the complexity
of the classi�er can be kept low by minimizing kwk
�amounting to maximizing the margin of separa�
tion� subject to the condition of separating the data
�
��� and second� this minimization can be carried
out as a quadratic program based solely on values
of dot products �

�� Hence one may employ the
feature space methods of the previous section to
construct nonlinear decision functions�
In practice� a separating hyperplane often does

not exist� To allow for the possibility of examples
violating �
��� one introduces slack variables ���


i � �� i � 	� � � � � �� �

�

to get

yi��w � zi� � b� � 	� 
i� i � 	� � � � � �� �
��

�Strictly speaking� we should use training and test pat�
terns in ����� For separable problems� using just the training
set is a reasonable approximation�



The SV approach to minimizing the guaranteed risk
bound ��� consists of the following� minimize

��w� 
� �
	



�w �w� �

�X
i��


i �
��

subject to the constraints �

� and �
��� The �rst
term is minimized to control the second term of the
bound ���� the second term� on the other hand� is
an upper bound on the number of misclassi�cations
on the training set� i�e� the empirical risk��

Introducing Lagrange multipliers �i� and using
the Kuhn�Tucker theorem of optimization theory�
the solution can be shown to have an expansion

w �

�X
i��

yi�izi� �
��

with nonzero coe�cients �i only where the corre�
sponding example �zi� yi� precisely meets the con�
straint �
��� These zi are called Support Vec�
tors� All other training examples are irrelevant�
their constraint �
�� is satis�ed automatically �with

i � ��� and they do not appear in the expansion
�
��� The coe�cients �i are found by maximizing

W ��� �
�X

i��

�i � 	




�X
i�j��

�i�jyiyj�zi � zj� �
��

subject to

� � �i � 	

	
� i � 	� � � � � �� and

�X
i��

�iyi � �� �
��

The hyperplane decision function can thus be writ�
ten as

f�z� � sgn

�
�X

i��

yi�i � �z � zi� � b

�
� ����

To allow for much more general decision surfaces�
one substitutes a suitable kernel function k for the
dot product� leading to decision functions of the
form

f�x� � sgn

�
�X

i��

yi�i � k�x�xi� � b

�
� ��	�

and a quadratic program with target function

W ��� �
�X

i��

�i � 	




�X
i�j��

�i�jyiyjk�xi�xj�� ��
�

Empirically� di�erent SV machines have been found
to use largely the same SVs xi� e�g� most of the

�The computational simplicity of the problem stays the
same in regression tasks� even with more general cost func�
tions �����

centers of an SV machine with Gaussian kernel
�	
� �	�� coincide with the �rst�layer weights of SV
classi�ers with tanh kernel �	�� �in which case the
trained SV machine looks like a neural network�
�	��� Moreover� experimental results have shown
that in digit and object recognition tasks� SV ma�
chines are competitive with state�of�the�art tech�
niques �	
�� especially when enhanced by methods
for incorporating prior knowledge about the prob�
lem at hand �	��� Other areas where SV machines
have been successfully applied include time series
prediction �		� and text categorization �	���
From a computational point of view� the formu�

lation as a quadratic programming problem with a
positive matrix �cf� ��
�� is crucial� as it allows the
risk minimization problem to be solved e�ciently��

From a statistical point of view� it is crucial that
the kernel method allows to reduce a large class
of learning machines to separating hyperplanes in
some space� For those� an upper bound on the VC�
dimension can be given ��

�� cf� �	�� 
� for a caveat��
which is taken into account in training the classi�er�
This bound does not depend on the dimensionality
of the feature space� but on the separation margin
of the classes� This is how the SV machine handles
the !curse of dimensionality�" Along similar lines�
analyses of generalization performance in terms of
separation margins and fat shattering dimension
are relevant to SV machines �	
��
Additionally� the connection to regularization

theory provides insight� In �
��� a regularization
framework is described which contains the SV al�
gorithm as a special case� For kernel�based function
expansions� it is shown that given a regularization
operator P mapping the functions of the learning
machine into some dot product space D� the prob�
lem of minimizing the regularized risk

Rreg�f � � Remp�f � �
	



kPfk�� ����

�with a regularization parameter 	 � �� can be
written as a constrained optimization problem� For
particular choices of the cost function� it further
reduces to a SV type quadratic programming prob�
lem� The latter thus is not speci�c to SV machines�
but is common to a much wider class of approaches�
What gets lost in this case� however� is the fact that
the solution can usually be expressed in terms of a
small number of SVs �cf� also ����� This speci�c
feature of SV machines is due to the fact that the
type of regularization and the class of functions
which are considered as admissible solutions are
intimately related ��� 	�� 
	�� the SV algorithm is

�This refers to the training of the machine� but not to
its application on test examples� In the latter case� the
computational complexity can be larger than for neural nets�
Methods for reducing it have successfully been applied in
character recognition ����



equivalent to minimizing the regularized risk on the
set of functions

f�x� �
X
i

�ik�xi�x� � b� ��
�

provided that k and P are interrelated by

k�xi�xj� � ��Pk��xi� �� � �Pk��xj � ��� � ����

To this end� k is chosen as Green�s function of
P �P � for in that case� the right hand side of ����
equals �k�xi� �� ��P �Pk��xj � ��� � �k�xi� �� ��xj ���� �
k�xi�xj��
For instance� an RBF kernel thus corresponds to

regularization with a functional containing a spe�
ci�c di�erential operator�
In the context of SV machines� often the question

arises as to which kernel should be chosen for a
particular learning task� In view of the above� the
answer comprises two parts� First� the kernel deter�
mines the class of functions ��
� that the solution is
taken from� second� via ����� the kernel determines
the type of regularization that is used�

�� Kernel PCA

Principal Component Analysis �PCA� is a basis
transformation to diagonalize an estimate of the
covariance matrix of the data xk� k � 	� � � � � �� xk �
RN �

P�

k�� xk � �� de�ned as C � �

�

P�

j�� xjx
�

j �
The new coordinates in the Eigenvector basis� i�e�
the orthogonal projections onto the Eigenvectors�
are called principal components� We have general�
ized this setting to a nonlinear one� using kernels
and associated feature spaces �	���
Assume for the moment that our data mapped

into feature space� ��x��� � � � ���x��� is centered� i�e�P�
k�� ��xk� � �� To do PCA for the covariance

matrix

#C �
	

�

�X
j��

��xj���xj�
�� ����

we have to �nd Eigenvalues 	 � � and Eigenvectors
V � Fnf�g satisfying 	V � #CV� Substituting �����
we note that all solutions V with 	 �� � lie in the
span of ��x��� � � � ���x��� This implies that we may
consider the equivalent system

	���xk� �V� � ���xk� � #CV� for all k � 	� � � � � ��
����

and that there exist coe�cients ��� � � � � �� such that

V �

�X
i��

�i��xi�� ����

Substituting ���� and ���� into ����� and de�ning
an �� � matrix K by

Kij �� ���xi� � ��xj�� � �k�xi�xj��� ����

we arrive at a problem which is cast in terms of dot
products� solve

�	� � K� �
��

for nonzero Eigenvalues 	� and coe�cient Eigenvec�
tors � � ���� � � � � ���

�� We normalize the solutions
�k by requiring that the corresponding vectors in F
be normalized� i�e� �Vk �Vk� � 	� which translates
into 	k��

k � �k� � 	� For principal component
extraction� we compute projections of the image of
a test point ��x� onto the Eigenvectors Vk in F
according to

�Vk ���x�� �
�X

i��

�ki ���xi����x�� �
�X

i��

�ki k�xi�x��

�
	�
Note that for feature extraction� we thus have to
evaluate � kernel functions in input space rather
than a dot product in a 	���$dimensional space�
say� Moreover� Kernel PCA can be carried out for
all kernels described in Sec� 
� no matter whether
we know the corresponding map � or not� The
nonlinearity is taken into account implicitly when
computing the matrix elements ofK and when com�
puting the projections �
	�� the remainder of the
algorithm is simple linear algebra�

For the general case� we have to drop the assump�
tion that the ��xi� are centered in F � Instead�
we have to go through the above algebra using
 ��xi� �� ��xi� � �	���

P�

i�� ��xi� �for details� see
�	����

In experiments comparing the utility of kernel
PCA features for pattern recognition using a lin�
ear classi�er� we found two advantages of nonlinear
kernel PCA� �rst� nonlinear principal components
a�orded better recognition rates than correspond�
ing numbers of linear principal components� and
second� the performance for nonlinear components
can be further improved by using more components
than possible in the linear case� In that case� the
performance is competitive with the best nonlinear
SV machines� which in turn beat Neural Networks
like LeNet	 �for more benchmark results� see �

���
A simple toy example of kernel PCA is shown in
Fig� 	�

SV machines and kernel PCA have been the �rst
two applications of the powerful idea of Mercer ker�
nels in machine learning technology� They share
this crucial ingredient� yet they are based on dif�
ferent learning paradigms � supervised� and un�
supervised� respectively� Nevertheless� an interest�
ing parallel has recently been discovered� if one
constructs transformation invariant SV machines
by requiring local invariance with respect to some
Lie group of transformations Lt� one arrives at the
result �	�� that this can be achieved by a prepro�

cessing matrix B � C�
�

� � where C is the tangent



Fig� 	
 Kernel PCA toy example �from �	���� three clusters �Gaussians with standard deviation 
�	� depicted region

��	� 	�� ��
��� 	��� A smooth transition from linear PCA to nonlinear PCA is obtained by using hyperbolic tangent kernels
k�x�y� � tanh ���x � y� � 	� with varying gain �
 from top to bottom� � � 
�	� 	� �� 	
� For � � 
�	� the �rst two features
look like linear PCA features� For large �� the nonlinear region of the tanh function becomes e�ective� In that case� kernel
PCA can exploit this nonlinearity to allocate the highest feature gradients to regions where there are data points� as can
be seen nicely in the case � � 	
�

covariance matrix

C ��
	

�

�X
j��

�
�

�t

���
t��

Ltxj

��
�

�t

���
t��

Ltxj

��
� �

�

To interpret this� note that C is a sample esti�
mate of the covariance matrix of the random vector
s � �

�t
jt��Ltx� s � f�	g being a random sign� Using

B� a given pattern x is thus �rst transformed by
projecting it onto the Eigenvectors of C� The re�
sulting feature vector is then rescaled by dividing by
the square roots of C�s Eigenvalues� In other words�
the directions of main transformation variance are
scaled back� So far� these ideas have only been
tested in the linear case� For nonlinear kernels� an
analysis similar to the one for kernel PCA yields a
tangent covariance matrix C in F �

�� Conclusion

We believe that Support Vector machines and Ker�
nel Principal Component Analysis are only the
�rst examples of a series of potential applications
of Mercer�kernel�based methods in learning theory�

Any algorithm which can be formulated solely in
terms of dot products can be made nonlinear by
carrying it out in feature spaces induced by Mercer
kernels� However� already the above two �elds are
large enough to render an exhaustive discussion in
this article infeasible� To illustrate how nonlinear
feature spaces can bene�cially be used in complex
learning tasks� we have summarized some aspects of
SV learning and Kernel PCA� and we hope that the
reader may �nd it worthwhile to consider employing
kernel methods in their own work�
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