Support Vector Methods in Learning and Feature Extraction

Bernhard Schélkopf®, Alex Smola®f, Klaus-Robert Miiller?,
Chris Burges!, Vladimir Vapnik*

S§GMD FIRST, Rudower Chaussee 5, 12489 Berlin, Germany
fAustralian National University, Engineering Dept., Canberra ACT 0200
tBell Laboratories, 101 Crawfords Corner Road, Holmdel NJ 07733, USA

*AT&T Research, 100 Schultz Dr., Red Bank, NJ 07701, USA
bs,smola,klaus@first.gmd.de, burges@bell-labs.com, vlad@research.att.com

ABSTRACT

The last years have witnessed an increasing interest in Support Vector (SV) machines, which
use Mercer kernels for efficiently performing computations in high-dimensional spaces. In pattern
recognition, the SV algorithm constructs nonlinear decision functions by training a classifier
to perform a linear separation in some high-dimensional space which is nonlinearly related
to input space. Recently, we have developed a technique for Nonlinear Principal Component,
Analysis (Kernel PCA) based on the same types of kernels. This way, we can for instance
efficiently extract polynomial features of arbitrary order by computing projections onto principal
components in the space of all products of n pixels of images.

We explain the idea of Mercer kernels and associated feature spaces, and describe connections
to the theory of reproducing kernels and to regularization theory, followed by an overview of the

above algorithms employing these kernels.

1. Introduction

For the case of two-class pattern recognition, the
task of learning from examples can be formulated
in the following way: we are given a set of functions

{fa:ia €A}, fo:RN = {£1} (1)

and a set of examples, i.e. pairs of patterns x; and
labels y;,

{(Xlayl)a"'a(xfayl)} CRN X {:*:1}7 (2)

each one of them generated from an unknown prob-
ability distribution P(x,y) containing the underly-
ing dependency. We want to learn a function fu«
minimizing the average error committed on inde-
pendent examples randomly drawn from the same
distribution, called the risk

R(@) = [51fa(0 -yl dPxy). @)

The problem is that R is unknown, since P is un-
known. Therefore an induction principle for risk
minimization is necessary. The straightforward ap-
proach to minimize the empirical risk

11
Remp(@) = 5 Z 3 fa(x:) = uil (4)

does not guarantee a small actual risk, if the num-
ber ¢ of training examples is limited. Therefore,

novel statistical techniques have been developed
during the last 30 years. The Structural Risk Min-
imization principle [23] is based on the fact that
for the above learning problem, for any a € A and
£ > h, with a probability of at least 1—n, the bound

h log(n)
o)

R(0) < Remp(0) + ((5)

holds, where the confidence term ¢ is defined as

5 (ﬁ 10g(n)> _ Jh (log ¥ + 1) —log(n/4) ©)

A N l ’
The parameter h is called the VC(Vapnik-
Chervonenkis)-dimension of a set of functions. To
control A, one introduces a structure of nested sub-
sets Sy, = {fa : @ € Ay} of {fo : @ € A}. For
a given set of observations (x1,y1),---, (X¢,y¢), the
Structural Risk Minimization principle chooses the
function for in the subset {f, : a € A,} for which
the guaranteed risk bound (the right hand side of
(5)) is minimal.

The above remarks show that for learning, the
proper choice of a set of functions which the learn-
ing machine can implement is crucial. It should
allow a small training error yet still have small
capacity. For a problem at hand, our ability to
choose such a set of functions critically depends on
the representation of the data. A striking exam-
ple is the problem of backing up a truck with a

trailer to a given position [7]. This is a complicated
classification problem (steering wheel left or right)
when expressed in cartesian coordinates; in polar
coordinates, however, it becomes linearly separable.

More formally speaking, we are free to take ad-
vantage of the fact that by preprocessing our data
with a fixed map g, and constructing a function
f = f*og, the problem is reduced to learning f*,
and we need not worry anymore about potentially
overly complex functions f. By a suitably a priori
chosen g, we are often able to select a learning ma-
chine (i.e. a set of functions that f* is chosen from)
with a comparably small VC-dimension. The map g
is referred to as performing preprocessing or feature
eztraction.

In this paper, we shall briefly give examples of
algorithms performing the tasks of pattern recogni-
tion and feature extraction, respectively. In Sec. 3,
we describe the Support Vector algorithm, which
approximately performs Structural Risk Minimiza-
tion; and in Sec. 4, we present a nonlinear feature
extraction algorithm called Kernel PCA. In our ex-
position, both algorithms merely serve to illustrate
amethod for dealing with nonlinearities which has a
potential far exceeding these two applications. This
method will be explained in the next section.

2. Feature Spaces

Suppose we are given patterns x € RY where most
information is contained in the d-th order products
(monomials) of entries z; of x, zj, - ... x;,, where
Ji,---yda € {1,...,N}. In that case, we might
prefer to extract these product features first, and
work in the feature space F' of all products of d
entries. This approach fails for realistically sized
problems: for N-dimensional input patterns, there
exist (N +d—1)!/(d!(N —1)!) different monomials.
Already 16 x 16 pixel input images (e.g. in optical
character recognition) and a monomial degree d = 5
yield a dimensionality of 10'°.

In certain cases described below, there exists,
however, a way of computing dot products in these
high-dimensional feature spaces without explicitly
mapping into them: by means of nonlinear ker-
nels in input space RY. Thus, if the subsequent
processing can be carried out using dot products
exclusively, we are able to deal with the high di-
mensionality. In order to compute dot products of
the form (®(x) - ®(y)), we employ kernel represen-
tations of the form k(x,y) = (®(x) - ®(y)). This
method was used to extend the Generalized Portrait
hyperplane classifier to nonlinear Support Vector
machines [1, 25, 2]. If F' is high-dimensional, we
would like to be able to find a closed form expression
for k which can be efficiently computed.

What does k look like for the case of polynomial
features? We start by giving an example [24] for

N =d = 2. For the map

Cy : (21, 22) = (23,23, 2120, T271), (7)
dot products in F' take the form
(Ca(x)-Ca(y)) = 2iyi +a3ys + 2z 225192 = (x°y)°,

i.e. the desired kernel k is simply the square of the
dot product in input space. In [2] it was noted that
the same works for arbitrary N,d € N:

Proposition 2.1 Define Cy to map x € RN to
the vector Cy(x) whose entries are all possible d-th
degree ordered products of the entries of x. Then
the corresponding kernel computing the dot product
of vectors mapped by Cy is

k(x,y) = (Ca(x) - Caly)) = (x-y)". (8
Proof. We directly compute (Cy(x) - Ca(y)) =
Z;‘Y,,,.,jdzl Ljp * --- 0 Ljg " Yjn * Yja

(Z;’V:I j -yj)d =(x-y)% O

Instead of ordered products, we can use un-
ordered ones to obtain a map ®; which yields the
same value of the dot product. To this end, we
have to compensate for the multiple occurence of
certain monomials in C; by scaling the respective
monomial entries of ®; with the square roots of
their numbers of occurence.

If x represents an image with the entries being
pixel values, we can use the kernel (x - y)¢ to work
in the space spanned by products of any d pixels —
provided that we are able to do our work solely in
terms of dot products, without any explicit usage
of a mapped pattern ®4(x). Using kernels of the
form (8), we take into account higher-order statis-
tics without the combinatorial explosion of time
and memory complexity which goes along already
with moderately high N and d.

Rather than constructing k to compute the dot
product for a given ®, we may ask the question
which function k, chosen a priori, does correspond
to a dot product in some space F' [2, 24]. To con-
struct a map ® induced by a kernel k, i.e. a map
® such that k£ computes the dot product in the
space that ® maps to, Mercer’s theorem of func-
tional analysis is used [6]. It states that if k is a
continuous symmetric kernel of a positive integral
operator K on L*(C') (C being a compact subset, of
RN), it can be expanded in a uniformly convergent
series in terms of Eigenfunctions ; and positive
Eigenvalues Aj, (Nr < 00)

Np
k(xy) = 30 At ()5 (¥)- (9)

From (9), it is straightforward to construct a map
&, mapping into a potentially infinite-dimensional

12 space, which does the job. For instance, we may
use

B :x o (Vv (0, VAo (), ..).

We thus have the following result:

(10)

Proposition 2.2 If k is a continuous symmetric
kernel of a positive integral operator, one can con-
struct a mapping ® into a space where k acts as a
dot product,

k(x,y) = (2(x) - ®(y))-

Besides (8), we can for instance use Gaussian
radial basis function kernels [1, 17]

k(x,y) = exp (—|lx = yl*/(2 0%))
and, for certain values of k¥ and 0O, sigmoid kernels

k(x,y) = tanh(k(x -y) + ©). (13)

(11)

(12)

We conclude this section by describing the con-
nection to the theory of reproducing kernel Hilbert
spaces (RKHS). To this end, consider the map

o : RN
X —

— H

k(x,.). (14)

Can we endow H with a dot product (., .) such that
(®(x), ®(y)) = k(x,y), i.e. such that # is an alter-
native representation of the feature space that we
are working in by using k? Clearly, this dot product
would have to satisfy

(k(x,.), k(y,.)) = k(x,¥),

which amounts to saying that k is a reproducing
kernel for H.

For a Mercer kernel (9), such a dot product does
exist. Since k is symmetric, the ¢; (i =1,..., Np)
can be chosen to be orthogonal with respect to the
dot product in L?(C), and hence we may construct
(., .y such that

(VN bi, vV Antn) = 8jn,

using the Kronecker d;,,. Substituting (9) into (15)
then proves the desired equality.
‘H, the closure of the space of all functions

(15)

(16)

[e%e] [e%s) Np
f(x) = Zaik(x,xi) = Zai Z Aj (%) (xi),

(17)
with the dot product (.,.), is called an RKHS [26,
27, 8, 14].

What is the connection between F' and H? Let
us write (., .) as a dot product of coordinate vectors,
by expressing f € H in the basis (VA %n)n=1, . Ne

Np

f(x) = Z an\/g"pn(x)-

n=1

(18)

Using the dot product in F', this can be written as
f(x) = (a- ®(x)). To obtain the a,,, we compute,
using (16) and (17),

an = (f,V/ Anthn) = \/Ezaﬂl’n(xi)- (19)

Comparing (18) and (10), we see that F' has the
structure of a RKHS in the sense that for f given
by (18), and g(x) = (8 - ®(x)), we have

(a-B) =({f.9)-

Therefore, we can alternatively think of the feature
space as an RKHS of functions (17) where only
functions of the form (14) have a pre-image in input
space.

(20)

3. Support Vector Machines

Given a dot product space Z (e.g. the input space
RN, or a feature space F), a hyperplane {z €
Z : (w-z)+b = 0}, and a set of examples
(z1,Y1),---,(2ze,y¢) € Z, disjoint from the hyper-
plane, we are looking for parameters (w,b) to sep-
arate the data, i.e.

for some § > 0. First note that we can always
rescale (w, b) such that
min |(w-z;) +b] =1,

i=1,...,0

(22)

i.e. such that the point closest to the hyperplane
has a distance of 1/||w]|.! Then, (21) becomes

yi((w-2z;)+b)>1, i=1,...,¢ (23)
In the case of pattern recognition, the SV algo-
rithm is based on two facts: first, the complexity
of the classifier can be kept low by minimizing ||wl||
(amounting to maximizing the margin of separa-
tion) subject to the condition of separating the data
(23); and second, this minimization can be carried
out as a quadratic program based solely on values
of dot products [24]. Hence one may employ the
feature space methods of the previous section to
construct nonlinear decision functions.

In practice, a separating hyperplane often does
not exist. To allow for the possibility of examples
violating (23), one introduces slack variables [5]

&>0, i=1,...,¢, (24)

to get
yi((w-2z;) +b) >1-¢&;,
LStrictly speaking, we should use training and test pat-

terns in (22). For separable problems, using just the training
set is a reasonable approximation.

i=1,...,0. (25)

The SV approach to minimizing the guaranteed risk
bound (5) consists of the following: minimize

N ¢
T(w,§) = §(W W) + Zfi (26)

subject to the constraints (24) and (25). The first
term is minimized to control the second term of the
bound (5); the second term, on the other hand, is
an upper bound on the number of misclassifications
on the training set, i.e. the empirical risk.?
Introducing Lagrange multipliers a;, and using
the Kuhn-Tucker theorem of optimization theory,
the solution can be shown to have an expansion

¢
W= E YiQ;Zj,
=1

with nonzero coefficients «; only where the corre-
sponding example (z;,y;) precisely meets the con-
straint (25). These z; are called Support Vec-
tors. All other training examples are irrelevant:
their constraint (25) is satisfied automatically (with
& = 0), and they do not appear in the expansion
(27). The coeflicients a; are found by maximizing

(27)

L

¢
W(a) = Zai - % Z oYy (2 - 25) (28)

i=1 i,j=1

subject to

J4
, i=1,...,0, and Y a;y; = 0. (29)

i=1

0<a; <

> =

The hyperplane decision function can thus be writ-
ten as

¢
f(z) =sgn (Z yie; - (z-z;) + b) . (30)

i=1

To allow for much more general decision surfaces,
one substitutes a suitable kernel function & for the
dot product, leading to decision functions of the
form

¢
f(x) =sgn (Z yioi - k(x,%x;) + b) . (31)

and a quadratic program with target function

¢ ¢
1
W(a) = Zai -3 Z aiayyiyik(xi, x;). (32)

i=1 i,j=1

Empirically, different SV machines have been found
to use largely the same SVs x;; e.g. most of the

2The computational simplicity of the problem stays the
same in regression tasks, even with more general cost func-
tions [22].

centers of an SV machine with Gaussian kernel
(12) [17] coincide with the first-layer weights of SV
classifiers with tanh kernel (13) (in which case the
trained SV machine looks like a neural network)
[13]. Moreover, experimental results have shown
that in digit and object recognition tasks, SV ma-
chines are competitive with state-of-the-art tech-
niques [14], especially when enhanced by methods
for incorporating prior knowledge about the prob-
lem at hand [15]. Other areas where SV machines
have been successfully applied include time series
prediction [11] and text categorization [10].

From a computational point of view, the formu-
lation as a quadratic programming problem with a
positive matrix (cf. (32)) is crucial, as it allows the
risk minimization problem to be solved efficiently.?
From a statistical point of view, it is crucial that
the kernel method allows to reduce a large class
of learning machines to separating hyperplanes in
some space. For those, an upper bound on the VC-
dimension can be given ([24], cf. [18, 4] for a caveat),
which is taken into account in training the classifier.
This bound does not depend on the dimensionality
of the feature space, but on the separation margin
of the classes. This is how the SV machine handles
the “curse of dimensionality.” Along similar lines,
analyses of generalization performance in terms of
separation margins and fat shattering dimension
are relevant to SV machines [12].

Additionally, the connection to regularization
theory provides insight. In [20], a regularization
framework is described which contains the SV al-
gorithm as a special case. For kernel-based function
expansions, it is shown that given a regularization
operator P mapping the functions of the learning
machine into some dot product space D, the prob-
lem of minimizing the regularized risk

Roeglf) = Rempl 1+ SIPAP, (39
(with a regularization parameter A > 0) can be
written as a constrained optimization problem. For
particular choices of the cost function, it further
reduces to a SV type quadratic programming prob-
lem. The latter thus is not specific to SV machines,
but is common to a much wider class of approaches.
What gets lost in this case, however, is the fact that
the solution can usually be expressed in terms of a
small number of SVs (cf. also [8]). This specific
feature of SV machines is due to the fact that the
type of regularization and the class of functions
which are considered as admissible solutions are
intimately related [9, 19, 21]: the SV algorithm is

3This refers to the training of the machine, but not to
its application on test examples. In the latter case, the
computational complexity can be larger than for neural nets.
Methods for reducing it have successfully been applied in
character recognition [3].

equivalent to minimizing the regularized risk on the
set of functions

flx)= Zaik(xi,x) + b, (34)
provided that k and P are interrelated by
k(xi,x;) = (Pk)(xi,.) - (PE)(x5,.)) . (35)

To this end, k is chosen as Green’s function of
P*P, for in that case, the right hand side of (35)
equals (k(x;,.)- (P*PR)(x;,) = (k(xi,.)-0x,(.)) =
k(Xi, Xj).

For instance, an RBF kernel thus corresponds to
regularization with a functional containing a spe-
cific differential operator.

In the context of SV machines, often the question
arises as to which kernel should be chosen for a
particular learning task. In view of the above, the
answer comprises two parts. First, the kernel deter-
mines the class of functions (34) that the solution is
taken from; second, via (35), the kernel determines
the type of regularization that is used.

4. Kernel PCA

Principal Component Analysis (PCA) is a basis
transformation to diagonalize an estimate of the
covariance matrix of the data xy, k =1,... £, x} €
RV, 3¢ x; = 0, defined as C' = %Ef.:l XX/ .
The new coordinates in the Eigenvector basis, i.e.
the orthogonal projections onto the Eigenvectors,
are called principal components. We have general-
ized this setting to a nonlinear one, using kernels
and associated feature spaces [16].

Assume for the moment that our data mapped
into feature space, ®(x1), ..., ®(xy), is centered, i.e.
Zi:l ®(x;) = 0. To do PCA for the covariance

matrix

1
C=;> 0(x)e(x))", (36)
j=1

we have to find Eigenvalues A > 0 and Eigenvectors
V € F\{0} satisfying \V = C'V. Substituting (36),
we note that all solutions V with A # 0 lie in the
span of ®(x1), ..., ®(x¢). This implies that we may
consider the equivalent system

M®(xx) V) = (®(xx)-CV) for all k =1,...,¢,
(37)

and that there exist coefficients a, . . ., ap such that

¢
V= Zaiq)(xi)- (38)

Substituting (36) and (38) into (37), and defining
an £ X £ matrix K by

Kij = (2(x) - @(x)) = (k(xi,%x5)), (39)

we arrive at a problem which is cast in terms of dot
products: solve

a=Ka (40)
for nonzero Eigenvalues A, and coefficient Eigenvec-
tors a = (a1, ...,a¢) . We normalize the solutions
a® by requiring that the corresponding vectors in F
be normalized, i.e. (V¥ V*) =1, which translates
into A\r(a* - @¥) = 1. For principal component
extraction, we compute projections of the image of
a test point ®(x) onto the Eigenvectors V¥ in F
according to

4

l
(VE-@(x) =) af (B(x) @(x)) = Zafk(xi,X)-

i=1

(41)
Note that for feature extraction, we thus have to
evaluate ¢ kernel functions in input space rather
than a dot product in a 10'°-dimensional space,
say. Moreover, Kernel PCA can be carried out for
all kernels described in Sec. 2, no matter whether
we know the corresponding map ® or not. The
nonlinearity is taken into account implicitly when
computing the matrix elements of K and when com-
puting the projections (41), the remainder of the
algorithm is simple linear algebra.

For the general case, we have to drop the assump-
tion that the ®(x;) are centered in F. Instead,
we have to go through the above algebra using
B(x;) = B(x;) — (1/0) L_, ®(x;) (for details, see
116]).

In experiments comparing the utility of kernel
PCA features for pattern recognition using a lin-
ear classifier, we found two advantages of nonlinear
kernel PCA: first, nonlinear principal components
afforded better recognition rates than correspond-
ing numbers of linear principal components; and
second, the performance for nonlinear components
can be further improved by using more components
than possible in the linear case. In that case, the
performance is competitive with the best nonlinear
SV machines, which in turn beat Neural Networks
like LeNet1 (for more benchmark results, see [24]).
A simple toy example of kernel PCA is shown in
Fig. 1.

SV machines and kernel PCA have been the first
two applications of the powerful idea of Mercer ker-
nels in machine learning technology. They share
this crucial ingredient, yet they are based on dif-
ferent learning paradigms — supervised, and un-
supervised, respectively. Nevertheless, an interest-
ing parallel has recently been discovered: if one
constructs transformation invariant SV machines
by requiring local invariance with respect to some
Lie group of transformations £;, one arrives at the
result [15] that this can be achieved by a prepro-
cessing matrix B = C_%, where C' is the tangent

_
.
1

Fig. 1:
[_1’ 1}

Kernel PCA toy example (from [14]); three clusters (Gaussians with standard deviation 0.1, depicted region:
x [=0.5,1]). A smooth transition from linear PCA to nonlinear PCA is obtained by using hyperbolic tangent kernels

k(x,y) = tanh (k(x - y) + 1) with varying gain : from top to bottom, x = 0.1,1,5,10. For k = 0.1, the first two features
look like linear PCA features. For large k, the nonlinear region of the tanh function becomes effective. In that case, kernel
PCA can exploit this nonlinearity to allocate the highest feature gradients to regions where there are data points, as can

be seen nicely in the case k = 10.

covariance matrix

£Z<at‘t oLrx J) <at‘t0

To interpret this, note that C is a sample esti-
mate of the covariance matrix of the random vector
s+ 2 |i=0Lsx, s € {£1} being a random sign. Using
B, a given pattern x is thus first transformed by
projecting it onto the Eigenvectors of C. The re-
sulting feature vector is then rescaled by dividing by
the square roots of C’s Eigenvalues. In other words,
the directions of main transformation variance are
scaled back. So far, these ideas have only been
tested in the linear case. For nonlinear kernels, an
analysis similar to the one for kernel PCA yields a
tangent covariance matrix C' in F.

ztx]) . (42)

5. Conclusion

We believe that Support Vector machines and Ker-
nel Principal Component Analysis are only the
first examples of a series of potential applications
of Mercer-kernel-based methods in learning theory.

Any algorithm which can be formulated solely in
terms of dot products can be made nonlinear by
carrying it out in feature spaces induced by Mercer
kernels. However, already the above two fields are
large enough to render an exhaustive discussion in
this article infeasible. To illustrate how nonlinear
feature spaces can beneficially be used in complex
learning tasks, we have summarized some aspects of
SV learning and Kernel PCA, and we hope that the
reader may find it worthwhile to consider employing
kernel methods in their own work.

Acknowledgments. This work was supported
by a grant of the DFG JA 379/71 and by
the Australian Research Council. More infor-
mation on SV methods can be obtained via
http://svm.first.gmd.de.

References

[1] M. Aizerman, E. Braverman, and L. Rozonoer.
Theoretical foundations of the potential func-
tion method in pattern recognition learning.

3]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

Automation and Remote Control, 25:821 — 837,
1964.

B. E. Boser, I. M. Guyon, and V. N. Vapnik.
A training algorithm for optimal margin classi-
fiers. In D. Haussler, editor, Proceedings of the
5th Annual ACM Workshop on Computational
Learning Theory, pages 144-152, Pittsburgh,
PA, July 1992. ACM Press.

C. J. C. Burges and B. Schélkopf. Improv-
ing the accuracy and speed of support vector
learning machines. In M. Mozer, M. Jordan,
and T. Petsche, editors, Advances in Neural
Information Processing Systems 9, pages 375—
381, Cambridge, MA, 1997. MIT Press.
C.J.C. Burges. A tutorial on support vector
machines for pattern recognition. Knowledge
Discovery and Data Mining, 1998. Submitted:
draft available at http://svm.research.bell-
labs.com/SVMdoc.html.

C. Cortes and V. Vapnik. Support vector net-
works. Machine Learning, 20:273 — 297, 1995.
R. Courant and D. Hilbert. Methods of Math-
ematical Physics, volume 1. Interscience Pub-
lishers, Inc, New York, 1953.

S. Geva, J. Sitte, and G. Willshire. A one
neuron truck backer—upper. In International
Joint Conference on Neural Networks, pages
850-856, Baltimore, ML, June 1992. IEEE.

F. Girosi. An equivalence between sparse
approximation and support vector machines.
A.I. Memo No. 1606, MIT, 1997.

F. Girosi, M. Jones, and T. Poggio. Priors,
stabilizers and basis functions: From regular-
ization to radial, tensor and additive splines.
A.I. Memo No. 1430, MIT, 1993.

T. Joachims. Text categorization with support
vector machines: Learning with many relevant
features. Technical Report 23, LS VIII, Uni-
versity of Dortmund, 1997.

K.-R. Miiller, A. Smola, G. Réitsch, B. Schol-
kopf, J. Kohlmorgen, and V. Vapnik. Predict-
ing time series with support vector machines.
In W. Gerstner, A. Germond, M. Hasler, and
J.-D. Nicoud, editors, ICANN’97, pages 999 —
1004, Berlin, 1997. Springer Lecture Notes in
Computer Science, Vol. 1327.

R. E. Schapire, Y. Freund, P. Bartlett, and
W.S. Lee. Boosting the margin: a new expla-
nation for the effectiveness of voting methods.
In Machine Learning: Proceedings of the Four-
teenth International Conference, 1997.

B. Scholkopf, C. Burges, and V. Vapnik. Ex-
tracting support data for a given task. In
U. M. Fayyad and R. Uthurusamy, editors,
Proceedings, First International Conference on
Knowledge Discovery & Data Mining. AAAI
Press, Menlo Park, CA, 1995.

B. Schoélkopf. Support Vector Learning. R. Old-

[15]

enbourg Verlag, Munich, 1997.

B. Scholkopf, P. Simard, A. Smola, and
V. Vapnik. Prior knowledge in support vec-
tor kernels. In M. Jordan, M. Kearns, and
S. Solla, editors, Advances in Neural Informa-
tion Processing Systems 10, Cambridge, MA,
1998. MIT Press. In press.

B. Schélkopf, A. Smola, and K.-R. Miiller.
Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation, 10,
1998. In press.

B. Scholkopf, K. Sung, C. Burges, F. Girosi,
P. Niyogi, T. Poggio, and V. Vapnik. Compar-
ing support vector machines with gaussian ker-
nels to radial basis function classifiers. IEEE
Trans. Sign. Processing, 45:2758 — 2765, 1997.
J. Shawe-Taylor, P. Bartlett, R. Williamson,
and M. Anthony. A framework for structural
risk minimization. In COLT, 1996.

A. Smola and B. Schélkopf. From regular-
ization operators to support vector kernels.
In M. Jordan, M. Kearns, and S. Solla, edi-
tors, Advances in Neural Information Process-
ing Systems 10, Cambridge, MA, 1998. MIT
Press. In press.

A. Smola and B. Scholkopf. On a kernel-based
method for pattern recognition, regression, ap-
proximation and operator inversion. Algorith-
mica, 1998. In press.

A. Smola, B. Scholkopf, and K.-R. Miiller.
The connection between regularization oper-
ators and support vector kernels. Neural Net-
works, 1998. In press.

A. Smola, B. Scholkopf, and K.-R. Miiller.
General cost functions for support vector re-
gression. In Proc. of the Ninth Australian
Conf. on Neural Networks, 1998. In press.

V. Vapnik. Estimation of Dependences Based
on Empirical Data [in Russian]. Nauka,
Moscow, 1979. (English translation: Springer
Verlag, New York, 1982).

V. Vapnik. The Nature of Statistical Learning
Theory. Springer Verlag, New York, 1995.

V. Vapnik and A. Chervonenkis. Theory
of Pattern Recognition [in Russian]. Nauka,
Moscow, 1974. (German: W. Wapnik &
A. Tscherwonenkis, Theorie der Zeichenerken-
nung, Akademie-Verlag, Berlin, 1979).

G. Wahba. Convergence rates of certain ap-
proximate solutions to Fredholm integral equa-
tions of the first kind. Journal of Approzima-
tion Theory, 7:167 — 185, 1973.

G. Wahba. Support vector machines, repro-
ducing kernel hilbert spaces and the random-
ized GACV. Technical Report 984, Depart-
ment of Statistics, University of Wisconsin,
Madison, 1997. NIPS 97 Workshop on Support
Vector Machines.

