
Machine Learning for Computational
Advertising

L3: Linear Models

Alexander J. Smola

Yahoo! Labs
Santa Clara, CA 95051

alex@smola.org

UC Santa Cruz, April 2009

Alexander J. Smola: Machine Learning for Computational Advertising 1 / 40

Overview

L1: Machine learning and probability theory
Introduction to pattern recognition, classification, regression,
novelty detection, probability theory, Bayes rule, density
estimation

L2: Instance based learning
Nearest Neighbor, Kernels density estimation, Watson
Nadaraya estimator, crossvalidation

L3: Linear models
Hebb’s rule, perceptron algorithm, regression, classification,
feature maps

Alexander J. Smola: Machine Learning for Computational Advertising 2 / 40

L3 Linear Models

Hebb’s rule
positive feedback
perceptron convergence rule

Hyperplanes
Linear separability
Inseparable sets

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Kernel perceptron

Alexander J. Smola: Machine Learning for Computational Advertising 3 / 40

Biology and Learning

Basic Idea
Good behavior should be rewarded, bad behavior
punished (or not rewarded).
This improves the fitness of the system.
Example: hitting a tiger should be rewarded . . .
Correlated events should be combined.
Example: Pavlov’s salivating dog.

Training Mechanisms
Behavioral modification of individuals (learning):
Successful behavior is rewarded (e.g. food).
Hard-coded behavior in the genes (instinct):
The wrongly coded animal dies.

Alexander J. Smola: Machine Learning for Computational Advertising 4 / 40

Perceptron

Alexander J. Smola: Machine Learning for Computational Advertising 5 / 40

Perceptrons

Weighted combination
Output of the perceptron is a linear combination of the
inputs.
Rescale output (e.g. by sigmoid or threshold function)

Decision Function
Results results are combined into

σ

(
n∑

i=1

wixi + b

)
= σ(〈w , x〉+ b).

Alexander J. Smola: Machine Learning for Computational Advertising 6 / 40

Linear Function Classes

Expansion

f (x) = 〈w , x〉+ b where w , x ∈ Rm and b ∈ R.

Applications
Spam filtering (e-mail)
Echo cancellation (old analog overseas cables)
Click probability
Bid value for advanced match
Machine learning ranking
Collaborative filtering

Learning
Weights are “plastic” — adapted via the training data.

Alexander J. Smola: Machine Learning for Computational Advertising 7 / 40

Linear Separation

Alexander J. Smola: Machine Learning for Computational Advertising 8 / 40

Perceptron Algorithm

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w ,b) = Perceptron(X ,Y)
initialize w ,b = 0
repeat

Pick (xi , yi) from data
if yi(w · xi + b) ≤ 0 then

w ′ = w + yixi

b′ = b + yi

until yi(w · xi + b) > 0 for all i
end

Alexander J. Smola: Machine Learning for Computational Advertising 9 / 40

Interpretation

Algorithm
Do nothing if we classify (xi , yi) correctly
For incorrectly classified observation update
(w ,b)+ =(yixi , yi).
Positive reinforcement of observations.

Solution
Weight vector is linear combination of observations xi :

w ←− w + yixi

Classification can be written in terms of dot products:

w · x + b =
∑
j∈E

yjxj · x + b

Alexander J. Smola: Machine Learning for Computational Advertising 10 / 40

Theoretical Analysis

Incremental Algorithm
Already while the perceptron is learning, we can use it.

Convergence Theorem (Rosenblatt and Novikoff)
Suppose that there exists a ρ > 0, a weight vector w∗

satisfying ‖w∗‖ = 1, and a threshold b∗ such that

yi (〈w∗, xi〉+ b∗) ≥ ρ for all 1 ≤ i ≤ m.

Then the hypothesis maintained by the perceptron algorithm
converges to a linear separator after no more than

(b∗2 + 1)(R2 + 1)

ρ2

updates, where R = maxi ‖xi‖.

Alexander J. Smola: Machine Learning for Computational Advertising 11 / 40

Proof, Part I

Starting Point
We start from w1 = 0 and b1 = 0.

Step 1: Bound on the increase of alignment
Denote by wi the value of w at step i (analogously bi).

Alignment: 〈(wi ,bi), (w∗,b∗)〉

For error in observation (xi , yi) we get

〈(wj+1,bj+1) · (w∗,b∗)〉
= 〈[(wj ,bj) + yi(xi ,1)] , (w∗,b∗)〉
= 〈(wj ,bj), (w∗,b∗)〉+ yi〈(xi ,1) · (w∗,b∗)〉
≥ 〈(wj ,bj), (w∗,b∗)〉+ ρ

≥ jρ.

Alignment increases with number of errors.
Alexander J. Smola: Machine Learning for Computational Advertising 12 / 40

Proof, Part II
Step 2: Cauchy-Schwartz for the Dot Product

〈(wj+1,bj+1) · (w∗,b∗)〉 ≤ ‖(wj+1,bj+1)‖ ‖(w∗,b∗)‖

=
√

1 + (b∗)2‖(wj+1,bj+1)‖

Step 3: Upper Bound on ‖(wj ,bj)‖
If we make a mistake we have

‖(wj+1,bj+1)‖2 = ‖(wj ,bj) + yi(xi ,1)‖2

= ‖(wj ,bj)‖2 + 2yi〈(xi ,1), (wj ,bj)〉+ ‖(xi ,1)‖2

≤ ‖(wj ,bj)‖2 + ‖(xi ,1)‖2

≤ j(R2 + 1).

Step 4: Combination of first three steps

jρ ≤
√

1 + (b∗)2‖(wj+1,bj+1)‖ ≤
√

j(R2 + 1)((b∗)2 + 1)

Solving for j proves the theorem.
Alexander J. Smola: Machine Learning for Computational Advertising 13 / 40

Solutions of the Perceptron

Alexander J. Smola: Machine Learning for Computational Advertising 14 / 40

Interpretation

Learning Algorithm
We perform an update only if we make a mistake.

Convergence Bound
Bounds the maximum number of mistakes in total. We
will make at most (b∗2 + 1)(R1 + 1)/ρ2 mistakes in the
case where a “correct” solution w∗,b∗ exists.
This also bounds the expected error (if we know ρ,R,
and |b∗|).

Dimension Independent
Bound does not depend on the dimensionality of X.

Sample Expansion
We obtain w as a linear combination of xi .

Alexander J. Smola: Machine Learning for Computational Advertising 15 / 40

Mini Summary

Perceptron
Separating halfspaces
Perceptron algorithm
Convergence theorem
Only depends on margin, dimension independent

Pseudocode
for i in range(m):

ytest = numpy.dot(w, x[:,i]) + b
if ytest * y[i] <= 0:

w += y[i] * x[:,i]
b += y[i]

Alexander J. Smola: Machine Learning for Computational Advertising 16 / 40

Nonlinearity via Preprocessing

Problem
Linear functions are often too simple to provide good
estimators.

Idea
Map to a higher dimensional feature space via
Φ : x → Φ(x) and solve the problem there.
Replace every 〈x , x ′〉 by 〈Φ(x),Φ(x ′)〉 in the perceptron
algorithm.

Consequence
We have nonlinear classifiers.
Solution lies in the choice of features Φ(x).

Alexander J. Smola: Machine Learning for Computational Advertising 17 / 40

Nonlinearity via Preprocessing

Features
Quadratic features correspond to circles, hyperbolas and
ellipsoids as separating surfaces.

Alexander J. Smola: Machine Learning for Computational Advertising 18 / 40

Constructing Features

Idea
Construct features manually. E.g. for OCR we could use

Alexander J. Smola: Machine Learning for Computational Advertising 19 / 40

More Examples

Two Interlocking Spirals
If we transform the data (x1, x2) into a radial part
(r =

√
x2

1 + x2
2) and an angular part (x1 = r cosφ,

x1 = r sinφ), the problem becomes much easier to solve (we
only have to distinguish different stripes).

Japanese Character Recognition
Break down the images into strokes and recognize it from the
latter (there’s a predefined order of them).

Medical Diagnosis
Include physician’s comments, knowledge about unhealthy
combinations, features in EEG, . . .

Suitable Rescaling
If we observe, say the weight and the height of a person,
rescale to zero mean and unit variance.

Alexander J. Smola: Machine Learning for Computational Advertising 20 / 40

Perceptron on Features

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function (w ,b) = Perceptron(X ,Y , η)
initialize w ,b = 0
repeat

Pick (xi , yi) from data
if yi(w · Φ(xi) + b) ≤ 0 then

w ′ = w + yiΦ(xi)
b′ = b + yi

until yi(w · Φ(xi) + b) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yj(Φ(xj) · Φ(x)) + b

Alexander J. Smola: Machine Learning for Computational Advertising 21 / 40

Problems with Constructing Features

Problems
Need to be an expert in the domain (e.g. OCR).
Features may not be robust (e.g. postman drops letter).
Can be expensive to compute.

Solution
Use shotgun approach.
Compute many features and hope . . .
Do this efficiently.

Alexander J. Smola: Machine Learning for Computational Advertising 22 / 40

Polynomial Features
Quadratic Features in R2

Φ(x) :=
(

x2
1 ,
√

2x1x2, x2
2

)
Dot Product

〈Φ(x),Φ(x ′)〉 =
〈(

x2
1 ,
√

2x1x2, x2
2

)
,
(

x ′1
2
,
√

2x ′1x ′2, x
′
2

2
)〉

= 〈x , x ′〉2.

Insight
Trick works for any polynomials of order d via 〈x , x ′〉d .

Alexander J. Smola: Machine Learning for Computational Advertising 23 / 40

Kernels

Problem
Extracting features can sometimes be very costly.
Example: second order features in 1000 dimensions.
This leads to 5005 numbers. For higher order polynomial
features much worse.

Solution
Don’t compute the features, try to compute dot products
implicitly. For some features this works . . .

Definition
A kernel function k : X× X→ R is a symmetric function in its
arguments for which the following property holds

k(x , x ′) = 〈Φ(x),Φ(x ′)〉 for some feature map Φ.

If k(x , x ′) is much cheaper to compute than Φ(x) . . .

Alexander J. Smola: Machine Learning for Computational Advertising 24 / 40

Polynomial Kernels in Rn

Idea
We want to extend k(x , x ′) = 〈x , x ′〉2 to

k(x , x ′) = (〈x , x ′〉+ c)
d where c ≥ 0 and d ∈ N.

Prove that such a kernel corresponds to a dot product.
Proof strategy

Simple and straightforward: compute the explicit sum given
by the kernel, i.e.

k(x , x ′) = (〈x , x ′〉+ c)
d

=
m∑

i=0

(
d
i

)
(〈x , x ′〉)i cd−i

Individual terms (〈x , x ′〉)i are dot products for some Φi(x).

Alexander J. Smola: Machine Learning for Computational Advertising 25 / 40

Kernel Perceptron

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ {±1} (labels)

function f = Perceptron(X ,Y , η)
initialize f = 0
repeat

Pick (xi , yi) from data
if yi f (xi) ≤ 0 then

f (·)← f (·) + yik(xi , ·) + yi

until yi f (xi) > 0 for all i
end

Important detail
w =

∑
j

yjΦ(xj) and hence f (x) =
∑

j yjk(xj , x) + b.

Alexander J. Smola: Machine Learning for Computational Advertising 26 / 40

Are all k(x , x ′) good Kernels?

Computability
We have to be able to compute k(x , x ′) efficiently (much
cheaper than dot products themselves).

“Nice and Useful” Functions
The features themselves have to be useful for the learning
problem at hand. Quite often this means smooth functions.

Symmetry
Obviously k(x , x ′) = k(x ′, x) due to the symmetry of the dot
product 〈Φ(x),Φ(x ′)〉 = 〈Φ(x ′),Φ(x)〉.

Dot Product in Feature Space
Is there always a Φ such that k really is a dot product?

Mercer’s theorem
k needs to correspond to a positive integral operator . . .

Alexander J. Smola: Machine Learning for Computational Advertising 27 / 40

Some Good Kernels

Examples of kernels k(x , x ′)

Linear 〈x , x ′〉
Laplacian RBF exp (−λ‖x − x ′‖)
Gaussian RBF exp

(
−λ‖x − x ′‖2)

Polynomial (〈x , x ′〉+ c〉)d
, c ≥ 0, d ∈ N

B-Spline B2n+1(x − x ′)
Cond. Expectation Ec[p(x |c)p(x ′|c)]

Simple trick for checking Mercer’s condition
Compute the Fourier transform of the kernel and check that it
is nonnegative.

Alexander J. Smola: Machine Learning for Computational Advertising 28 / 40

Linear Kernel

Alexander J. Smola: Machine Learning for Computational Advertising 29 / 40

Laplacian Kernel

Alexander J. Smola: Machine Learning for Computational Advertising 30 / 40

Gaussian Kernel

Alexander J. Smola: Machine Learning for Computational Advertising 31 / 40

Polynomial (Order 3)

Alexander J. Smola: Machine Learning for Computational Advertising 32 / 40

B3-Spline Kernel

Alexander J. Smola: Machine Learning for Computational Advertising 33 / 40

Mini Summary

Features
Prior knowledge, expert knowledge
Shotgun approach (polynomial features)
Kernel trick k(x , x ′) = 〈φ(x), φ(x ′)〉
Mercer’s theorem

Applications
Kernel Perceptron
Nonlinear algorithm automatically by query-replace

Examples of Kernels
Gaussian RBF
Polynomial kernels

Alexander J. Smola: Machine Learning for Computational Advertising 34 / 40

Risk Minimization

General Problem
Find f (x) = 〈w , x〉+ b such that loss l(y , f (x)) is minimized.

Learning as optimization
Minimize the average risk on training set via

minimize
(w ,b)

m∑
i=1

l(yi , 〈w , xi〉+ b) +
λ

2
‖w‖2

Here λ
2 ‖w‖

2 is a regularizer penalizing how steep the
function f is.

Alexander J. Smola: Machine Learning for Computational Advertising 35 / 40

Applications

Regression — Least Mean Squares
Bid estimation: y is bid, x = (keyword, query)
Collaborative filtering: y is rating, x = (product, user)

l(y , f (x)) =
1
2

(y − f (x))2

Classification — Logistic Regression
Click probability estimation: y is click/no click, x is ad
Spam filtering: y is spam/no spam, x is webpage

l(y , f (x)) = − log p(y |x) = log(1 + e−yf (x))

equivalently p(y |x) =
1

1 + e−yf (x)

Alexander J. Smola: Machine Learning for Computational Advertising 36 / 40

Applications

Classification — Hinge loss

l(y , f (x)) = max(0,−yf (x))

This will give us the Perceptron algorithm
Classification — Soft margin loss

l(y , f (x)) = max(0,1− yf (x))

This will give us the Support Vector Machines loss. We want
to ensure that we classify with confidence: loss only vanishes
if yf (x) ≥ 1.

Regression — Absolute Value Loss
Want to penalize absolute deviation from observation

l(y , f (x)) = |y − f (x)|

Alexander J. Smola: Machine Learning for Computational Advertising 37 / 40

Stochastic Gradient Descent

argument: X := {x1, . . . , xm} ⊂ X (data)
Y := {y1, . . . , ym} ⊂ Y (labels)

function (w ,b) = StochasticGradientDescent(X ,Y)
initialize w ,b = 0
initialize counter n = n0, scale η0

repeat
Pick (x , y) from data
Compute prediction f (xi)
Compute learning rate η = η0√

n
(w ,b) = (1− λη)(w ,b)− η(x ,1) · ∂f (x)l(y , f (xi))

Increment n = n + 1
until all data read

end

Alexander J. Smola: Machine Learning for Computational Advertising 38 / 40

Key Theorem

Convergence
Under general conditions stochastic gradient descent
converges at rate O(n−

1
2) to the optimal solution.

Practical hack
Set regularization λ = 0 if we have lots of data.

Alexander J. Smola: Machine Learning for Computational Advertising 39 / 40

Summary

Hebb’s rule
positive feedback
perceptron convergence rule, kernel perceptron

Features
Explicit feature construction
Implicit features via kernels

Kernels
Examples
Mercer’s theorem

Risk Minimization
Stochastic gradient descent algorithm
Simple to implement
Fast convergence

Alexander J. Smola: Machine Learning for Computational Advertising 40 / 40

