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Abstract

We have recently proposed a new approach to
control the number of basis functions and the
accuracy in Support Vector Machines. The lat-
ter is transferred to a linear programming set-
ting, which inherently enforces sparseness of
the solution.
The algorithm computes a nonlinear estimate

in terms of kernel functions and an � � � with
the property that at most a fraction � of the train-
ing set has an error exceeding �. The algorithm
is robust to local perturbations of these points’
target values.
We give an explicit formulation of the opti-

mization equations needed to solve the linear
program and point out which modifications of
the standard optimization setting are necessary
to take advantage of the particular structure of
the equations in the regression case.

1 Introduction

Support Vector (SV) regression comprises a
new class of learning algorithms motivated by
results of statistical learning theory [11]. Origi-
nally developed for pattern recognition, the ba-
sic properties carry over to regression by choos-
ing a suitable cost function, the so-called �-
insensitive loss:

jy � f�x�j� � maxf�� jy � f�x�j � �g (1)

This does not penalize errors below some � � �,
chosen a priori. A possible algorithm, which
will henceforth be called �-SVR, seeks to esti-
mate functions

f�x� � hw� xi � b� with w� x � Rd � b � R�
(2)

based on independent identically distributed
(iid) data

�x�� y��� � � � � �x�� y�� � X � R� (3)

Here, X is the space in which the input patterns
live (e.g., for vectorial data, X � R

d ). The goal
of the learning process is to find a function f
with a small risk (or test error)

R�f � �

Z
X

l�f� x� y� dP �x� y�� (4)

where P is the probability measure which is as-
sumed to be responsible for the generation of
the observations (3), and l is a loss function
like l�f� x� y� � �f�x� � y�� depending on the
specific regression estimation problem at hand.
Note that this does not necessarily have to co-
incide with the loss function used in our learn-
ing algorithm: there might be both algorithmic
and theoretical reasons for choosing an easier to
implement or a more robust one. The problem
however is that we cannot minimize (4) directly
in the first place, since we do not know P . In-
stead, we are given the sample (3), and we try
to obtain a small risk by minimizing the regu-
larized risk functional

Rreg ��
�

	
kwk� � C � R�

emp�f �� (5)

Here, kwk� is a term which characterizes the
model complexity.

R�
emp�f � ��

�

�

�X
i��

jyi � f�xi�j� (6)

measures the �-insensitive training error and C
is a constant determining the trade-off. In short,
minimizing (5) captures the main insight of sta-
tistical learning theory, stating that in order to
obtain a small risk, one needs to control both



training error and model complexity, i.e. explain
the data with a simple model.
Nonlinearity of the algorithm is achieved by

mapping x into a feature spaceF via the feature
map � � X � F and computing a linear esti-
mate there [1, 3] to obtain f�x� � hw� ��x�i�b.
However, as F may be very high dimensional,
this direct approach is often not computation-
ally feasible. Hence one uses kernels instead,
i.e. one rewrites the algorithm in terms of dot
products which do not require explicit knowl-
edge of ��x� and introduces kernels by letting

k�x� x�� �� h��x�� ��x��i� (7)

Since w may be written as a linear combina-
tion of the (mapped) training patterns xi [3] one
obtains the following well known kernel expan-
sion of f as

f�x� �
�X

i��

�ik�xi� x� � b (8)

The training algorithm itself can also be for-
mulated in terms of k�x� x�� such that the basic
optimization problem remains unchanged [3].
The following two modifications to the original
setting of (5) will allow us to obtain a new type
of algorithm.

� Explicit enforcement of sparsity via a lin-
ear regularizer (cf. section 2).

� Automatic adaptation of the width of the
�-insensitive loss zone (cf. section 3).

Moreover we will show in section 4 how the
the new approach can be related to robust and
asymptotically efficient estimators.

2 Sparsity Regularization

Recently several modifications were proposed
to change the SV problem from a quadratic pro-
gramming to a linear programming problem.
This is commonly achieved [12, 2, 8] by a reg-
ularizer derived from sparse coding [4]. Instead
of choosing the flattest function as in (5) we
seek w that is contained in the smallest convex
combination of training patterns xi (or ��xi�):
we minimize

Rreg ��
�

�

�X
i��

j�ij� C � R�
emp�f �� (9)

where w �
P�

i�� �ixi. This will allow us to
obtain solutions w generated from a linear com-
bination of only a few patterns xi, i.e. functions

f generated from only a few kernel functions k.
Minimizing (9) can be written as a linear pro-
gramming problem (we set kij �� k�xi� xj�):

minimize �
�

�P
i��

��i � ��i � �
C
�

�P
i��

�	i � 	�i �

with �i� �
�

i � 	i� 	
�

i � �
�P

i��

��i � ��i �kij � b� yi � �� 	i

yi �
�P

i��

��i � ��i �kij � b � �� 	�i

Here we substituted �i by the two positive vari-
ables �i and ��i in order to overcome problems
with j�ij in the objective function.1

3 Automatic �-Tuning

Recently a new algorithm [5] was proposed
to achieve automatic accuracy control in Sup-
port Vector (SV) Machines. This was done by
making �, the width of the tube itself, part of
the optimization problem.2 Hence instead of
minimizing (9), which we will henceforth call
�-LPR (Linear Programming Regression), we
minimize

Rreg � C�� �
�

�

�X
i��

j�ij� CR�
emp�f � � C���

(10)
Consequently the goal is not only to achieve
small training error (with respect to �) but also
to obtain a solution with small � itself. Rewrit-
ing (10) as a linear program yields

minimize
�P

i��

�
�
��i � ��i � �

C
�
�	i � 	�i � � C��

with �i� �
�

i � 	i� 	
�

i � � � �
�P

i��

��i � ��i �kij � b� yi � �� 	i

yi �
�P

i��

��i � ��i �kij � b � �� 	�i

Hence the difference between (10) and (9) lies
in the fact that � has become a positively con-
strained variable of the optimization problem it-
self. Before proceeding to the implementation
issues (cf. section 5) let us analyze the theoret-
ical aspects of the new optimization problem.

1There is no point in computing the Wolfe dual as in SV
machines since the primal problem already can be solved
conveniently by linear programming codes without any fur-
ther problems. In fact, a simple calculation reveals that the
dual does not give any computational advantage.

2This is equivalent to imposing a Laplacian prior on the
accuracy parameter � and computing the maximum a poste-
riori estimate (MAP).



The core aspect can be captured in the proposi-
tion stated below.

Proposition 1 Assume � � �. The following
statements hold:

(i) � is an upper bound on the fraction of er-
rors (i.e. points outside the �-tube).

(ii) � is a lower bound on the fraction of points
not inside (i.e. outside or on the edge of)
the � tube.

(iii) Suppose the data (3) were gen-
erated iid from a distribution
P �x� y� � P �x�P �yjx� with P �yjx�
continuous. With probability 1, asymptoti-
cally, � equals both the fraction of points
inside the tube and the one of errors.

Proof

Ad (i): Imagine increasing � starting from �.
The second term in �

�

P�
i���	i � 	�i � � ��

will increase proportionally to �, while the
first term will decrease proportionally to
the fraction of points outside of the tube.
Hence, � will grow as long as the latter
function is larger than �. At the optimum,
it therefore must be � �.

Ad (ii): Next, imagine decreasing � starting
from some large value. Again, the change
in the second term is proportional to �, but
this time, the change in the first term is pro-
portional to the fraction of points not inside
the tube (even points on the edge will con-
tribute). Hence, � will shrink as long as the
fraction of such points is smaller than �,
eventually leading the stated claim.

Ad (iii): The strategy of proof is to show that
asymptotically, the probability of a point
lying on the edge of the tube vanishes. For
lack of space, we do not give a proof. It
can be found in [5].

Hence, � � � � � can be used to control the
number of errors. Moreover, since by construc-
tion f�x� � hw� ��x�i�b allows shifting f , this
degree of freedom implies that Proposition 1 ac-
tually holds for the upper and the lower edge
of the tube separately, with �
	 each (proof by
shifting f ). As an aside, note that by the same
argument, the number of mispredictions larger
than � of the standard �-LPR tube asymptoti-
cally agree.
Note, finally, that even though the proposi-

tion reads almost as in the �-SVR case, there

is an important distinction. In the �-SVR case
[5], the set of points not inside the tube coin-
cides with the set of SVs. Thus, the geometrical
statement of the proposition translates to a state-
ment about the SV set. In the LP context, this
is no longer true — although the solution is still
sparse, any point could be an SV, even if it is
inside the tube. By de-coupling the geometri-
cal and the computational properties of SVs, LP
machines therefore come with two different no-
tions of SVs. In our usage of the term, we shall
stick to the geometrical notion.

4 Robustness and Efficiency

Using the �-insensitive loss function, only the
patterns outside of the �-tube enter the empiri-
cal risk term, whereas the patterns closest to the
actual regression have zero loss. This, however,
does not mean that it is only the ‘outliers’ that
determine the regression. In fact, the contrary is
the case.

Proposition 2 Using Linear Programming Re-
gression with the �-insensitive loss function (1),
local movements of target values of points out-
side the tube do not influence the regression.

Proof Shifting yi locally into y�i does not
change the status of �xi� yi� as being a point out-
side the tube. Without loss of generality assume
that 	i � �, i.e. yi � f�xi�� �.3 All we have to
show that by changing 	i into 	�i � 	i��yi�y�i�
and keeping all the other variables and therefore
also the estimate f unchanged, we obtain an op-
timal solution again.

By construction the new set of variables for
the modified problem is still feasible and the
same constraints are active as in the initial so-
lution. Finally the gradients in both the objec-
tive function and the constraint with respect to
each variable remain unchanged since 	i only
appears in a linear fashion and all other vari-
ables did not change at all. Thus the new solu-
tion is optimal again, leading to the same esti-
mate of f as before.

Robustness is not the only quality measure that
is applicable to a statistical estimator. The other
criterion is (asymptotic) efficiency. While an
efficiency of � obviously cannot be guaranteed
for unmatched loss functions and noise models
(e.g. one should be using squared loss for Gaus-
sians), it is still important to choose � (or �) as

3The case of ��
i
� � works in the same way, just with

opposite signs.



to obtain as efficient estimators as possible. In
[6, 8, 5] it was shown how this could be done for
Support Vector Regression. The results thereof
carry over directly to the Linear Programming
case without any further modification. Hence
we only state the main result for convenience.

Proposition 3 Denote p a density with
unit variance,4 and P a family of
noise models generated from p by
P ��

�
p
��p � �

�
p
�
y
�

�
� � � �

�
. Moreover

assume that the data were generated iid from
a distribution p�x� y� � p�x�p�y � f�x�� with
p�y � f�x�� continuous. Under the assumption
that LP regression produces an estimate 
f
converging to the underlying functional depen-
dency f , the asymptotically optimal �, for the
estimation-of-location-parameter model of LP
regression is

� � ��

Z �

��

p�t�dt (11)

where

� �� argmin�
��

R �
��
p�t�dt

�p��� � p����

For explicit constants how to set an asymptoti-
cally optimal value of � in the presence of poly-
nomial noise see [8, 5]. Section 6 contains some
experiments covering this topic.

5 Optimization

We adopt an interior point primal-dual strategy
as pointed out in [10] with modifications aimed
at exploiting the special structure of the �-LPR
problem (the �-LPR problem is similar). Af-
ter adding slack variables [10] for the inequal-
ity constraints we obtain the following system
of equations.

minimize c�a
subject to Aa�Bb� y � s � �

a� s � � and b free
where a �� ���� ���� �	� �	�� �� � R����

b � R� s � R��

A �

�
�K K � � ��

K �K � � ��

�

B �

�
���
��

�
� y �

�
�y

��y

�

c �
h
������ C��� C��� C��

i
(12)

4p is just a prototype generating the class of densities P.
Normalization assumptions are made merely for the ease of
notation.

Next we compute the corresponding dual opti-
mization problem together with the constraints
and KKT-conditions. This is needed for the op-
timization strategy since we want to find a so-
lution by finding a set of variables that is both
primal and dual feasible and satisfies the KKT
conditions. For details see [10, 7]. We obtain

minimize y�z
subject to c� g �A�z � �

B�z � �
g� z � � with g � R����� z � R��

KKT sizi � � for all � � i � 	�
aigi � � for all � � i � ��� �

(13)
Hence we have to solve

A�a�B�b��s� �Aa�Bb� y � s �� A
��g �A��z � �c� g �A�z �� g
B��z � �B�z �� B
�sizi � si�zi � �� sizi ��si�zi �� sz
�aigi � ai�gi � �� aigi ��ai�gi�� ag

(14)
iteratively by a Predictor-Corrector method
while decreasing � until the gap between pri-
mal and dual objective function is sufficiently
small.5 Manual pivoting of (14) for �g��a,
and�s yields

�g � �g �A��z
�a � g��ag � ag���g

� g��ag � ag��g � ag��A��z
�s � z��sz � sz���z�

(15)
Here a� g� s� z denote diagonal matrices with
entries taken from the corresponding vectors
a� g� s� u. Finally, �z and �b are found as the
solution of the so-called reduced KKT system�
Aag��A� � sz�� B

B� �

��
�z
�b

�
�

�
z
B

�

(16)
with z � A�Ag��ag�Aag��g�z��sz .
This 	��� dimensional system (16) could be re-
duced further by applying an orthogonal trans-
formation such that only � dimensional matrices
have to be inverted to solve for�z and�b.

After finding a good starting value (cf. e.g.
[10]) one iterates over the system until the gap
between primal and dual objective function be-
comes sufficiently small while keeping the fea-
sibility conditions (i.e. the linear constraints)
satisfied. It is beyond the scope (and space) of
this paper to explain these issues that are well
known in optimization theory, in detail here.

5In both the predictor and the corrector step, quadratic
dependencies in the KKT conditions are ignored. Moreover
the predictor step, sets � � �.



Our only aim was to show how an efficient
method to solve the linear programming prob-
lem arising from � LP regression could be
solved effectively. In our experiments we used a
MATLAB implementation of the interior point
algorithm described above.

6 Experiments

In this first study, we merely show a set of
toy experiments illustrating some crucial points
of �-LPR. We used the kernel k�x� y� �
exp��kx � yk�
��	�, C � ���, and the target
function f�x� � cos�x� ��sin�x��sin��x���
�. A number of � training points was generated
as �xi� f�xi����, where � is a randomvariable,
normally distributed with standard deviation �.
We obtained the following results.

� �-LPR automatically adapts to the noise
level in the data. Figure 1 shows how
the algorithm, with the same parameter �,
deals with two problemswhich differ in the
noise that is added to the targets by increas-
ing the �–parameter automatically.

� � controls the fraction of points outside the
tube. Figure 2 presents two different so-
lutions to the same problem, with differ-
ent values of �, leading to different sizes
of the �-tubes. Averaged over 100 training
sets, one can see how the fraction of points
nicely increases with � (figure 3).

� The test error (in the L� metric), averaged
over 100 training sets, exhibits a rather
flat minimum in � (figure 4). This indi-
cates that just as for �-SVR, where cor-
responding results have been obtained on
toy data as well as real-world data, � is a
well-behaved parameter in the sense that
slightly misadjusting it is not harmful. As
a side note, we add that the minimum is
very close to the value which asymptiotical
calculations for the case of Gaussian noise
predict (0.54, cf. [5, 8]).

7 Summary

We have presented an algorithm which uses an
�-insensitive loss function and an L� sparsity
regularizer to estimate regression functions via
SV kernel expansions. Via a parameter �, it au-
tomatically adapts the accuracy � to the noise
level in the data.
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Figure 1: �-LPR with � � ��	, run on two
datasets with very small (� � ���) and large
(� � ���) noise (� � �� points), automati-
cally adapts the �-tube to the data (� � ���� and
��, respectively). Patterns inside the �-tube are
plotted as ’x’, all others as ’o’. The solid line
shows the fit, the dotted line the tube and the
dash-dotted line the original data.
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Figure 2: Running �-LPR with different values
of � (left: ��	, right: ���) on the same dataset
(� � �� points with noise � � ���) automat-
ically adapts the �-tube (to � � �� and ���,
respectively) such that at most a fraction � of
the points is outside (cf. Prop. 1).

At least two extensions of the present algo-
rithm are possible. One can include semipara-
metric modelling techniques [9] (which is easily
done by replacing the vectorB by a matrix cor-
responding to the basis functions to be chosen
beforehand) as well as non-constant tube shapes
(or also parametric variants thereof) to deal with
heteroscedastic noise [5].

Future experiments should evaluate how the
present linear programming algorithm com-
pares to the standard SV regularization viaP

ij �i�jk�xi� xj� in terms of sparsity, accu-
racy, and computational complexity on real-
world data.
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Figure 3: Number of SVs (i.e. points outside
or on the edge of the tube) vs. � (100 runs on
training sets of size � � �). Note that � directly
controls the number of SVs.
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Figure 4: Mean squared error of the regression
estimate vs. � (100 runs on training sets of size
� � �), with a flat minimum close to the theo-
retically predicted value of ��� (cf. text).
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