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Support Vector Learning Machines �SVLM� have become an emerging technique
which has proven successful in many traditionally neural network dominated ap�
plications� This is also the case for Regression Estimation �RE�� In particular
we are able to construct spline approximations of given data independently from
the number of input�dimensions regarding complexity during training and with
only linear complexity for reconstruction � compared to exponential complexity
in conventional methods�
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Chapter �

A Roadmap

The purpose of this text is threefold� First it should be a documentation of the
research done at Bell Laboratories� Holmdel� Secondly it should serve as an
introduction to Support Vector Regression�Estimation and �nally it is written in
order to obtain the degree of a �Diplomingenieur der Physik� at the Technische
Universit�at M�unchen� Of course these goals may sometimes not be consistent�
Hence the reader may skip some chapters and focus on other ones to get the
information he needs� I tried to make the chapters as self contained as possible
without repeating tedious details�

��� How to read this Thesis

Chapter � contains a short overview over some basic regression techniques and
explains the fundamental ideas of linear Support Vector function approximation
including basic knowledge about convex programming necessary for solving the
optimization equations involved� The reader may skip the parts not directly
concerning Support Vectors as these are just for giving a motivation for the
setting of the problem�

In chapter 	 I will show how Support Vector Machines can be extended to the
case of Regression�Estimation with noisy data� A set of di�erent loss functions
and their implications on the robustness of the estimation will be presented with
an explicit derivation of the corresponding optimization functionals� For a brief
overview it may su�ce to read the section about ��insensitive loss functions only�

The next chapter describes a way of porting the ideas on Linear Support Vec�
tor Regression to nonlinear models� The approach is similar to nonlinear Sup�
port Vector pattern recognition following the concept of �ABR�� and �BGV�	�
of mapping to a highdimensional space where linear calculations are performed�
For a reader already familiar with this concept and for a quick review of the
methods employed the sections �� and ��� may be enough� A general method of
constructing nonlinear regression systems is given in ����

�
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Chapter  describes the more implementation speci�c solutions of the support
vector system� Basically any quadratic programming algorithm could be used for
solving the problem although di�erent methods may show varying performance
due to the setting of the problem� An exemplary solution is shown for interior
point methods following the ideas of �Van��� Furthermore this chapter contains
a method for e�ciently solving Toeplitz�like systems by a modi�ed Levinson
method�

Experimental results on the performance of Support Vector Regression are
given in chapter �� Further information may be obtained from �VGS��� and
�DBK�����

Finally appendix A concludes this work by describing some of the implemen�
tation issues of Support Vector learning machines� This may be relevant for
somebody trying to model a similar system only� Hence most of the readers will
want to skip it� Appendix B contains a brief de�nition of the industry standard
MPS �le format�

��� A Short Review of Approximation and Re�

gression Estimation

The simplest way of approximating a function �and the crudest one� too� would
be to approximate it by its mean in the domain of interest� A more sophisticated
approach would be to choose linear functions or more complicated bases of func�
tions to achieve this goal� Increasing the complexity of the base seems to be the
solution to obtain better results� But this is not really true as one will encounter
the well known e�ect of �over��tting�� which means that the complexity of the
system of functions used is too high�

Since Schoenberg�s pioneering paper �Sch�� on spline approximation consist�
ing of l�times di�erentiable piecewise polynomial functions combined with a set
of smoothness �and regularity� constraints have been investigated in great detail
�PTVF�	�� �SB���� This approach has proven to be e�ective in the case of low�
dimensional functions only as the number of coe�cients increases exponentionally
with dimensionality thereby virtually imposing a limit of four dimensions in real
world applications� Decompositions into orthogonal systems �Tim���� �Wal��
like Legendre�� Laguerre�� Chebyche��� Hermite�� Haar�bases and the family of
Fourier Transforms� Windowed Fourier Transforms� Wavelets with tight frames
or orthogonal systems �Dau�	� were investigated in order to achieve e�cient ways
for true and�or fast function approximation and data compression�

All of the approaches described above �except approximation by nonsepara�
ble wavelet bases� share the problem of exponentional increase in the number of
coe�cients with the dimensionality of the problem� A solution was the way to
nonseparable expansions� e�g� ANOVA�decompositions �SHKT���� Neural Net�
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works and other methods like CART �BFOS��� MARS �Fri��� � � � These methods
stem from regression estimation and allow tractable solutions of high dimensional
problems� This brings us to the crucial question� Why do we need another method
for function approximation or regression if there�s already such a large variety of
concepts available that should suit everyone�s need�

��� The Reason for Support Vectors

The reason is that all of these methods have some shortcomings which we tried to
overcome in this approach� Neural Networks which are probably the most popular
way of doing high dimensional regression estimation have two drawbacks� Their
architecture has to be determined a priori or modi�ed while training by some
heuristic which results in a non necessarily optimal structure of the network and
can become a di�cult combinatorial problem for multilayer networks� Still they
are universal approximators �Cyb���� �Mur��b��

Secondly ways of regularization �besides the selection of the architecture�
are rather limited� They consist of early stopping �DH
�� training with noise
�Bis��b�� weight decay �SL�	a� and similar methods� Unfortunately Neural Net�
works can get stuck in local minima while training� For some methods of training
�early stopping� it is not even desired for the network to obtain its minimum�
Hence a part of the capacity of the network is �sometimes deliberately� wasted
in order to obtain better generalization performance� Howewer this gives only a
very indirect way of controlling the capacity of the system and is far from being
optimal�

Only for the asymptotic case �which in reality rarely occurs� still there are
some results hinting that speech recognition might be such a case� �MYA���
�Aka
� and for the case of known prior probabilities �which is not a realistic
assumtion� optimal selection criteria have been obtained� Only recently good
bounds on the complexity of Neural Networks have been computed by McIntyre
and Karpinski �KM��� and Hole �Hol���� Still the problem of e�ectively control�
ling the capacity after having selected the architecture remains� Moreover after
training it is rather hard to �nd a meaningful interpretation of the weights�

CART conversely uses a purity functional for pruning instead of more directly
motivated regularization techniques� It also neglects the loss function speci�c to
the problem to be solved� Moreover it is quite restrictive in terms of the admissible
models� Instead it would be desirable to have a great liberty in choosing the type
of functions one would like to approximate the data with and thereby adding
prior knowledge to the way the approximation is constructed�

But instead of giving a de�nition by exclusion the advantages of Support
Vector Regression Estimation can be summed up easily� The architecture of
the system doesn�t have to be determined before training� Input data of any
arbitrary dimensionality can be treated with only linear cost in the number of



CHAPTER �� A ROADMAP �

input dimensions� A unique solution is found after training as solution of a
quadratic programing problem� The modeling functions may be chosen among a
great variety having to satisfy only some condition from Hilbert�Schmidt theory�
Capacity can be controlled e�ectively through the regularization functional used
�some more research will have to be done on this point� by the same method that
was applied to Support Vector Pattern Recognition �GBV����



Chapter �

Introduction

Before any calculus is done one should consider the basic problem we are dealing
with in its fundamental setting� to approximate a function from given data and�or
to estimate a function from given data� There is an important di�erence between
these two problems� In the �rst case we know that our data is correct� viz� our
measurements were taken without noise and we would like to obtain a function
that assumes the same values �up to a given precision� as our measurements did�
Hence this is a setting closely related to the standard interpolation problems�

Conversely in the problem of function estimation we can not trust our data
completely as it may have been generated with some additional noise� In most
of the cases we do not even know the noise model but only have some clues what
it might be alike� Still both of these two problems can be treated with just one
formalism� the distinction between them being the choice of an appropriate cost
function �cf� chapter 	��

��� The Regression Problem

Suppose we are given a set of observations generated from an unknown probability
distribution P ��x� y��

X � f��x�� y��� ��x�� y��� � � � ��xl� yl�g with �xi � R
n� yi � R �����

and a class of functions
F � ff jf � Rn ��� Rg ���	�

then the basic problem is to �nd a function f � F that minimizes a risk functional

R�f � �

Z
l�y � f��x�� �x� dP ��x� y� �����

�Sometimes the sampling points are �xed and P 	x
 is known� too� e�g� audio data�

��
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l is a loss function� i�e� it indicates how di�erences between y and f��x� should
be penalized� A common choice is l�	� �x� � j	jp for some positive number p �for

interpolation one could require l�	� �x� �

�
� for 	 � �
� for 	 �� �

�

As P ��x� y� is unknown one cannot evaluate R�f � directly but only compute
the empirical risk

Remp �
�

l

lX
i	�

l�yi � f��xi�� �xi� ����

and try to bound the risk R by Remp � Rgen where Rgen is an upper bound
of the generalization error �Vap
�� depending on the class of functions used to
approximate the data given�

��� A Special Class of Functions

A simple choice of F is

F � spanf
���x�� 
���x�� � � � 
n��x�g with 
j��x� � R
n ��� R �����

Here F is the space spanned by the linear combination of a set of functions� For
simplicity we will assume that these are linearly independent hence constitute a
base of F � Then the basic regression problem consists of �nding a set of scalars

A � f��� ��� � � � �ng with f��x� �
nX

j	�

�j
j��x� �����

such that R�f � � R���� is minimized�

����� Least Mean Square Fitting

As described above R�f � is unknown� A very naive approach would be to minimize
Remp only with l�	� � 	� or in other words to minimize the L��norm

��
Denote

�ij � 
j��xi�
and �y � �y�� y�� � � � yl�

���
�

then

Remp �
Pl

i	�

�Pn

j	� 
j��xi��j � yi
��

� k���� �yk��
�����

�jj�jjp denotes the pnorm� hence jj�xjjp � 	
Pn

i�� jxij
p


�

p for �x � R
n and jj�	x
jjp �

�R
j�	x
jpdx

� �

p for � � Lp
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The minimum of the quadratic function Remp is obtained for ��min
LMS with

�t� ��min
LMS � �t�y � �

�� ��min
LMS � ��t���� �t�y

�����

In the eigensystem of �t�� f�i� �aig we get

��min
LMS �

P
i ki�ai

�� �t� ��min
LMS �

P
i �iki�ai � �t�y

������

This method does not contain any means of capacity control �besides choosing
a smaller set of functions� which makes it very sensitive to over�tting and noisy
data� Epecially for the case of l � n when we have more functions at hand than
measurements the problem is ill posed as rank ��t�� � l� Therefore ��t��

��

is not well de�ned in this case� One may add a term of the form k��k�� or use
a Singular Value Decomposition� This constitutes a regularizer in the sense of
Arsenin and Tikhonow �TA

� and brings us to the case of Ridge Regression�

����� Ridge Regression

Rridge � Remp � k��k�� ������

For the case of the Least Mean Square Fit �l�	� � 	�� this yields

Rridge � k��� � �yk�� � k��k��
� ��t ��t� � �� ��� 	�yt��� � �yt�y

����	�

As in ����� we solve for ��min
ridge and express them in terms of ��min

LMS in the eigen�
system of �t�� ��i� �ai�� So we get

��min
ridge �

X
i

�i
�i � 

ki�ai ������

Proof	
For the minimum we need

�Rridge

���
� 	 ��t� � �� ��� 	�t�y
� �

�����

Substituting ��ridge
min into

�Rridge

���
we get

�Rridge

���
� 	

P
i

�
��i � �

�
ki

�i
�i��

�
�ai

�
� 	�t�y

� 	 �
P

i ��iki�ai�� �t�y�
� �

������

�

The term
P

i
�i

�i��
is often called the e�ective number of free parameters

�cfr� �Bis��a�� and used for a Bayesian regularization argument�
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��� The ��Precision Approximation Problem�

Linear Support Vector Regression

Now let us consider a very simple cost function

l�	�� �

��
�
� if 	 � ��
� otherwise
� if 	 � �

������

This cost function stems from Support Vector Pattern Recognition �BGV�	��
�CV��� where a similar function lSV PR�	� �x� had been used

lSV PR�	� �x� �

�
� if 	 � �
� otherwise

� ����
�

In this case 	 is the output of a binary classi�er �for a positive sample � the
signs change accordingly for negative samples�� The modi�cation for regression
estimation lies in the fact that we get an upper and a lower constraint on the
output of the system�

Secondly let us consider a simple class of functions F namely the set of linear
functions�

F � ff j f��x� � ���� �x� � b� �� � R
ng ������

We would like to �nd the function with the smallest steepness among the functions
that minimize the empirical risk functional�

RSV � Remp � k��k�� ������

The functional RSV minimizes the empirical risk functional for ������ indeed as
Remp only may assume the values � and �� So e�ectively its solution is the
�attest linear function for which Remp � ��

In general �nding the ��attest� linear function corresponds to minimizing
k��kp with some suitable p � R

�� For p � 	 this optimization problem becomes
a quadratic one which is much more tractable with standard optimization tech�
niques� Also from the equivalence of all norms in R

n follows that an optimal
solution for p
 will be a good solution for  p as well� Hence for the rest of this
text we will assume p � 	�

In the case of a loss function of type ������ the functional ������ gives the
following quadratic optimization problem�

minimize L���� b� � �
�
k��k��

subject to �� �f��xi�� yi� 	 � 
 i � ����l�
�� �yi � f��xi�� 	 �

where f��x� � ��t�x� b

���	��
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Figure ���� sample data and corresponding �attest �t

Example � 
Hard Margin Approximation� Figure ��� shows an approxi�
mation of some datapoints with �xed precision �indicated by the errorbars�� Among
the admissible functions that would satisfy these constraints the �attest one is se�
lected�

In order to solve ���	�� we need some basic knowledge from optimization
theory which will be presented here without great detail� For the reader who is
interested in getting a greater insight into these problems any book on operations
research and mathematical programming will suit his needs� e�g� �Fle����

��� The Lagrange Function and Wolfe�s Dual

The basic setting of convex programming is the following problem�
Optimization Problem	

minimize f��x�
subject to ci��x� 	 � for i � ����mineq�
subject to ci��x� � � for i � �mineq � ���m�

���	��

Both f��x� and ci��x� are required to be convex functions� Hence the constraints
ci��x� de�ne a convex domain� the primal feasible region� It can be shown that
the system ���	�� has a unique solution if f is strictly convex and the equality
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constraints are linear �or in other words both the equality constraints ci��x� and
�ci��x� are convex for in � �mineq � ���m���

Proof	
By contradiction� Suppose we have two points �x� and �x� being an optimal

solution� then obviously

f���x� � ��� ���x�� � ��f��x�� � ��� ��f��x�� ���		�

but by the convexity of the feasible region ��x� � ��� ���x� is feasible� too� hence
�x� and �x� can�t be optimal� �

Analogously to the well known methods in classical mechanics �cfr� �Gol����
we de�ne the Lagrange function

L��x� ��� � � � �m� � f��x��
mX
i	�

ci��x��i ���	��

where �i are the so called Lagrange multipliers� also called dual variables� The
feasible region for �i is R

�

 for i � ����mineq� and R for i � �mineq � ���m�

Now we want to obtain the dual problem �Wolfe�s Dual� from L namely the

optimization problem in the dual variables �� which results to be a maximization
problem�

Note that i� L��x� ��� has a saddle�point ��x
� ��
� in the admissible domain
R
n�R�



mineq �Rm�mineq then this point is the global optimum of ��	�� A saddle�

point is characterized by

L��x� ��
� 	 L��x
� ��
� 	 L��x
� ��� ���	�

for all �x and ��� Hence in order to compute ��x
� ��
� we will solve L for �x�

�L��x� ���

��x
� � ���	��

This yields the corresponding dual problem in ���

g���� �� L��x����� ��� ���	��

maximize g����
subject to �i 	 � for i � ����mineq�

�i � R for i � �mineq � ���m�

���	
�

The saddle�point conditions also can be written as follows

f��x� � g����

and ��x� ��� feasible
���	��

We will use this equality in chapter  for determining the duality gap between
the primal and dual set of variables in order to measure the convergence of an
interior point algorithm�
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��	 Karush�Kuhn�Tucker theorem

From ���	� it can be seen that

�ici��x� � � 
 i � ����m� ���	��

In other words this means that only active constraints may result in Lagrange
multipliers not equal to zero which is a well known fact from classical mechanics�
There the multipliers represent the virtual forces resulting from the constraints
of the problem� This is of great importance for the solution of the Support
Vector problem as it allows a signi�cant simpli�cation of the regression � only the
datapoints with nonvanishing Lagrange multipliers have to be taken into account�

��
 The Dual Support Vector Problem

Solving ���	�� with the methods described above we get �for the future we will

use ��� ��� instead of �� in order to be consistent with the existing literature on
Support Vectors�

L���� b� ��� ���� � RSV ���� b�

� Pl

i	� �i��� �yi � f��xi��

� Pl

i	� �
�
i ��� �f��xi�� yi����

������

Now we compute the partial derivatives of L wrt� the primal variables

�L

���
� �� �

lX
i	�

�i�xi �
lX

i	�

��i�xi ������

� �

�� �� �
lX

i	�

��i � ��i ��xi ����	�

�L

�b
� �

lX
i	�

��i � ��i � ������

�� � �
lX

i	�

��i � ��i � �����

substituting ����	� and ����� back into ������ yields�

maximize g���� ���� � ��

	

lX
i�j	�

��i � ��i ���j � ��j���xi� �xj�

�
lX

i	�

��i � ��i �yi ������

with ��� ��� � R
n
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Unfortunately this model breaks down when we encounter a non�realizable case
�or data with noise� as the primal feasible region becomes zero� This means
that there would be no function that could approximate the given data with ��
precision� For instance consider the pathological case of �xi � �x�i and jyi�y�ij � 	��

Additionally it does not provide any means for capacity control� A way to
cope with both issues is to modify the loss function l�	�� This will be done in the
next chapter�
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Loss Functions

For the case of data with noise we will have to consider replacing the loss function
������ with another one that doesn�t have singularities� Moreover it is required to
be convex in order not to spoil the convexity of the optimization problem which
guarantees the uniqueness of the solution�

Another point to consider is that the goals we would like to achieve are twofold�
either we have to minimize a cost function which is given by the problem itself�
This can be the tolerance allowed for a device to be manufactured� the penalty for
an incorrect prediction or whatever else� On the other hand we have the system
generating the data we�re dealing with� The output is subject to noise generated
wrt� an internal noise model �e�g� roundo� errors� gaussian noise ����� In this case
we can use the corresponding cost function for getting low bias and variance�

��� Maximum Likelihood Estimators

We will show the connection between a ML�estimator and the cost�function as
discussed in many statistics textbooks �cfr� �Vap
���� Assuming that the data
has been generated according to the following model

P ��x� y� � P �yj�x�P ��x�
� P �y � f��x��P ��x�

�	���

we can write the likelihood of the estimation as follows

P ��x�� y�� � � � �xl� yl� �
lY

i	�

P �yi � f��xi��P ��xi� �	�	�

writing

P �y � f��x�� � e�l�y � f��x�� �	���

��
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for some function l�	� we arrive at

P ��x�� y�� � � � �xl� yl� � e

�
lX

i	�

l�yi � f��xi�� lY
i	�

P ��xi� �	��

hence maximizing the likelihood P ��x�� y�� � � � �xl� yl� results in minimizing

RML �
lX

i	�

l�yi � f��xi�� �	���

Minimizing RML does not necessarily minimize the cost we have to pay due to
external constraints on the system� e�g� we may be able to tolerate a deviation by
� without extra cost and pay only linear cost for further excess although the data
we�re dealing with may be normally distributed� Or in an even more extreme
case the penalty for predictions may be asymmetric �l�	� �� l��	��� In this case
choosing an unbiased estimator is de�nitely a bad choice as we are not supposed
to estimate a function but to minimize a risk functional�

��� Common Density Models

We will discuss four common density models and calculate the appropriate Sup�
port Vector Regression for them� Note that these models stem from the esti�
mation of a location parameter context� Howewer the distribution of errors for
function estimation also depends on the function and the estimator used� There�
fore the distribution of errors may di�er from the distribution of the noise� The
loss functions presented are robust in the corresponding class of densities �Vap
���

����� Gauss

Probably the most popular density model is the one of Gaussian noise �see Figure
	���� i�e�

l�	� � 	� �� P �	� � e��
�

�	���

����� Laplace

For systems with normal distributed variance of the data we get Laplacian noise
�see Figure 	�	��

l�	� � j	j �� P �	� � e�j�j �	�
�
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Figure 	��� L� loss function and corresponding density

����� Huber

A robust estimator in the class of mixtures between a given Gaussian density
and an arbitrary density symmetric w�r�t� the origin is given by the Huber loss
function �Hub
	�� �see Figure 	���

l�	�� �

��
�
�	 � ��� for 	 � ��

�
�
	� for �� � 	 � �

	 � ��� for 	 � �
�	���

����� ��insensitive Loss Function

The loss function shown here will result in a biased estimator �unlike the ones
before� when combined with a regularization term� In the realizable case it
will behave like the loss function discussed in chapter ���� which results in an
estimator like in Figure ���� But it has the advantage that we will not need
all the input patterns for describing the regression vector �� thereby providing a
computationally more e�cient way of computing the regression afterwards �see
Figure 	���
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Figure 	�	� L� loss function and corresponding density

l�	�� �

��
�
�	 � � for 	 � ��

� for �� � 	 � �
	 � � for 	 � �

�	���

��� Solving the Optimization Equations

We will modify equation ��	� in a very general way to cope with indivitual loss
functions li�	� for each sample ��xi� yi�� This can be useful for data that has been
obtained by di�erent methods or measurements that have been speci�ed with
relative precision� Our general model of a loss function l�	� will cover functions
that are zero on ��� �� and convex continuous di�erentiable functions for �����
�note� we do not require di�erentiability at ��� For the sake of simplicity of
notation we will use l�	 � �� � ��	� in the following�
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minimize R���� b� �	� �	�� � �
�
k��k�� � C

Pl

i	� ��i�	i� � �i�	
�
i ��

subject to

f��xi�� yi � 	i � �i
yi � f��xi� � 	�i � ��i 
 i � ����l�

	i� 	
�
i 	 �

where f��x� � ��t�x� b

�	����

As in section �� we can compute the Lagrange function L �with dual variables
��� ��� corresponding to the constraints on f��xi�� yi and �� �� corresponding to
the ones on �	� �	�� This will allow an e�cient solution of the problem in the dual
set of variables� especially when solving the problem in the primal set of variables
will become quite intractable due to further generalizations �cfr� chapter ���

L���� b� ��� ���� �	� �	�� �� ��� � �
�
k��k�� � C

Pl

i	� ��i�	i� � �i�	
�
i ��

� Pl

i	� �i�	i � �i � yi � f��xi��

� Pl

i	� �
�
i �	

�
i � ��i � yi � f��xi��

� Pl

i	� 	ii � 	�i 
�
i

�	����
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computing the partial derivatives of L

�L

���
� �� �

lX
i	�

�i�xi �
lX

i	�

��i�xi �	��	�

� �

�� �� �
lX

i	�

��i � ��i ��xi �	����

�L

�b
� �

lX
i	�

��i � ��i � �	���

�� � �
lX

i	�

��i � ��i � �	����

�L

�	i
� C

d

d	i
�i�	i�� �i � i �	����

�L

�	�i
� C

d

d	�i
�i�	

�
i �� ��i � �i �	��
�
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and substituting the partial derivatives back into �	���� yields

W ���� ���� �	� �	�� � ��

	

lX
i�j	�

��i � ��i ���j � ��j���xi� �xj�

�
lX

i	�

���i � �i�yi �
lX

i	�

��i�i � ��i �
�
i � �	����

�C
lX

i	�

�
�i�	i� � �i�	

�
i �� 	i

d

d	i
�i�	i�� 	�i

d

d	�i
�i�	

�
i �

�

Our aim is to simplify the part depending on �
��
i �	

��
i � and to substitute back the

corresponding choices� Without loss of generality �but helping to get rid of a lot
of tedious calculus� we will only consider the terms

T �	� � ��	�� 	
d

d	
��	� �	����

and

C
d

d	
��	� � ��  �	�	��

with
�� 	�  	 �� �	�	��

����� Polynomial Loss Functions

Let us assume the general case of functions with ��insensitive loss zone �which
may vanish� and polynomial loss of degree p � �� This contains all Lp loss
functions as a special case �� � ��� The case of p � � will be treated in the
following section�

��	� �
�

p
	p with p � � �	�		�

�� T �	� �
�

p
	p � 		p�� � �

�
�� �

p

�
	p �	�	��

C	p�� � � �  �	�	�

�� T ��� � � �
�
�� �

p

�
C� p

p�� �� � �
p

p�� �	�	��

We want to �nd the maximum of L in terms of the dual variables� Hence we
obtain  � � as T is the only term where  appears and T is maximal for that
value� This yields

T ��� � �
�
�� �

p

�
C� p

p�� �
p

p�� with � � R
�

 �	�	��
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Moreover from � we can infer how large the deviation is�

	 � C� �
p�� �

�
p�� �	�	
�

Now for the special case of a L� loss function�

Example � 
� � �� p � 	�

maximize W ���� ���� � ��

	

lX
i�j	�

��i � ��i ���j � ��j���xi� �xj� �	�	��

�
lX

i	�

���i � �i�yi � �

	C

lX
i	�

��i
� � ��i

��

subject to
lX

i	�

��i � ��i � � � �	�	��

�i� �
�
i � �����

Of course one could have obtained the solution more easily as solution of an
unconstrained optimization problem which also would be computationally more
e�cient� The problem could be greatly simpli�ed by combining � and �� into
� � �� �� with � � R and

Pl

i	� �i � ��

����� Piecewise Polynomial and Linear Loss Function

We will use a loss function ��	� that has polynomial growth for ��� ��� a linear one
for ����� and is C� �one time di�erentiable� and convex� A consequence of the
linear growth for large 	 is that the range of the Lagrange multipliers becomes
bounded� namely by the derivative of �� Therefore we will have to solve box
constrained optimization problems�

��	� �

�
���p �

p
	p for 	 � �

	 �
�
�
p
� �
�
� for 	 	 �

�	����

�� T �	� �

��
�
����p

�
�� �

p

�
	p for 	 � �

��
�
�� �

p

�
for 	 	 �

�	����

� �  �

�
C ���p 	p�� for 	 � �
C for 	 	 �

�	��	�

By the same reasoning as above we �nd that the optimal solution is obtained for
 � �� Furthermore we can see by the convexity of ��	� that 	 � � i� � � C�
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Hence we may easily substitute � for C in the case of 	 � �� � � ��� C� is
always true as  	 ��

�� T ��� � �C� �
p��

�
�� �

p

�
� �

p
p�� for all � � R

�

 �	����

Analogously �if � � ��� C� we can determine the error by

	 � � C� �
p�� �

�
p�� �	���

Example � 
�insensitive Loss Function 
� � ���
For this setting T ��� vanishes independently from p �left aside the case p � ���
This leads to the following optimization problem �Vap	
��

maximize W ���� ���� � ��

	

lX
i�j	�

��i � ��i ���j � ��j���xi� �xj� �	����

�
lX

i	�

���i � �i�yi �
lX

i	�

��i�i � ��i �
�
i �

subject to
lX

i	�

��i � ��i � � � �	����

�i� �
�
i � ��� C�

Example � 
L� Loss Function�
An even more special case is �� � �� � � �� which we get from the equations
above by removing the terms in ��

Example � 
Relative Precision�
Another special case are measurements carried out with relative precision �rel�
Here we set

�i � ��i � �rel  jyij �	��
�

Example � 
Huber Loss Function 
� � �� p � 	��

T ��� �
�

	C
� �� �	����

which results in an optimization problem of the form

maximize W ���� ���� � ��

	

lX
i�j	�

��i � ��i ���j � ��j���xi� �xj� �	����

�
lX

i	�

���i � �i�yi � �

	C

lX
i	�

���
i�i � ��i

���i �

subject to
lX

i	�

��i � ��i � � � �	���

�i� �
�
i � ��� C�
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����� Local Loss Functions

One can see easily that the loss functions described above may be combined into
a local loss function� This means that when describing the regression problem
one doesn�t need to know the loss function over the whole domain �this may be
relevant for process control systems� e�g� a vapor deposition device where for
some deposition densities the accuracy may be more critical than for other ones��
Instead one may de�ne it pointwise for each sampling point� As shown there is
a rich variety of functions to choose from �constant�linear� quadratic� quadratic�
linear� absolute constraints on the deviation� etc�� which should provide a good
approximation of the reality� One also should observe that there is no increase in
computational complexity by the mixture of several cost functions� it essentially
stays a quadratic programming problem�
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Kernels

��� Nonlinear Models

The problem the regression models discussed so far is that they are only linear�
Instead one would like to �nd a general way of representing nonlinear functions in
an arbitrary number of dimensions e�ciently in the way described in the previous
chapters� This can be achieved by a map � into a highdimensional space and
constructing a linear regression function there� The procedure is analogous to
what has been done in pattern recognition �BGV�	�� �ABR���

R
n



R R
N

R

Example � 
quadratic features�

� � R
� ��� R

�

�x�� x�� ��� �x���
p
	x�x�� x

�
��

�����

� is carried out before all other steps of the regression method described so
far� The only modi�cation due to this procedure is exchanging the dot products
��xi� �xj� by ����xi�����xj��� Hence we get

��x� �x�� � ��x�� x��� �x
�
�� x

�
��� ��� ��x���

p
	x�x�� x

�
��� �x

�
�
��
p
	x��x

�
�� x

�
�
��� � ��x� �x���

This is a symmetric function K in �x and �x�� Note that in all the previous
calculations �xi appeared only in the form of dot products� Therefore for all the
previous calculations we can easily replace ��x� �x�� by K��x� �x��� This gives rise to
the question which general class of functions K might be admissible�

	�
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��� Mercer�s Condition

Using Hilbert Schmidt theory this issue can be settled in a de�nitive manner
�CH���� A function is called a positive Hilbert�Schmidt kernel i� Mercer�s Con�
dition holds�

with K��x� �x�� � L��R
n�� L��R

n�Z Z
L��L�

K��x� �x��g��x�g��x��d�xd�x� 	 � ���	�


g��x� � L��R
n�

I� ���	� holds true we can �nd an eigensystem of K ��i��x�� �i� with positive
eigenvalues �i such that K may be rewritten in the following way�

K��x� �x�� �
X
i

�i�i��x��i��x
�� �����

with �i��x
�� �

Z
�

K��x� �x���i��x�d�x

In this context we may regard �i��xj� as a �potentially� in�nite number features i
of the vector �xj� On the other hand any �feature extracting��mapping corresponds
to a positive Hilbert�Schmidt kernel �proof by writing ���	� with the �feature
extractor� as an argument��

Note that the Kernel�approach is much more powerful than just running
a plain ordinary �feature extractor� on the data as the dimensionality of the
space achieved by the latter approach is only very limited whereas in the case of
mapping to high dimensional spaces the implicit dimensionality may be in the
order of several millions of features�

Analogously as described in section ��� we can substitute the dot products
by the corresponding values of the kernel� One can easily see that the resulting
optimization problem is still convex � this is equivalent to proving that the matrix
K��xi� �xj��ij is positive semide�nite for any choice of f�xig�

Proof	

lX
i�j	�

K��xi� �xj��i�j ����

�
lX

i�j	�

�i�j

X
k

�k�k��xi��k��xj�

�
X
k

�k

lX
i	�

�i�k��xi�
lX

j	�

�j�k��xj�

change of the summation order allowed as
Pl

i�j	� is just a �nite sum
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�
X
k

�k !�k
!�k 	 � since �k 	 � 
k

��� Some Useful Kernels

� polynomial regression of order p

K��x� �x�� � �� � ��x� �x���p �����

� RBF�kernels

K��x� �x�� � e�
jj�x��x�jj��

��� �����

� two layer feed forward neural network

K��x� �x�� � tanh����x� �x��� "� ���
�

These methods work pretty well for pattern recognition� In regression esti�
mation the number of input dimensions is much lower though �compare approx�

�� pixels of an image for OCR to � dimensions for video data�� Furthermore one
would like to control the type of functions used for approximation � regression
directly� e�g� one would like to construct splines� Therefore we need another
method for �nding a suitable kernel�

��� Intermediate Mapping

We will use an intermediate map to increase dimensionality just like in the �pre�
processing step� described in section ��� �this is done in contrast to Bellman�s
often cited curse of dimensionality�� For the beginning let us suppose n � �� i�e�
we are operating in R �

R
n R

I R
N

R 
Given a set of functions �k � R ��� R and an admissible Hilbert�Schmidt

Kernel Ks on L��R
m�� L��R

m� we construct the following kernel�

K�x� x�� � Ks�����x�� � � � � �m�x��� ����x
��� � � � � �m�x

���� �����

By construction this kernel ful�ls Mercer�s condition as Ks does�
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Example � 
Splines of Degree p�
Given a set T � ft�� � � � tmg with ti � tj for i � j de�ne

�k�x� �� �x� tk�
p
� �

�
�x� tk�

p for x � tk
� for x � tk

�����

By doing this the ti de�ne a one�dimensional grid on which spline interpolation
is done� Now set Kx� � � � � � � � � � �� This yields

K�x� x�� �
mX
k	�

�x� tk�
p
��x

� � tk�
p
� ������

therefore also the regression f�x� becomes a spline of degree p

f�x� �
lX

i	�

��i � ��i �K�x� xi� � b ������

�
lX

i	�

��i � ��i �
mX
k	�

�x� tk�
p
��xi � tk�

p
� � b ����	�

�
mX
k	�

�x� tk�
p
�

	
lX

i	�

��i � ��i ��xi � tk�
p
�



� b ������

Instead of splines we might use any other set of functions� So in a more general
fashion we would have to deal with �i�x� � ��x � ti�� Choosing such a set of
special functions may be convenient when solving operator equations �VGS����
Here one could use a special � such that #A��� becomes a simple function�

��	 Tensor Products

A shortcoming of this approach is that the number of functions would increase
exponentionally with the dimensionality of the input space in order to provide a
resolution good enough for approximating given data� Remembering that Rn �Nn

i	� R we will use tensor products of suitable kernels for each input dimension�

K��x� �x�� �
nY
i	�

Ki�xi� x
�
i � �����

This means that we can get an n�dimensional spline expansion at only linear cost
instead of an exponentional one in the number of input dimensions� Another way
of describing splines would be an ANOVA�decomposition �SHKT����

The sets Tj � ftj�� � � � tjmg form the grid corresponding to the tensor product
kernel� Note that the choice of gridpoints is independent for each dimension�
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Example � 
Grid in Two Dimensions�

x1t 15t 11

t 21

t 26

x2

��
 Direct Mapping into Hilbert Space

Although linear in the number of dimensions the computational cost still may be
very high especially for the case of choosing a very �ne grid� This problem can
be solved by taking the number of gridpoints per dimension to in�nity thereby
generating an in�nitely �ne grid and computing the limit analytically which yields
an integral over the mapping�function�

Proof	
LetK be normalized by the number of gridpoints

Qn

i	�mi� Setting tik � ti�k$ti
and Ti � ti � ni $ti we get�

K��x� �x�� �
�Qn

i	�mi

nY
i	�

miX
k	�

��xi � tik���x
�
i � tik� ������

�
�Qn

i	�mi$ti

nY
i	�

miX
k	�

$ti��xi � ti � k $ti���x�i � ti � k $ti�

taking the limit ni �� � with ni$ti � const� yields the

de�nition of the Riemann�integral�

K��x� �x�� � �Qn

i	� Ti � ti

nY
i	�

Z Ti

ti

��xi � �i���x
�
i � �i�d� ������
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An easier way to derive this result is to use a map into some Hilbert space H

R
n ��� H ����
�

�x ��� ��x ������

�� K��x� �x�� � ���x� ��x�� ������

By construction this kernel satis�es Mercer�s condition�

For simplicity we will assume n � � and omit the normalization

Example �� 
Splines�

�� � � � � � �p�� with t � x � y � T ���	��

�� K�x� y� �

Z T

t

�x� ��p��y � ��p�d� ���	��

�

Z x

t

�x� ��p�y � ��pd� ���		�

substituting � �� x� � � � �� y � x yields

�

Z x�t




pX
j	�

�
p
j

�
�p�j�p�jd� ���	��

�

pX
j	�

�

p � j � �

�
p
j

�
�x� t�p�j���y � x�p�j ���	�

This expression can be evaluated several hundred times faster than summing up
the single spline coe�cients��

Example �� 
BSplines�
We de�ne B�Splines in a recursive manner �� denotes the convolution operation
and � the indicator function� �UAE	��

B
 � ���
���
��� ���	��

Bn � Bn�� �B
 for n 	 � ���	��

� �n
i	�B
 ���	
�

One can easily see that Bn�Splines �for n odd� are symmetrical positive func�
tions in Cn�� with compact support ��n

�
� n
�
� �see �gure ����� For convenience

we will choose the interval �t� T � su�ciently large such that for all samples xi
the translated support of Bn is contained in the integration interval� This is a

�For sume settings also the sum may be expressed in closed form thereby decreasing com�
putation time�
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reasonable choice as it corresponds to a translation invariant model of function
approximation�

K�x� y� �

Z T

t

Bn�x� ��Bn�y � ��d� ���	��

�

Z
R

Bn�x� ��Bn�� � y�d� ���	��

� B�n���y � x� ������

Kernels of the K�x� y� � f�x�y� type can reduce the algorithmic complexity
drastically� See section ��� how the computational cost can be reduced from
O�l�� to O�l�� for equidistant data and a kernel of the form described above�
Moreover kernels for which f has bounded support can reduce the computational
e�ort even further by rendering the dot product matrix more diagonal� The far
o��diagonal elements vanish� These kernels take into account only local corre�
lations� This can be advantageous in the case of images �UAE��� or any other
similar data �e�g� audio�� See �gure ��	 for the autocorrelation function of an
audio signal� One can observe that the correlation decays with the temporal
distance between the measurements� Hence a kernel with support containing the
alternating part of the autocorrelation could be used to approximate this kind
of data� Still the generalization ability decreases until for the case that supp f is
contained in the distance between any two adjoint points the number of nonzero
Lagrange multipliers �i�e� Support Vectors� becomes equal to the number of
samples �the dot product matrix Kij is diagonal in this case��
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Figure ���� B�Splines of degree � up to �
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Optimizer

In this chapter we will have a closer look at optimization algorithms suitable for
solving the problems posed in chapter 	� Two methods are discussed� namely a
combined Conjugate Gradient and Projection method by More % Toraldo �MT���
and a special type of Interior Point Primal�Dual Path�Following algorithms in
the spirit of Vanderbei �Van��� It will be shown how for the special case of
equidistant data and a restricted class of kernels the complexity of these algo�
rithms can be reduced quite drastically by dealing with a modi�ed Levinson
algorithm� Therefore it is convenient to de�ne a general class of optimization
problems which contains the several Support Vector problems as subcases�

��� A Class of QP�Problems

minimize fp���� ��
�� �

�
�t� ���� � ���

�
�
�
�t�� ���� � ���

�
����

�
�

	
���� � ���tD���� � ���

�
�

	
���� � ���tD����� � ���

subject to ��c� ���� � ���� � �

� � �i� �
�
i � U 
i � f�� �lg

where D and D� are positive �semi�de�nite matrices� �t is an arbitrary vector and
�t� contains only non negative entries� The previously �in Chapter 	� described op�
timization problems with box constraints fall into that class of QP�problems �the
other problems can be solved in a quite straightforward manner by simpler meth�
ods or by specializing the methods described here and removing the constraints
in U which drastically reduces the number of dual variables��� Additionally in

�U coincides with C of the chapters above� Still I decided to call the boundary U in order
to be consistent with the current implementation�

�
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all the cases described D� only contains diagonal elements� For convenience we
will make use of this fact in the following �but the reader should be aware that
the corresponding statements also hold for non�diagonal D���

��� An Equivalent Formulation

For practical �and performance� reasons it is not convenient to solve the problem
as is� Solving it this way would result in having to deal with a quadratic part of
the type�

���� � ���tD���� � ��� � ���� � ���tD����� � ���

�

�
��
���

�t �
D� �D D� �D
D� �D D� �D

��
��
���

�

This matrix is highly degenerate & half of its eigenvalues are zero� the other
half is twice the eigenvalues of D� Hence we �block� diagonalize this system by
switching to�

�� � ��� � �� ��	�

��� � ��� � ��

This improves the condition of the problem as we don�t have to rely on automatic
pivoting but can perform the critical steps beforehand� The problem transforms
to�

minimize fp���� ��
�� � ��t� ��� � ��t�� ���� �

�

	
��tD�� �

�

	
���tD���� ����

subject to ��c� ��� � �

� � ���i � �i�� ��
�
i � �i� � 	U 
i � f�� �lg

Now we arrived at a sipler functional form at the cost of a more complicated
combination of constraints �cf� Figure ��� which will be simpli�ed now�

� � ��i � �i and � � ��i � �i �� j�ij � ��i ���

��i � �i � 	U and ��i � �i � 	U �� j�ij � U ����

We will show that choosing ��i � j�ij is an optimal choice�

case �	 D�
ii � � and t�i � �

��i does not appear neither in fp nor in the regression itself� Therefore it
may take any value and ��i � j�ij is the best choice as it leaves ��U� U � as
admissible interval for �i�

case �	 D�
ii 	 � or t�i 	 �

Here the optimal solution is obtained for the smallest ��i possible� j�ij�
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Figure ��� Boundary Constraints on � and �

All other cases have been excluded already in the de�nition of equation ����� So
we can simplify the boundary conditions to�

�i � ��U� U � and ��i � j�ij ����

Note� this formulation is equivalent to �i�
�
i � � which is obvious when looking

at the formulation of the initial optimization problem �we can�t exceed both the
upper and the lower boundary at the same time��

This form is being used for interfacing the Support Vector Machine with an
external optimizer �cf� Appendix B��

��� Classical Optimizers

The �rst optimizer to be used was a classical constraint based one �viz� an opti�
mizer that is aware of the set of active � inactive boundary conditions� by More
% Toraldo �MT���� It had been successfully deployed for Support Vector Pat�
tern Recognition problems �it is one of the fastest classical optimization currently
known�� I will give a short overview of the basic ideas� Its main loop consists
of two alternating algorithms� projected gradient descent and conjugate gradient
descent� Each of these two algorithms is iterated until no su�cient progress is
made� Convergence in a �nite number of steps can be proven for positive de�nite
matrices�

����� Projected Gradient Descent

For the problem
mininize ffp��x�jli � xi � uig ��
�
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we de�ne a projected gradient

�
�fp��x�

�xi

�
��

��
�

�ifp��x� if xi � �li� ui�
min��ifp��x�� �� if xi � li
max��ifp��x�� �� if xi � ui

����

in other words� restrict the gradient so that it does not point outside the feasible
region� Now perform a line search in this direction until the minimum is found
or another constraint is hit� This is guaranteed to lower the value of fp as we are
dealing with a quadratic function� The advantage of this method is that more
than one constraint may change per iteration thereby allowing a potentially faster
convergence� When little progress is made search for the minimum on the face of
the hypercube�

����� Conjugate Gradient Descent

Now we consider the original problem restricted to the set of variables with in�
active constraints� There �nding the minimum reduces to an unconstrained op�
timization problem �the projection on the constraints is performed afterwards�
which is guaranteed to converge in at most n steps �where n is the dimensionality
of the space��

Recursively we choose f�p�� �p�� � � �g� f�x�� �x�� � � �g and �gi � grad�xf��xi��� with

�xi�� � �xi � �i�pi ����

such that
��pj� �gi� � � j � i �����

This means setting �xi so that the gradient is orthogonal to the previous direction
of descent �pi� One can easily see �after some calculus� that the set of f�p�� �p�� � � �g
is linearly independent� Therefore it spans the whole space after n steps and by
enforcing orthogonality we get �gn�� � � which is a solution� In the algorithm
described above not all n steps are used� when the relative improvement decreases
the system will resume with projected gradient descent�

Unfortunately the algorithm was designed to work for for box constrained
problems & additional constraints were taken into account by adding a large
penalty term for their violation which contributed to additional computational
errors� Moreover convergence had been proven for positive de�nite matrices only�
In the regression estimation case this meant adding a �su�ciently large to en�
sure rapid convergence� additional diagonal regularization term which drastically
deteriorated results� Hence we decided to use an interor point method instead�

��� Interior Point Methods

Interior Point methods come in three basic �avors�
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barrier methods	 Here the constraints are added as a penalty term �e�g� the
logarithm of the constraints� and relaxed on convergence

a�ne scaling methods	 On approaching the constraints the metric is changed�
Thereby one avoids violating them�

primaldual path following methods	 The fact that satisfaction of the pri�
mal � dual constraints and the KKT�conditions yields the optimal solution
is exploited by transforming the optimization problem into one of solving
a set of equations�

In our further discussion we will only consider the latter but before doing
so we will have to reformulate the optimization problem in a way that we only
have positivity and linear constraints on the primal set of variables in order to
e�ciently obtain the dual problem�

����� Primal Problem

We will use the setup of equation ���� with a small modi�cation of the con�
straints� instead of

� � �i� �
�
i � U �����

we will introduce a new set of slack variables 	i� 	
�
i and write

� � �i� �
�
i � 	i� 	

�
i and �

��
i � 	

��
i � U ���	�

����� Dual Problem

Now we can write down the Lagrange function and compute the dual� Following
the lines of �Van�� and �VDY�� we get�

L �
�
�t� ���� � ���

�
�
�
�t�� ���� � ���

�
�����

�
�

	
���� � ���tD���� � ���

�
�

	
���� � ���tD����� � ���

������a�� ����� �a��� ��	� �n�� ��	�� �n��

� ��c� ���� � ���� y

� ���� � �	 � U���z�� ����� � �	� � U���z��

Di�erentiating wrt� the primal variables and backsubstitution yields �after some
tedious algebra��

fd � ��

	
���� � ���tD���� � ��� ����
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��

	
���� � ���tD����� � ���

��U� �n�� �U� �n��

subject to �t� ��t � y�c� �n� � �a� � �D� �D���� � �D� �D��� �����
�t� ��t � �y�c� �n� �a � �D� �D���� � �D� �D��� �����

����� Central Path

Finding a set of primal and dual feasible variables that ful�l the KKT�conditions
is equivalent to solving ����� The di�erence between the primal and dual ob�
jective function is a measure for the quality of the current set of variables as
fd � f only for the optimal solution� Unfortunately solving this system directly
is a badly conditioned problem due to the KKT�conditions� hence one resorts
to a method called path following which substitutes the KKT conditions with
relaxed ones viz� requires them to be satis�ed only approximately ��	��� ��		�
and improves the approximation iteratively� The set of equations looks as follows�

��c� ���� � ���� � � ���
�

�
��
i � 	

��
i � U �����

y�c� �n� � �a� � �D� �D���� � �D� �D��� � �t� ��t �����

�y�c� �n � �a� �D� �D���� � �D� �D��� � �t� ��t ��	��

a
��
i �

��
i � � 
i ��	��

n
��
i 	

��
i � � 
i ��		�

and ��� ���� �a� �a�� �	� �	�� �n� �n� 	 � ��	��

�y is a free variable as it corresponds to an equality constraint�

����� Predictor � Corrector

Now we apply Newton�s method for solving this system � not exactly but as a
predictor�corrector algorithm �LMS���� �MS�	� with computation of �nite di�er�
ences �e�g� ai �� ai�$ai� and thereby linearizing the system of equations� The
only problem is to decrease � in a suitable manner such that we stay in the cone
of quadratic convergence� But for the beginning let us assume that we already
found a suitable value for it�

Predictor	 compute the appropriate $predictor for a linearized set of equations

�	nd order terms are neglected� with � � �
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Corrector	 compute a suitable value for � �cf� ����� substitute $predictor
back into the 	nd order terms and compute the corrector values $corrector

Hence we have to solve the following system�

��c� �$��� �$���� � ��	�

� ��c� ���� � ���� �� c

$�
��
i �$	

��
i � ��	��

U � �
��
i � 	

��
i �� u���

$y�c�$�n� �$�a� � �D� �D�$��� � �D� �D�$�� � ��	��
�t� ��t� y�c� �n� � �a� � �D� �D���� � �D� �D��� �� ��

�$y�c�$�n �$�a � �D� �D�$��� � �D� �D�$�� � ��	
�
�t� ��t� y�c� �n� �a� �D� �D���� � �D� �D��� �� �

$a
��
i �$�

��
i a

��
i �

��
i
�� � ��	��

��
��
i
�� � a

��
i �$�

��
i $a

��
i �

��
i
�� �� a���

$n
��
i �$	

��
i n

��
i 	

��
i

�� � ��	��

�	
��
i

�� � n
��
i �$	

��
i $n

��
i 	

��
i

�� �� n���

In order to avoid additional tedious notations we de�ne��

n�� �� diag�n
��
� � � � � n

��
l �' �����

�a� � and 	 are de�ned analogously�

��� �� n��	���� � a������� �����

�c �� �c ���	�

����� �� ����� � a��� � n��� � u���n
��	���� �����

Equation ��	�� can be solved for 	
��
i directly� Substituting ��	�� and ��	��

into ��	
� and ��	�� yields�

M


� $���

$��
$y

�
A �


� ���

��
�c

�
A ����

with

M �


� D��D � �� D��D ��c

D��D D��D � � �c
��ct �c �

�
A �����

�The abbreviation 	�
 means that the equation holds for the variables with and without ��
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we can simplify the system further by applying�

T �


� � �� �

� � �
� � �

�
A hence T�� �


� �

�
�
�

�
��

�
�
�

�
� � �

�
A �����

TtMT �


� D� � �� � � � � �� �

� � �� D � �� � � 	�c
� 	�ct �

�
A ���
�

The di�cult part is to diagonalize D � �� � �� the rest of the blocks is easy
as these contain only diagonal terms �that was the condition we imposed on D�

before�� Note that these blocks have full rank as the ��� � terms are guaranteed
to be positive by de�nition�

Usually D will be a symmetric positive matrix without any further properties�
For the case of input data �xi with equal spacing

�xi � �xj � �i� j�$�x �����

and a translation invariant Kernel �e�g� B�Splines�

K��x� �x�� � K��x� �x�� �����

D becomes a Toeplitz matrix� Unfortunately the �� � � terms partly spoil the
symmetry� So one has to modify the standard diagonalization algorithms�

����� Modi�ed Levinson Decomposition

We will follow the reasoning in �PTVF�	� with some modi�cations� Denote R
�
dii the varying diagonal elements of the �otherwise� Toeplitz matrix and Rj the
side diagonal elements with Rj � R�j� viz� we have a symmetric matrix� Note
that the following reasoning is valid for non symmetric matrices� too but we will
not comment on that any further�

We want to solve�
BBBBBB�

y�
y�



yn

�
CCCCCCA

�


BBBBBB�

R
 � d�� R�    Rn��
R� R
 � d��    Rn��
  
  
  

Rn�� Rn��    R
 � dnn

�
CCCCCCA


BBBBBB�

x�
x�



xn

�
CCCCCCA

����

dii are the additional diagonal terms stemming from the interior point method
whereas Ri � K��xj� �xj�i� are the regular entries of the dot product matrix� The
key idea is to �nd a recursive way of diagonalizing the matrices and compute the
updates M ���M � � with only O�M� computational cost�
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Recursion over M �RHS solutions�� xMi indicates an element of the solution
vector xi for the M �th step�

start �M�� yi � diix
M
i �

MX
j	�

Ri�jxMj ����

recursion �M � ��� yi � diix
M��
i �

MX
j	�

Ri�jx
M��
j �Ri�M��x

M��
M�� ��	�

�� Ri��M��x
M��
M�� � dii�x

M
i � xM��

i � �
MX
j	�

Ri�j�xMj � xM��
j � ����

now we divide by xM��
M�� and substitute

GM
j ��

xMj � xM��
j

xM��
M��

���

this yields

Ri��M�� � diiG
M
i �

MX
j	�

Ri�jGM
j ����

specializing ��	� for i � M � � and substituting x for G ��� we get

yM�� �
MX
j	�

RM���jx
M��
j � �R
 � dM���M���x

M��
M�� ����

xM��
M�� �

PM

j	�RM���jxMj � yM��PM

j	�RM���jGM
M���j � �R
 � dM���M���

��
�

This is a recursive relation in x and G� If we could express x by G only we would
have achieved our goal� Now we write the same set of equations for the left hand
side solutions �using z instead of x��

yi � diiz
M
i �

MX
j	�

Rj�izMj ����

�� RM���i � diiH
M
i �

MX
j	�

Rj�iHM
j ����

with

HM
j �

zMM���j � zM��
M���j

zM��
M��

�����
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as HM�� obeys to the same type of equations as x �and GM�� corresponds to z�
we can write a system of recursion equations�

HM��
M�� �

PM

j	�RM���jHM
j �R
PM

j	�RM���jGM
M���j � �R
 � dM���M���

�����

GM��
M�� �

PM

j	�Rj�M��GM
j �R
PM

j	�Rj�M��HM
M���j � �R
 � dM���M���

���	�

GM��
j � GM

j �GM��
M��H

M
M���j �����

HM��
j � HM

j �HM��
M��H

M
M���j ����

With the initial values

x�� �
y�

R
 � d


G�

� �
R��

R
 � d


�����

z�� �
y�

R
 � d


H�

� �
R�

R
 � d


�����

we can start solving the system iteratively� As Ri � R�i we only need G and can
forget about H for the solution� This gives a method that scales only O�M�� for
inverting the matrix compared to O�M�� for standard diagonalization methods
for arbitrary symmetric matrices� A further performance improvement might be
obtained by modifying the O�M logM� methods of Bunch� Parlett and de Hoog
�Bun���� �dH�
�� �BBdHS����

����	 Computing � and other updates

After obtaining the update rules by the predictor � corrector steps one has to
determine the length of the update steps� So far we did not care about the
positivity constraints of the variables � now we will have to restrict the steplength
s such that no variable becomes negative�

�

s
�

��
� � �

min

	
$�

��
i

�
��
i

�
$a

��
i

a
��
i

�
$	

��
i

	
��
i

�
$n

��
i

n
��
i

���� � ��



���
�

Setting � � ���� is a good choice�
Another heuristic is applied to the choice of �� First we have to �nd a value

corresponding to the current set of variables �� a� 	� n for the case that the current
set of variables does not lie on the central path�� Using equations ��	�� and ��		�
and summing up over them we get

� �
�����a� � ����� �a�� � ��	� �n� � ��	�� �n��

l
�����

�The central path is the set of primal and dual feasible points for which the modi�ed KKT
conditions hold�



CHAPTER 	� OPTIMIZER 


As we want to decrease � after each iteration we choose �new according to �Van��

�new � �old

�
�� s

� � ��s

��

�����

This ensures slow decrease of � when the problem becomes di�cult �i�e� we�re
hitting the positivity constraints��

For monitoring the progress of the optimizer it is convenient to de�ne some
feasibility criteria Ip and Id for the primal and dual set� The violation of the
constraints is stored in the temporary variables c and u��� for the primal con�
straints and in ���� for the dual ones� These have to become zero �or at least
close to it� for a feasible point to be found� Hence we set

Ip ��

p
�c � jjujj�� � jju�jj��

	lU
�����

Id ��

p
jj�jj�� � jj��jj��
	jj�cjj� � �

�����

and declare a solution primal � dual feasible if I is smaller than �����
Moreover we would like to measure the feasibility gap� the di�erence between

primal and dual objective function and call the logarithm of the relative di�erence
number of signi�cant �gures ns�

ns �� � log�

jfp � fdj
jfpj� �

���	�

We stop if ns � ��
The starting point is chosen such that the feasibility conditions are ful�lled as

well as possible� This is done in one step by solving the primal and dual feasibility
conditions ���
 � �	�� and restricting the solution to the domain ����U����
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Experiments

We will show the properties of Support Vector Regression Estimation using a
simple function to be approximated

f�x� �
sinx

x
� � �����

with � as additional noise term of variable strength and distribution� For con�
venience set ��� ��� as domain of interest and apply a scaling to f so that we�re
e�ectively dealing with ���  sinc��


	
x��

	�� Approximation

There are several criteria with respect to which an approximation for some given
dataset could be chosen� Common choices are the Lp�norms with p � f�� 	g� Still
this is not a safe choice as these norms are not equivalent� hence convergence in
Lp doesn�t imply convergence in L�p �for p � R

��� The only norm that implies
convergence in all other norms is L�� This may be a serious issue in practical
applications such as predicting the stock market� besides maximizing revenues
one would like to keep the maximum loss �e�g� by an erroneous prediction of the
system� bounded �viz� to bound it in the L��norm�� Therefore we choose

jjf � fapproxjj� � � ���	�

and among this class of functions satisfying ���	� the �attest one for which this
equation holds� See chapter � for more details�

This approach corresponds to the graphs in �gure ���� One may observe that
the approximations become �atter as the margin widens until they result in the
constant function which is the �attest function available� Unfortunately in reality
we are not given f itself but only measurements at positions f�x�� � � � �xlg for which
we try to ful�l the condition stated above� E�ectively we have to �nd the �attest
function that �ts through the errorbars shown in the graph�

�
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Figure ���� sinc x� datapoints with ��precision and approximations with ���� ��	�
��� and ��� precision using a spline kernel of degree �
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Approximation
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Figure ��	� sinc jjxjj measured at ��� iid locations with a spline approximation
of degree � and precision ���

Of course such an approximation can be carried out for more than one dimen�
sion �see �gure ��	� but we will stick with just one dimension in the following as
the results can be visualized much more easily�

Figure �� shows the decomposition of the approximation in support vectors�
One can observe that the number of support vectors increases with the quality
of approximation required� This e�ect can be understood by a simple physical
reasoning � keeping in mind that the lagrange multipliers can be regarded as
forces and the approximation corresponds to a �exible rod one would like to �t
into the ��tube it is clear that by narrowing the width of the tube the number of
points where the rod hits the tube increases� In other words� by narrowing the
constraints on the approximation more and more of them are likely to become
active�

The action of the Lagrange multipliers can be observed directly in �gure ����
Only at the points where the approximation hits the boundary Support Vectors
appear� This is a restatement of the Karush�Kuhn�Tucker conditions �cf� sec�
tion ����� This e�ect also can be seen in the context of data compression� for
representing the approximation we only have to store the Support Vectors and
the corresponding Lagrange multipliers and may forget about the other data�
points� As already shown before approximation is possible with computational
cost scaling only in the number of samples for any dimension� This is much bet�
ter than direct approximation by splines as the latter scales exponentionally in
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Figure ���� forces �red� exerted by the ��tube �green� on the approximation �blue�

the number of input�dimensions �viz� the number of coe�cients for the function
representation��

����� Number of Support Vectors

In �gure �� one can see once more the increase in the number of Support Vectors
for increasing approximation quality� this time for an approximation with B�
Splines� One can see that the quality of the approximation does not depend
strongly on the kernels used� This is a similar �nding to what is the case in
pattern recognition� See �SBV��� for more details on this topic�

Figure ��� �nally is an explicit compression diagram for our dataset� For
approximating the ��� points given up to a certain precision � we need as much
data as we get Support Vectors�

	�� Regression � Estimation

Regression � Estimation means trying to infer the correct functional dependency
from noisy data� Hence we will turn on � in ����� in the following experiments�
Figure ��� shows the approximation properties for di�erent noise strength�

It is interesting to see how the number of support vectors for a �xed margin
increases with increasing noise� In a data compression context this means that
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��	

Figure ��� approximation with ���� ���� ��	� ���� ���� and ���	 precision precision
using a B�spline kernel of degree �� the solid dots are support vectors
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Figure ���� Number of Support Vectors vs� precision of the approximation �spline
approximation of degree � with ��� nodes� for ��� datapoints �note that the
maximum number of points is ����

the more noisy data becomes the less it can be compressed� Moreover P �j�j 	 ��
is the probability of a point to exceed the ��margin for an unbiased estimator�

����� Number of Support Vectors

This increase also can be understood by a di�erent reasoning� As the number of
support vectors corresponds to the number of samples that lie on or outside the
given margin one can relate this to the probability that for an unbiased estimator
with sample size l �� � the deviation between the data and the estimate is
greater or equal to ��

P �jyi � fapprox��xi�j 	 �� �

Z
������������

p���d � �����

� 	

�Z
�

�p
	���

e�
��

��� d �

� �� erf�
�

�
� ����

Here erf�x� �� 	 �p
�	
�

R �


e�

��

��� d �� Figure ��
 shows the good agreement between

����� and the experimental results for �xed noise and varying ��margin� In �gure
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Figure ���� regression � estimation of ��� sinc ���x� on ��� ��� for ��� samples with
gaussian noise of standard deviation ���� ��	� ��� and ��� and the corresponding ��
insensitive loss�zone of width ���� ��	� ��� and ��� �black dots are support vectors�

��� the same e�ect can be observed for �xed ��margin and varying gaussian noise
���� Here howewer the number of Support Vectors does not converge to � for
� �� � because the function without noise still carries information� This is the
reason for the discrepancy between P�SV� and the measured number of Support
Vectors� The same is true for the region � � ����� �� for �gure ��
�

����� Optimal Choice of Parameters

The approach described so far leaves two questions unanswered� The choice of �
and the choice of the regularization� It can be seen from the �gures ����� ���	�
����� ��� that there is �not surprisingly� an optimal choice for both variables�
Moreover one will notice that the smallest error is not obtained for � � � but
for some value greater than zero� This means that the ��insensitive loss function
that corresponds to a biased estimator performs better than the unbiased L�

counterpart for gaussian noise�
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Figure ��
� Number of Support Vectors depending on the ��margin for �xed noise
level and probability of a point to lie outside the margin for an unbiased estimator
and noise level � � ��	
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Figure ���� Number of Support Vectors for di�erent noise levels and �xed ��
margin of ��	 �splines of degree �� ��� points� ��� nodes� gaussian noise� 	� trials�
and probability of a point to lie outside the margin for an unbiased estimator
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Figure ���� Number of Support Vectors depending on the regularization and the
��margin �splines of degree �� ��� points� ��� nodes� gaussian noise with standard
deviation ���� 	� trials�
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Figure ����� L��error of the approximation depending on the regularization and
the ��margin �splines of degree �� ��� points� ��� nodes� gaussian noise with
standard deviation ���� 	� trials�
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Figure ���	� minimal L��error �optimal choice of the regularization� depending
on the ��margin �splines of degree �� ��� points� ��� nodes� gaussian noise with
standard deviation ���� 	� trials�
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Figure ����� L��error of the approximation depending on the regularization and
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Figure ���� minimal L��error �optimal choice of the regularization� depending
on the ��margin �splines of degree �� ��� points� ��� nodes� gaussian noise with
standard deviation ���� 	� trials�
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Clearly for gaussian noise an L� loss function would be the best choice� Hence
an ��insensitive loss function with nonzero � is a better approximation of the L�

loss than a L� loss is �see �gure ������ For the realizable asymptotic case one can
compute the optimal � exactly depending on the variance of the gaussian noise
model�

����� Asymptotic E
ciency

Although no statement can be made so far about the optimal choice of the ��
margin for �nite sample size still one can compute the asymptotic e�ciency
for loss functions �under the assumption of realizability�� This one is given by
�Vap
��� �MYA��� �Mur��a�

e �
�

Var�
�I
�

�

Q��GQ��I
�����

where 
 are the parameters of the density model and

G �� E�$l��	��
�� and Q �� E�$$l��	�� �����

In our case we are dealing with a one�parametrical model hence denoting


��� �
�p
	��

e�
��

��� ���
�

���� �
�

	 �� � ��
e
�
��
�

� if j�j � �
j�j � � otherwise �����
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Figure ����� Asymptotic e�ciency for an ��insensitive model and data with gaus�
sian noise� See equation �������

Now we can compute e
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Substituting � �� �


we get the maximum of e������ This is obtained for � �

������� It shows that there is a linear dependency between the optimal choice of
� and the noise of the data�

Figure ���� shows the relationship between a L� loss function and the cor�
responding optimal ��insensitive function� Note that the previous calculations
are heavily based on the assumption of a faithful model and in�nitely much data
both of which is not true in our case� Therefore the calculus only gives a crude
estimate of the � that is optimal for �nite sample size� Still it agrees well with
the results obtained by other methods� For instance Solla % Levin �SL�	b� prove
that for Boltzmann machines �in the linear case� the best performance is achieved
when the internal noise matches the external one�

This e�ect also can be observed in �gure ���
 for a �xed ��margin and varying
noise �hence we�re dealing with e��������� Also notice that in the experimental
�nding the optimal performance is not obtained for � � ����		 but for � � ����
This may be true due to �nite sample size e�ects and the fact that we�re not
in the estimation of a location parameter case but trying to infer a functional
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Figure ����� L�� L� and ��insensitive loss functions in comparison� One can
see that the ��insensitive approximates the L� function better than the L� does
�piecewise linear �t with one more parameter��

dependency which is much more complicated than the original case�
Finally �gures ���� and ���� show L� and L� loss functions for di�erent choices

of � and �� The minimum of these curves is shown in ��	��

	�� Future Perspectives

Still one question remains unanswered � the choice of the regularization constant
U � Unfortunately the bounds which had been appplied for Pattern Recognition
�GBV��� are not tight enough for Regression Estimation� One might consider
a poor man�s approach like cross validation or something more sophisticated
like bootstrapping methods �ET�� until the problem is settled in a reasonable
manner� This leaves a wide �eld of research open for future work�

Another aspect to be investigated is to �nd optimality criteria for approxi�
mating certain datasets� e�g� video� audio data � � � � Prior knowledge about the
smoothness of the functions the algorithm is dealing with can be incorporated
through the n�times di�erentiability of the kernels used�

Reduction of the complexity of the algorithm to linear scaling in the number
of samples is an aspect to consider� too� A possible solution of this problem is



CHAPTER 
� EXPERIMENTS �	

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1e-05 0.0001 0.001 0.01 0.1 1

L1 error
L2 error

Figure ���
� L� and L��error of the approximation for di�erent noise levels and
�xed ��margin of ��	 �splines of degree �� ��� points� ��� nodes� gaussian noise�
	� trials�

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

eps = 0.1
eps = 0.2
eps = 0.5
eps = 1.0

Figure ����� L��error for di�erent noise levels



CHAPTER 
� EXPERIMENTS ��

0.01

0.1

1

0.0001 0.001 0.01 0.1 1 10 100

eps = 0.1
eps = 0.2
eps = 0.5
eps = 1.0

Figure ����� L��error for di�erent noise levels

0

0.2

0.4

0.6

0.8

1



0 0.2 0.4 0.6 0.8 1 

best epsilon
Theory

Figure ��	�� Optimal choice of � for di�erent noise levels ���� samples� and
theoretically best value for the asymptotic unbiased case



CHAPTER 
� EXPERIMENTS �

solving the SV�equations locally only and updating the neighbouring domains
with the error of the prior approximation� Compact support kernels might be
very useful in this respect as they limit the side e�ects of a local solution to other
domains�
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Summary

In this work we presented a method for approximating and estimating real func�
tions f � Rn ��� R with virtually arbitrary sets of function expansions in a
nonparametrical statistics setting�

Instead of exponentional computational e�ort in the number of input dimen�
sions of the problem which is usually the case for classical spline�approximation
methods the complexity of a Support Vector Machine depends only on the num�
ber of samples used� For data with regularities this means that computation time
can be as small as O�l�� in the number of datapoints and O�l�� for the generic
case� No special previsions have to be taken for the choice of a prede�ned grid or
any similar measure necessary for conventional methods ��nite elements� adap�
tive splines� etc��� This means that one can handle approximation�estimation
problems very e�ectively�

Moreover we can deal with a large variety of loss functions in order to suit
everyone�s need when trying to estimate the best solution for a real�world prob�
lem� The loss functions do not even have to be known explicitly � knowledge is
required only at the sampling points of the data�

For the ��insensitive loss function we can get even more interesting results as
it entails a lot of coe�cients �i that vanish in the support vector decomposition�
This can be regarded as a novel way of data compression� Still a lot of work will
have to be spent on this issue to make it a practical way of encoding data�

We presented some theoretical connection between the choice of � and the
noise of the data although this result can be regarded as a preliminary one only�
This is a hard problem indeed as it means estimating how well one may trust the
data given� The second free parameter still remains to be chosen in a theoretically
more sound way� Whereas in the pattern recognition case good bounds on the
capacity of the set of functions could be obtained �thereby yielding an e�ective
way of �nding the correct regularization of the data� we still have to do the same
for regression estimation� The bounds from Pattern Recognition are not tight
enough� This leaves the Support Vector Regression Estimation as a powerful
algorithm with still a lot of work to be done in the following years�

��
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Implementation

A�� Choice of a programming language

Initially there was code available in a Lisp�like environment �SN���� with mixed
compilation and interpreter features for rapid prototyping� Besides that a large
set of libraries for matrices� display routines and general utility code was available�
It had been tested and co�developed in the department which guaranteed a high
degree of adaptation to the speci�c problems�

Nevertheless it had several shortcomings� The documentation was partly miss�
ing or obsolete which caused ine�ciencies in coding� Further de�ciencies were
the awkward pre�x syntax rendering the code very hard to check for errors and
the only half way implemented object orientation of the language itself� Derived
classes for instance could not explicitly call base class constructors thereby cre�
ating the need for several workarounds using macro expansions �which were even
more unreadable��

Lastly the system was available for SUN�OS �� only with several mutually
incompatible versions of the environment� The number of worldwide installations
could be considered rather small� Therefore we decided to switch to a more
mainstream development environment�

At this point the decision was taken to choose ANSI�C�� as we considered
its standardization to have advanced far enough and there was an award winning
integrated development system by SunSoft available �SparcWorks� including a
powerful source code debugger with interpreter�like features� The availability of
a large number of class libraries for nearly any purpose was expected to cope with
the initial lack of �homegrown� code�

ANSI�C would have provided a higher portability and better compilers due to
the meanwhile completed standardization but was not powerful enough due to the
lack of object orientation� Fortran was not taken into consideration because of its
arcane syntax and Java due to the lack of standardization and still unsatisfactory
numerical performance as interpreted bytecode�

��
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Data
  object counter
  size
  pointer to Data

Reference Node

pointer to Reference Node
pointer to Data
rows, increment
coluns, increment

Header

Figure A��� Structure of a matrix � vector object

A�� Class Libraries

The basic ingredients for a Support Vector Learning Machine are a linear algebra
package� a quadratic optimizer and tools for data visualization and entry�

A���� Linear Algebra Package

The matrix class was required to handle fast �pointer arithmetics� memory access
with minimal overhead as well as non memory copying submatrix constructors�
Moreover it was expected to handle large �approx� 	�� MB� memory segments
e�ciently cooperating well with the operating systems memory management fa�
cilities� This library was regarded a key performance issue�

The currently available matrix classes were mainly lacking the feature of ef�
�cient direct pointer arithmetics� were not template based thereby allowing only
a limited class of arithmetic types or provided just an overhead to old legacy
Fortran code �blas� lapack and its c�� equivalents�� Other libraries had the
serious defect of not being available as source code �Rogue Wave� for eventually
necessary extensions� The ANSI C�� ValArray Template which will be part of
the Standard C�� Library seemed appealing to start with but was not available
at the time the project started� Therefore we decided to write our own matrix
class� It(s basic structure can be seen in �gure A���

Creating a submatrix requires only the creation of a new header referring to
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Figure A�	� main control window

the storage object� To avoid unwanted deletions of the storage object a bookkeep�
ing variable in the storage object counts the current number of headers created�
As for library functions it provides fast �pointer arithmetic� dot products of all
kinds �including triangular matrices�� Cholesky decompositions� sorting� itera�
tions and indexing routines�

A���� Data Visualization

Ease of use and cross platform portability were key issues in selecting a suitable
windows library� Therefore it was clear not to use the X�� or Motif libraries di�
rectly� Cross platform environments like the SolarSystem by Star Division were
overly expensive and not available as source code� SunSoft�s Visual Workshop�
an integrated GUI�Builder �Graphical User Interface� Kit which would have al�
lowed true Unix to MS�Windows portability by embedding MFC�calls �Microsoft
Foundation Class� in the toolkit appeared too lately to be integrated� Howewer
there was a library available that met all the basic requirements � wxWindows by
the AIAI �Arti�cial Intelligence Applications Institute� in Edingborough� written
by Julian Smart� Source code availability� true cross platform portabiliby �Win�
dows� OS�	� all �avours of Unix� MacOS 
�� a large number of high level classes
and a precise documentation� all covered by the GNU General Public License
convinced us to choose this tool� It proved very valuable for rapid prototyping
�cfr� �gure A�	 and A����

Currently work is being done on generating a Web�Browser compatible Java
Interface for enhanced portability and easier commercialization of the system�
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Figure A��� a typical session for �D�regression

A���� Optimization

There are several commercial packages available for quadratic programming like
OSL by IBM �cfr� �IBM�	��� It uses a two part algorithm to minimize a quadratic
objective function with a positive semide�nite quadratic coe�cient matrix sub�
ject to linear constraints� Since the optimum may occur in the interior of the
feasible region� the simplex method alone cannot be used to solve QP problems�
The �rst subalgorithm solves an approximating LP problem� using the simplex
solver� and a related very simple QP problem at each iteration� When successive
approximations are close enough together� the second subalgorithm� which per�
mits a quadratic objective and converges very rapidly from a good starting value�
is used� CPLEX �cfr� �CO��� instead uses a primal�dual logarithmic barrier
algorithm with predictor�corrector �cfr� �VDY����

Another package� MINOS by the Stanford Optimization Laboratory �cfr�
�MS���� uses a reduced gradient algorithm in conjunction with a quasi�Newton
algorithm� The constraints are handled by an active set strategy� Feasibility is
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maintained throughout the process� The variables are classi�ed as basic� super�
basic� and nonbasic' at the solution� the basic and superbasic variables are away
from their bounds� The null space is spanned by a matrix that is constructed
from the coe�cient matrix of the basic variables by using a sparse factorization�
On the active constraint manifold� a quasi�Newton approximation to the reduced
Hessian is maintained�

The basic ideas of LOQO �cfr� �Van��� already have been explained in chap�
ter � It uses a primal�dual interior point path�following method� Benchmarks
on the Netlib problem collection showed superior performance over MINOS and
CPLEX� Moreover it is freely available for academic research purposes� Hence
we decided to use this package for implementation�

Another system by L� Kaufman �cfr� �BK���� �BK

�� �DBK����� uses an
iterative free set method starting with all variables on the boundary and adding
them as the Karush Kuhn Tucker conditions become more violated� This ap�
proach has the great advantage of not having to compute the full dot product
matrix from the beginning� Instead it is evaluated on the �y� yielding a signi�cant
performance improvement�

In order to suit these demands we designed a very general optimization class�
Calling parameters are a set of lagrange multipliers and a general type of op�
timization problem parameters like ����� The class also provides handles for
dynamic calculation of the dot product table�
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MPS Format

The MPS�Format is a pretty much arcane format for interfacing a system with
an optimizer through an ASCII �le� It stems from the times when FORTRAN
was still very fashionable and is extremely sensitive to misplaced spacings and
other whitespace� Nonetheless it is an industrial standard and therefore one
has to deal with it �CPLEX� LOQO� MINOS and other LP�QP�solvers use it��
Unfortunately information can be obtained only very di�cultly� I will show a
sample con�guration for a simple constrained quadratic optimization problem�

B�� The Problem

minimize W ���� � ��t� ��� �
�

	
��tD�� �B���

subject to ��c� ��� � �

� � �i � U 
i � f�� �lg

B�� The File

Beware� positions of the keywords and numbers are crucial) The column num�
bering is given for convenience and is not part of the �le format itself� Labels are
eight characters at most �case matters for some optimizers�� numbers are right
aligned and �oating point without exponential notation which drastically limits
the numerical resolution of the data entry ��� characters are available for num�
bers plus a trailing sign�� Substitute the appropriate numbers for ti� ci� Dij in the
sample �le� Possible �oating point numbers are� �	�� ���� �	�� �	���� �note
the ��� after the integer��


�
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B���� Keywords

NAME name of the problem
�also speci�es the output �lename�

ROWS linear part of the objective function and constraints
N no constraint speci�ed �for objective function only�
G greater
E equal
L less

COLUMNS contains the variables to be computed �here ��' two lines per
row are allowed the labels specify the corresponding rows

RHS right hand side of the ROWS section
BOUNDS �optional� box constraints on the variables� default setting is

variable 	 �
LO lower bound
UP upper bound

QUADS elements of the quadratic matrix� unspeci�ed elements are set to �

B���� Listing

� � � � � �

���������	���������	���������	���������	���������	���������	�����

NAME svn
mps

ROWS

N objectiv

E constrai

COLUMNS

alpha�	� objectiv t� c�					� c�


 
 
 
 



 
 
 
 



 
 
 
 


alpha�	n objectiv tn c�					� cn
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UP BOUND alpha�	� U
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UP BOUND alpha�	n U

QMATRIX

alpha�	� alpha�	� D��

alpha�	� alpha�	� D��


 
 



 
 



 
 


alpha�	n alpha�	n Dnn
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