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Abstract� Kernel�based learning methods provide their solutions as ex�
pansions in terms of a kernel	 We consider the problem of reducing the
computational complexity of evaluating these expansions by approxi�
mating them using fewer terms	 As a by�product� we point out a connec�
tion between clustering and approximation in reproducing kernel Hilbert
spaces generated by a particular class of kernels	

� Introduction

Recent years have seen a surge in the interest in learning methods based on
Mercer kernels� i�e� functions k�x�y� which for all data sets fx�� � � � �x�g � RN

give rise to positive matrices Kij �� k�xi�xj� ��	
� Using k instead of a dot

product inRN corresponds to mapping the data into a possibly high�dimensional
space F by a �usually nonlinear� map � � RN � F � and taking the dot product
there� i�e� ��


k�x�y� � ���x� � ��y��� ���

Any linear algorithm which can be carried out in terms of dot products can be
made nonlinear by substituting an a priori chosen kernel� Examples thereof are
the Gaussian kernel k�x�y� � exp��kx� yk�������� and the polynomial kernel
k�x�y� � �x �y�d �which corresponds to a dot product in a feature space spanned
by all products of order d in the original input features ��� ��
�� We can think
of � as a map � � x �� k�x� �� into a Hilbert space F of functions

P
i �ik�xi� ��

with a dot product satisfying hk�x� ��� k�y� ��iF � k�x�y� ���
� By virtue of this
property� F is called a reproducing kernel Hilbert space �e�g� ��	
��

Let us mention two examples of algorithms using Mercer kernels�
Support Vector �SV� classi�ers ��
 construct a maximum margin hyperplane

in F � In input space� this corresponds to a nonlinear decision boundary of the
form

f�x� � sgn

�
�X

i��

�ik�x�xi� � b

�
� ���

where the xi are the training examples� Those with �i �� 	 are called Support



Vectors � in many applications� most of the �i� which are found by solving a
quadratic program� turn out to be 	� Excellent classi�cation accuracies in both
OCR and object recognition have been obtained using SV machines ���
� A
generalization to the case of regression estimation� leading to similar function
expansion� exists ��
�

Kernel Principal Component Analysis ���
 carries out a linear PCA in the
feature space F � The extracted features take the nonlinear form

fk�x� �

�X
i��

�ki k�xi�x�� ���

where� up to a normalization� the �ki are the components of the k�th Eigenvector
of the matrix �k�xi�xj��ij �

In both techniques� there is a price that we pay for the nonlinearity� since
vectors in F are only given implicitly by expansions in terms of images of training
examples under �� we need to evaluate the kernel function many times� In the
NIST benchmark of �				 handwritten digits� SV machines are more accurate
than any other single classi�er ���
� however� they are inferior to neural nets in
run�time classi�cation speed ��
� In applications where the latter is an issue� it
is thus desirable to come up with acceleration methods �� �� �
�

The present paper gives an analysis for the case of the Gaussian kernel� which
has proven to perform very well in applications ���
� and proposes and tests an
iteration procedure for computing fast approximations of kernel expansions�

� The Reduced Set �RS� Method

Given a vector � � F � expanded in images of input patterns yi � R
N �

� �

NyX
i��

�i��yi�� ��

with �i � R�yi � R
N � one can try to approximate it by �


� � �

NzX
i��

�i��zi�� ���

with Nz 	 Ny� �i � R� zi � R
N � To this end� one can minimize �


k� �� �k� �

NyX
i�j��

�i�jk�yi�yj��

NzX
i�j��

�i�jk�zi� zj���

NyX
i��

NzX
j��

�i�jk�yi� zj�� ���

The crucial point is that even if � is not given explicitely� ��� can be computed
�and minimized� in terms of the kernel� Consider �rst the case Nz � �� i�e�



N


(R  )

z  


F

Fig� �� Given a vector � � F � we try to approximate
it by a multiple of a vector ��z� in the image of
input space �RN � under the nonlinear map � by

nding z such that the projection distance of � onto
Span���z�� is minimized	

� � � ���z�� We observe that rather than minimizing ���� we can minimize the
distance between � and the orthogonal projection of � onto Span���z�� �Fig� ���

��� �� � ��z��

���z� � ��z��
��z� � �

���� � k�k� �
�� � ��z���

���z� � ��z��
� ���

To this end� we maximize
�� � ��z���

���z� � ��z��
� ���

which can be expressed in terms of the kernel� The maximization of ��� over z is
preferable to the one of ��� over z and �� since it comprises a lower�dimensional
problem� and since z and � have di�erent scaling behaviour� Once the maxi�
mum of ��� is found� it is extended to the minimum of ��� by setting �cf� ����
� � �� ���z������z� ���z��� The function ��� can either be minimized using stan�
dard techniques �as in �
�� or� for particular choices of kernels� using �xed�point
iteration methods� as shown in the next section�

� Clustering as Approximation in Feature Space

For kernels which satify k�z� z� � � for all z � R
N �e�g� Gaussian kernels�� ���

reduces to
�� � ��z���� ���

For the extremum� we have 	 � rz�� � ��z��� � ��� � ��z��rz�� � ��z��� To
evaluate the gradient in terms of k� we substitute �� to get the su�cient con�

dition 	 �
PNy

i�� �irzk�yi� z�� For k�xi� z� � k�kxi � zk�� �e�g� Gaussians� or

�kxi � zk� ���c for c � ��������� we obtain 	 �
PNy

i�� �ik
��kyi � zk���yi � z��

leading to

z �

PNy

i�� �ik
��kyi � zk��yiPNy

i�� �ik
��kyi � zk��

� ��	�

For the Gaussian kernel k�xi� z� � exp��kxi � zk�������� we thus arrive at

z �

PNy

i�� �i exp��kyi � zk��������yiPNy

i�� �i exp��kyi � zk��������
� ����



and devise an iteration

zn�� �

PNy

i�� �i exp��kyi � znk
��������yiPNy

i�� �i exp��kyi � znk��������
� ����

The denominator equals �� � ��zn�� and thus is nonzero in a neighbourhood of
the extremum of ���� unless the extremum itself is zero� The latter only occurs
if the projection of � on the linear span of ��RN � is zero� in which case it is
pointless to try to approximate � � Numerical instabilities related to �� � ��z��
being small can thus be approached by restarting the iteration with di�erent
starting values�

Interestingly� ���� can be interpreted in the context of clustering �e�g� ��
��
It resembles an EM iteration for the determination of the center of a single
Gaussian cluster trying to capture as many of the yi with positive �i as possible�
and simultaneously avoids those yi with negative �i� For SV classi�ers� the sign
of the �i equals the label of the pattern yi� It is this sign which distinguishes ����
from plain clustering or parametric density estimation� The occurence of negative
signs is related to the fact that we are not trying to estimate a parametric density
but the di�erence between two densities �modulo normalization constants��

To see this� we de�ne the sets pos � fi � �i 
 	g and neg � fi � �i 	 	g�
and the shorthands ppos�z� �

P
pos �i exp��kyi � zk�������� and pneg�z� �P

neg j�ij exp��kyi� zk
��������� The target ��� then reads �ppos�z�� pneg�z��

��
i�e� we are trying to �nd a point z where the di�erence between the �unnormal�
ized� �probabilities� for the two classes is maximal� and estimate the approxi�
mation to �� by a Gaussian centered at z� Moreover� note that we can rewrite
���� as

z �
ppos�z�

ppos�z�� pneg�z�
ypos �

pneg�z�

pneg�z� � ppos�z�
yneg � ����

where ypos�neg �

P
pos�neg �i exp��kyi � zk��������yiP
pos�neg �i exp��kyi � zk��������

� ���

� Multi�Term RBF Approximations

So far� we have dealt with approximations � � � ���z�� Now suppose we want
to approximate a vector

�� �

�X
i��

�i��xi� ����

by an expansion of the type ��� with Nz 
 �� To this end� we iterate �
 by
�m�� �� �m � �m��zm�� Here� zm denotes the z found for �m� obtained by
iterating ����� To apply ����� �m needs to be utilized in its representation in
terms of mapped input images�

�m �

�X
i��

�i��xi��

m��X
i��

�i��zi�� ����



i�e� we need to set Ny � ��m��� ���� � � � � �Ny
� � ���� � � � � ������� � � � ���m����

and �y�� � � � �yNy
� � �x�� � � � �x�� z�� � � � � zm����

The coe�cient �m � ��zm� could be computed as �� � ��z������z� � ��z���
However� if the ��z��� � � � � ��zm� are not orthogonal in F � then the best approx�
imation of �� in their Span is not obtained by computing orthogonal projec�
tions onto each direction� Instead� we need to compute the optimal coe�cients
� � ���� � � � � �m� anew in each step� To this end� we evaluate the derivative of
the distance in F � �

��k
k���

Pm
i�� �i��zi�k

� � ����zk�����
Pm

i�� �i��zi��� and

set it to 	� Substituting ���� �with � � ���� � � � � ���� and using matrix notation�
Kz

ij �� ���zi� � ��zj�� and Kzx
ij �� ���zi� � ��xj��� this leads to Kzx� � Kz��

hence�

� � �Kz���Kzx�� ����

The iteration is stopped after Nz steps� either speci�ed in advance� or by moni�
toring when k�m��k �i�e� k���

Pm
i�� �i��zi�k� falls below a speci�ed threshold�

The solution vector takes the form ����

� Approximating Several Vectors Simultaneously

In many applications� we actually would like to approximate more than just one
vector in feature space� and we are interested in keeping the total number of
approximation vectors small� For instance� in SV digit recognition� one typically
trains �	 binary classi�ers� and combines the responses� Previous studies have
dealt with this by estimating �	 approximations separately �� �
� which need
not be optimal� Even more pronounced is the case of Kernel PCA ���
� There�
a network extracting n features computes n projections on vectors in feature
space� Approximating each one separately would most likely be wasteful� Ap�
proximating the vectors ��� � � � � �n simultaneously results in a network where
the computationally expensive �rst layer is shared by the di�erent sub�networks�

First note that in most cases� already the above algorithm can be used in
this respect� Often� the terms in the approximation of one vector will not be
orthogonal to the other vectors� and can thus be used� essentially for free� to
decrease the discrepancy also for the other vectors� by computing corresponding
values of the �i as in �����

More principled is the following approch� as a straightforward generalization
of ���� we minimize the sum of the projection distances�

nX
k��

��� ��k � ��z��

���z� � ��z��
��z� � �k

���� � nX
k��

�
k�kk� �

��k � ��z���

���z� � ��z��

�
� ����

� If the discrepancy �m�� has not yet reached zero� then Kz will be invertible	
If Kz does not have full rank� one can use the Pseudoinverse� or select the solution

which has the largest number of zero components	



which amounts to maximizing
Pn

k����
k ���z�������z� ���z��� For the Gaussian

RBF �radial basis function� kernel� the gradient takes the form 	 � rz��
k �

��z��� � ���k � ��z��rz��
k � ��z��� For �k �

PNk
y

i�� �
k
i ��y

k
i �� we thus obtain

z �

Pn
k��

PNk
y

i�j�� �
k
i exp��ky

k
i � zk�������� exp��kykj � zk��������ykjPn

k��

PNk
y

i�j�� �
k
i exp��ky

k
i � zk�������� exp��kykj � zk��������

� ����

� Experiments

In our experiments on the USPS handwritten digit database �e�g� ���
� of ����
training patterns and �		� test patterns �size ������� we approximated the SV
expansions ��� of ten binary classi�ers� each trained to separate one digit from
the rest� We used the Gaussian kernel k�x�y� � exp��kx� yk������ �cf� ���
��
and the approximation technique described in Sec� �

Table � shows classi�cation error results for approximations using varying
numbers of RS vectors� For large numbers� the accuracy of the original system
can be approached closely� The original SV system had �� SVs per classi�er�
To get a speedup by a factor of �	� we have to use the system with �� RS
vectors �RS����� in which case the classi�cation accuracy drops moderately from
�� to ����� which is still competitive with convolutional neural networks on

Table �� Top� numbers of SVs for the original SV RBF system	 Bottom� numbers of
test errors for each binary recognizer� and test error rates for ���class classi
cation	
First row� original SV system� with ��� SVs on average� following rows� systems with
varying numbers of RS �approximation� vectors �RS�n stands for n vectors� per binary
recognizer �optimal threshold re�computed on the training set�� computed by iterat�
ing one�term approximations� separately for each recognizer	 Last two rows� with a
subsequent global gradient descent� the results can be further improved �see text�	

digit � � �  � � � � � � average

�SVs ��� �� �� �� ��� �� �� ��� �� ��� ���

� � �  � � � � � � ���class

SV���� �� � � �� � �� �� �� �� �� �	��

RS��� �� � �� �� � �� �� �� � �� �	��
RS��� �� �� � �� �� � �� �� �� � �	��
RS��� �� �� � � � � �� �� � �� �	��
RS��� �� �� � � � �� �� ��  �� �	��
RS��� �� ��  �� � � �� �� � �� �	��
RS���� �� � �� �� � �� �� �� �� � �	��
RS���� � �� �� � �� �� �� �� �� �� �	��
RS���� �� � �� �� � �� �� �� �� �� �	��

RS���� �� �� � �� � � �� �� �� �� �	��

RS�old��� �� � � �� � �� �� �� �� �� �	��



��� ���� ��� ���� ��� ���� ��� ��� ��� ���� ���	 ��� �	�
 ���� ��� 	�� 	�� ���� ���� 	��

���� ��	 ��� ��� ���� ���� ��� �	�
 	�� ���	 	�� 	�� �	�� ���� ���� �	�� ���� ���� ��� ��
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��� ���� ��
 ���	 ��� ���� ��	 ��� ��� ���� ���� ���� ���� ��
 ��� ���	 ��� ��� ���� ���

���� ����� 
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 ���� ��� ��� ���
 ���	

��� �
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 ���� ��� ��	 ���� ���
 ���� ��� ��� ����
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Fig� �� Complete display of RS���� with coe�cients �Top� recognizer of digit ��	 	 	 � bot�
tom� digit ��	 Note that positive coe�cients �roughly� correspond to positive examples	

that data base ��
� Moreover� we can further improve this result by adding the
second phase of the traditional RS algorithm� where a global gradient descent
is performed in the space of all �zi� �i� �� �
 �computationally more expensive
than the �rst phase by about two orders of magnitude�� this led to an error rate
of ���� For the considered kernel� this is slightly better than the traditional
RS method� which yielded ��	� �for polynomial kernels� the latter method led
to ��� at the same speedup �
�� Figure � shows the RS��	 vectors of the �	
binary classi�ers� As an aside� note that unlike the approach of �
� our algorithm
produces images which do look meaningful �i�e� digit�like��

	 Discussion

We have proposed an approach for approximating kernel expansions� and shown
experimentally that it did speed up a Gaussian RBF SV machine� Note that in
the Gaussian RBF case� the approximation can never be as good as the original�
no approximation with Nz 	 Ny will lead to �m � 	� since the kernel matrix
Kij � �k�yi�yj�� has full rank ��
� Otherwise� exact reductions can be obtained�
as noted in ���
� and� independently� ��
� if K� � 	� then we can express one col�
umn of K� and hence one vector ��yi�� as a linear combination of the other ones�
e�g� by picking the imax with largest j�ij� ��yimax � � �

P
i��imax �i��yi���imax �

As in ��
� good results are obtained even though the objective function does
not decrease to zero �in our experiments� it was reduced by a factor of � to
�	 in the �rst phase� depending on how many RS vectors were computed� the
global gradient descent yielded another factor � � ��� We conjecture that this
is due to the following� in classi�cation� we are not interested in k� � � �k� but



in
R
jsgn�

PNy

i�� �ik�x�yi� � b�� sgn�
PNz

j�� �ik�x� zi� �
�b�jdP �x�� where P is the

underlying probability distribution of the patterns �cf� ��
�� This is consistent
with the fact that the performance of a RS SV classi�er can be improved by
re�computing an optimal threshold �b �which we have done in our experiments��

The previous RS method �� �
 can be used for any SV kernel� the new one
is limited to k�x�y� � k�kx � yk��� However� it led to slightly better results�
interpretable RS images� and an interesting connection between clustering and
approximation in feature spaces� It appears intriguing to pursue the question
whether this connection could be exploited to form more general types of ap�
proximations of SV and kernel PCA expansions by making use of Gaussians
of variable widths� Moreover� it should be worthwhile to carry out experiments
testing simultaneous approximation approaches as the one proposed in Sec� ��
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