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Regression with Gaussian Noise

Likelihood

For fixed s, we have additive normal noise in the observations. This means that

p(yi|f (xi)) = 1√
2πσ2

exp
(
− 1

2σ2(yi − [Kα]i)
2
)
.

Prior

Furthermore we have α ∼ N(0, S), where S = diag(s2
1, . . . , s

2
m).

Posterior

Since both prior and likelihood are normal, also p(α|X, Y, s) is normal. In particular,

we get

− log p(α|X, Y, s) =
1

2
(y −Kα)>σ−2(y −Kα) +

1

2
α>S−1α + const.

=
1

2
α>(K>σ−2K + S−1)︸ ︷︷ ︸

:=Σ−1

α− y>σ−2KΣ︸ ︷︷ ︸
:=µ>

Σ−1α + const.

In other words,
α ∼ N(µ,Σ) where Σ = (K>σ−2K + S−1)−1 and µ = σ−2ΣK>y
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Adjusting S

Effective Likelihood

By integrating out α we can contract the posterior into p(Y |X, s)p(s), where

p(Y |X, s) =

∫
p(Y |X,α)p(α|s)dα.

Since we have only normal distributions (y = Kα + ξ), this leads to

y ∼ N(0, (σ21 + KSK>))

MAP2 Approximation

Maximize p(Y |X, s)p(s) with respect to s, σ2:

maximize
s,σ2

(2π)
m
2 |σ21 + KSK|−

1
2 exp

(
−1

2
y>(σ21 + KSK)−1y

)
p(s)p(σ).

To find the optimal solution, we take derivatives with respect to s, σ2 and minimize.
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Adjusting S, Part II

Goal

We want to compute derivatives of

log det(σ21 + KSK) + y>(σ21 + KSK)−1y

with respect to σ2 and all s2
i and find fixed-point update equations.

Matrix Magic

• ∂tA−1 = A−1(∂tA)A−1

• d
dA log detA = A∗

• |A||C −B>A−1B| = |C||A−BC−1B>| (Schur complements)

• (A + BCB>)−1 = A−1 − A−1B(C + B>AB)−1B>A−1 (Sherman-Morrison-

Woodbury).

Update Equations

σ2 ← ‖y − Σµ‖2

m−
∑n

i=1 ξi
, s2

i ←
µ2
i

ξi
, ξi := 1− s−2

i Σii
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The Relevance of S

Recall

σ2 ← ‖y − Σµ‖2

m−
∑n

i=1 ξi
, s2

i ←
µi
ξi
, ξi := 1− s−1

i Σii

where Σ = (K>σ−2K + S−1)−1 and µ = σ−2ΣK>y.

Sparsity

It turns out that many si rapidly converge to 0. These coefficients can be removed,

which makes computing Σ less costly.

The sparsity comes from the effective prior (if we integrate out over the hyperprior).

Variance

The variables ξi essentially denote how much the liberty in αi is exploited, that is,

m−
∑n

i=1 ξi denotes the number of free parameters.

From classical statistics we know that the residual error can be estimated as a

multiple of the number of free parameters and the additive noise.

Alex Smola: Bayesian Kernel Methods, Lecture 8, http://mlg.anu.edu.au/∼smola/summer2002/unit8.pdf Page 5



General Case

Non-Gaussian Likelihood

Minimization of the negative log-posterior cannot be carried out explicitly any more

as in the case of Normal additive noise.

Laplace Approximation

A quadratic approximation at the minimum can be used to obtain approximate

confidence intervals (we approximate three times: MAP, MAP2, Laplace Approxi-

mation).

Practical Solution

Newton method or Fisher Scoring (compute the expectation of the Hessian) leads

to rapid convergence.

Classification

Completely analogous to GP Classification.
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Non-Gaussian Likelihood Revisited

Idea

We managed to avoid the MAP estimation in regression with normal noise by using

a Gaussian prior and a Gaussian additive noise model.

Can we use the RVM trick also for the likelihood?

Decomposing the Likelihood

Rewrite p(yi|f (xi)) as
∫
p(yi|f (xi), ti)p(ti)dti, where p(yi|f (xi), ti) is a Normal dis-

tribution with zero mean and Variance t2i .

Effective Likelihood

If we fix t (hyperprior for likelihood) and s (hyperprior for prior), we obtain

y ∼ N(0, (T + KSK>))

where T = diag(t21, . . . , t
2
m).
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Gaussianized Kernel Machine

Update Equations

After long and tedious algebra we obtain

Σ = (S−1 + K>T−1K)−1

µ = ΣK>T−1y

s2
i ←

µ2
i

ξi
where ξi = 1− s−2

i Σii

t2i =
(y − [Kµ]i)

2

1− t−2
i [KΣK>]ii

Consequence

Update equations are not much more expensive than in the Gaussian Regression

case (we have to update the [KΣK>]ii terms, though).

Exact integration over prior in exchange for the approximation when performing

MAP2 over hyperprior.
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