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Abstract� Support Vector Machines are used for time series prediction
and compared to radial basis function networks� We make use of two
di�erent cost functions for Support Vectors� training with �i� an � insen

sitive loss and �ii� Huber�s robust loss function and discuss how to choose
the regularization parameters in these models� Two applications are con

sidered� data from �a� a noisy �normal and uniform noise� Mackey Glass
equation and �b� the Santa Fe competition �set D�� In both cases Support
Vector Machines show an excellent performance� In case �b� the Support
Vector approach improves the best known result on the benchmark by a
factor of ����

� Introduction

Support Vector Machines have become a subject of intensive study �see e�g�
��� ��	
� They have been applied successfully to classi�cation tasks as OCR
���� ��	 and more recently also to regression ��� ��	�
In this contribution we use Support Vector Machines in the �eld of time series
prediction and we �nd that they show an excellent performance�
In the following sections we will give a brief introduction to support vector re�
gression �SVR
 and we discuss the use of dierent types of loss functions� The
experimental section considers a comparison of radial basis function �RBF
 net�
works with adaptive centers and variances and SVR� Both approaches show
similarly excellent performance with an advantage for SVR in the high noise
regime for Mackey Glass data� For benchmark data from the Santa Fe Competi�
tion �data set D
 we get the best result achieved so far which is ��� better than
the winning approach during the competition ���	 and still ��� better than our
previous result ��	� A brief discussion concludes the paper�

� Support Vector Regression

In SVR the basic idea is to map the data x into a high dimensional feature space
F via a nonlinear mapping � and to do linear regression in this space �cf� ��� ��	


f�x
 � �� � ��x

 � b with � � Rn� F � � � F � ��




where b is a threshold� Thus� linear regression in a high dimensional �feature

space corresponds to nonlinear regression in the low dimensional input space
R

n� Note that the dot product in Eq���
 between � � ��x
 would have to be
computed in this high dimensional space �which is usually intractable
� if we
were not able to use a trick � described in the following � that �nally leaves us
with dot products that can be implicitly expressed in the low dimensional input
space Rn� Since � is �xed� we determine � from the data by minimizing the
sum of the empirical risk Remp�f 	 and a complexity term jj�jj�� which enforces
�atness in feature space

Rreg�f 	 � Remp�f 	 � �jj�jj� �
lX

i��

C�f�xi
� yi
 � �jj�jj�� ��


where l denotes the sample size� C��
 is a cost function and � is a regularization
constant� For a large set of cost functions� eq� ��
 can be minimized by solving
a quadratic programming problem� which is uniquely solvable� It can be shown
that the vector � can be written in terms of the data points

� �
lX

i��

��i � ��i 
��xi
 ��


with �i� �
�

i being the solution of the aforementioned quadratic programming
problem ���	� �i� �

�

i have an intuitive interpretation �see Fig� �b
 as forces push�
ing and pulling the estimate f�xi
 towards the measurements yi �cf� ��	
� Taking
��
 and ��
 into account� we are able to rewrite the whole problem in terms of
dot products in the low dimensional input space �a concept introduced in ��	


f�x
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lX

i��

��i � ��i 
���xi
 � ��x

 � b �
lX

i��

��i � ��i 
k�xi�x
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In Eq���
 we introduced a kernel function k�xi�xj
 � ���xi
 � ��xj

� It can be
shown that any symmetric kernel function k satisfying Mercer�s condition cor�
responds to a dot product in some feature space �see ��	 for details
� A common
kernel is e�g� a RBF kernel k�x� y
 � exp��jjx� yjj������

�

Vapnik�s ��insensitive Loss Function� For this special cost function the La�
grange multipliers �i� �

�

i are often sparse� i�e� they result in non�zero values after
the optimization ��
 only if they are on or outside the boundary �see Fig� �b
�
which means that they ful�ll the Karush�Kuhn�Tucker conditions �for more de�
tails see ���� ��	
� The ��insensitive cost function is given by

C�f�x
 � y
 �

�
jf�x
 � yj � � for jf�x
 � yj � �
� otherwise

��


�cf� Fig� �a
� the respective quadratic programming problem is de�ned as

minimize
�

�

lX
i�j��
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�
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Fig� �� �a� �
insensitive and Huber�s loss for � � �� �b� The shown regression �kernel�
B
splines ����� of the sinc function is the �attest within the � tube around the data�
���� are drawn as positive and negative forces respectively� All points on the margin�
where f�xi�� yi � � sign��i � ��

i �� are used for the computation of b�

subject to
lP

i��
�i���i � �� �i� �

�

i � ��� �
�
	� Note� that the less noisier the problem�

the sparser are the �i� �
�

i for Vapnik�s ��insensitive loss function�

Huber�s Loss Function� Other cost functions like the robust loss function in
the sense of ��	 can also be utilized �cf� Fig� �a
 ���	� This cost function has the
advantage of not introducing additional bias �like the ��insensitive one does
� at
the expense� however� of sacri�cing sparsity in the coe�cients �i� �

�

i �
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 � y
 �

�
�jf�x
 � yj � ��

� for jf�x
 � yj � �
�
��f�x
 � y
� otherwise

��


The corresponding quadratic programming problem takes the following form

minimize
�

�
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How to compute the threshold b� Eqs� ��
 and ��
 show how to compute
the variables �k� �

�

k� For the proper choice of b however one has to make more
direct use of the Karush�Kuhn�Tucker conditions that lead to the quadratic
programming problems stated above� The key idea is to pick those values �k� �

�

k

for which the prediction error 	k � f�xk
�yk can be determined uniquely� In the
��insensitive case this means picking the points xk on the margin� i�e� �k or ��k in
the open interval ��� �

�

 as here we know the exact value 	k � � sign��k���k
 of

the prediction error� Already one xk would be su�cient but for stability purposes
it is recommended to take the average over all points on the margin xk with



b � averagekf	k�yk�
P

i��i���i 
k�xi�xk
g� For the Huber case b is computed
along the same lines with 	k � ���k � ��k
 for �k or ��k � ��� �

�

� i�e� for points

where the the quadratic part of the cost function is active�

noise normal uniform
SNR ������ ����� ���� ����� �����

test error �S �S �S �S �S �S �S �S �S �S

�
insensitive ��� ���� �� ���� �� ��� ��� �� ��� ����
Huber ��� ��� �� ���� �� ��� ��� ��� ��� ����
RBF ��� ��� ��� ���� �� ��� ��� ��� ��� ����

experiment �
ins� Huber RBF ZH ���� PKM ���

full set ���� ���� ���� ���� �
segmented set ���� ���� ���� � ����

Table �� First Table� �S denotes the �
step prediction error �RMS� on the test set�
�S is the �
step iterated autonomous prediction� �SNR� is the ratio between the
standard deviation of the respective noise and the underlying time series� Second Table�
Comparison of �� step iterated predictions �root mean squared errors� on Data set D�
��� denotes� no prediction available� �Full set� means� that the full training set of set
D was used� whereas �segmented set� means that a prior segmentation according to
��� was done as preprocessing�

� Experiments

The RBF nets used in the experiments are based on the the method of Moody
and Darken ��	� However� we do not only adjust the output weights by back�
propagation �on squared loss with regularization
� but also the RBF centers and
variances� In this way� the networks �ne�tune themselves to the data after the
clustering step� yet of course over�tting has to be avoided �cf� ��	
�
We �x the following experimental setup for our comparison� �a
 RBF nets and
�b
 SVR are trained using a simple cross validation technique� We stop training
the RBF networks at the minimum of the one step prediction error measured
on a randomly chosen validation set� For SVR the parameters ��� �
 are also
determined at the minimum of the one step prediction error on the validation
set� Other methods� e�g� bootstrap can also be used to assess � and �� Note� for
SVR we distinguish between a training with Huber loss and ��insensitive loss
and use RBF kernels with k�x� y
 � exp��jjx� yjj������

 and �� � �����

Mackey Glass Equation� Our �rst application is a high�dimensional chaotic
system generated by the Mackey�Glass delay dierential equation

dx�t


dt
� ����x�t
 �

���x�t� td


� � x�t� td
��
� ��


with delay td � ��� Eq� ��
 was originally introduced as a model of blood cell
regulation ��	 and became quite common as arti�cial forecasting benchmark�



After integrating ��
� we added noise to the time series� We obtained training
����� patterns
 and validation ���� patterns
 sets using an embedding dimension
m � � and a step size 
 � � �xt � �xt� xt�� � � � � � xt��m����


T 
� The test set
����� patterns
 is noiseless to measure the true prediction error� We conducted
experiments for dierent signal to noise ratios �SNR
 using Gaussian and uniform
noise �Table �
� RBF networks and SVR achieve similar results for normal noise�
It is to be expected that the method using the proper loss function �squared loss

wins for gaussian noise� so we would actually expect the RBF nets to perform
best followed by SVR trained with Huber loss� which is for large � close to the
squared loss and �nally followed by SVR using an ��insensitive loss� Table �
con�rms this intuition largely� For uniform noise the whole scenario should be
reversed� since ��insensitive loss is the more appropriate noise model �cf� ��	
�
This is again con�rmed in the experiment� The use of a validation set to assess
the proper parameters � and �� however� is suboptimal and so the low resolution
with which the ��� �
 space is scanned is partly responsible for table entries that
do not match the above intuition�

Data Set D from the Santa Fe Competition� Data set D from the Santa
Fe competition is arti�cial data generated from a nine�dimensional periodically
driven dissipative dynamical system with an asymmetrical four�well potential
and a drift on the parameters ���	� As embedding �� consecutive points were
used� Since the time series is non�stationary� we �rst segment into regimes of
approximately stationary dynamics with competing predictors ��	� We use only
the subset for training ���� patterns
 which was tagged by the predictor respon�
sible for the data points at the end of the full training set� This allows us to
train the RBF networks and the SVR on quasi stationary data and we avoid
to predict the average over all dynamical modes hidden in the full training set
�see also ��	 for further discussion
� however at the same time we are left with
a rather small training set requiring careful regularization� As in the previous
section we use a validation set ��� patterns
 to determine the stopping point
and ��� �
 respectively� Table � shows that our �� step iterated prediction of the
SVR is ��� better than the one achieved by Zhang et al� ���	� who assumed a
stationary model� It is still ��� better than our previous result ��	 that used the
same preprocessing as above and simple RBF nets with non�adaptive centers and
variances� The results obtained� if we train on the full �non�stationary
 training
set �without prior segmentation
 are inferior� as expected� however ��insensitive
SVR is still better than the previous results on the full set�

� Discussion and Outlook

The paper showed the performance of SVR in comparison to tuned RBF net�
works� For data from the Mackey�Glass equation we could observe that also for
SVR it pays to choose the proper loss function for the respective noise model� In
both SVR cases training consisted in solving a � uniquely solvable � quadratic

optimization problem� unlike the RBF network training� which requires complex
non�linear optimization with the danger of getting stuck in local minima� Note
that a stable prediction is a di�cult problem since the noise level applied to



the chaotic dynamics was rather high� For the data set D benchmark we ob�
tained excellent results for SVR � ��� above the best result achieved during the
Santa Fe competition ���	� Clearly� this remarkable dierence is mostly due to
the segmentation used as preprocessing step to get stationary data ��	� never�
theless still ��� improvement remain compared to a previous result using the
same preprocessing step ��	� This underlines that we need to consider possible
non�stationarities or even mixings in the time series before the actual prediction�
for which we used SVR or RBF nets �see also ��� ��	 for discussion
�
Our experiments show that SVR methods work particularly well if the data is
sparse �i�e� we have little data in a high dimensional space
� This is due to their
good inherent regularization properties�
Several things remain� determining the proper parameters � and � is still sub�
optimal and computationally intensive �if not clumsy
� Both� some improved
theoretical bounds and�or a simple heuristics to choose them would enhance the
usability of SVR� since ��� �
 are powerful means for regularization and adapta�

tion to the noise in the data� Bootstrap methods or methods using a validation
set are only a �rst step�
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