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Data-Dependent Priors

Problem

We are wasting information if we ignore the training patterns in specifying our prior.

Solution: Revisiting Bayes’ Rule

P (f |X, Y ) =
P (Y |f,X)P (f |X)

P (Y |X)

This means that we already have a data dependent prior. The problem with

data-independence only arose from the standard approximation p(f |X) = p(f ).

Note: the same connection applies to densities.

Consequence

We need to find suitable data-dependent priors which correspond to useful priors

over function spaces. If we know p(X), we obviously have

p(f ) =

∫
p(f |X)p(X)dX.
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Examples

Density Dependent Capacity

We can allow for a higher complexity function where we have a large amount of data.

Different Regimes

Data might come from N different sources, which can be distinguished solely based

on x1, . . . , xm. So, depending on which source, we will switch between priors

p1(f ), . . . , pN(f ).
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Recall: Coefficient Priors

Function Expansion

Assume that f can be expanded into a linear model of type

f (x) =

M∑
i=1

αifi(x)

where {fi(x)} is a suitable set of functions. This could, e.g., be a kernel, i.e., m = M

and fi = k(xi, x). Note: k is arbitrary, e.g., we do not require positivity.

Factorizing Priors

Analogously to a factorizing assumption on the observations we may also assume

p(f ) =

m∏
i=1

p(αi) where f =

m∑
i=1

αifi

Motivation

The basis functions fi correspond to independent “factors” causing the observations,

e.g., neurons firing independently but rarely, image elements occurring, etc.
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Examples

Brain Signals (gross oversimplification)

Neurons fire independently, and very rarely, however, we only observe the signal from

several neurons at the same time, possibly several observations with different linear

combinations thereof.

Cocktail Party Problem

Assume many speakers, talking (not necessarily to each other) independently. We

have many microphones, what is the signal we receive on each microphone? What

were the underlying signals?
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Example: Kernel Expansions

Expansion

f (x) =

m∑
i=1

αik(xi, x) and p(f ) =

m∏
i=1

p(αi)

Rationale

• Convenient way of specifying data-dependent prior

• Increases capacity automatically where much data occurs

• Easy to optimize

• Easy to explain (linear model)

• Nice theoretical properties

Examples

p(α) ∝ exp(−|α|p), p(α) = BesselK(0, |α|), p(α) = 1
si
α−s, . . .
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Convergence to Gaussian Processes

Theorem

• Denote by αi independent random variables (we do not require identical distribu-

tions on αi) with unit variance and zero mean.

• Assume that there exists a distribution p(x) on X according to which a sample

{x1, . . . , xm} is drawn.

• Assume that k(x, x′) is bounded on X× X.

Then the random variable y(x) given by

y(x) =
1

m

m∑
i=1

αik(xi, x)

converges for m→∞ to a Gaussian process with zero mean and covariance function

k̃(x, x′) =

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄.
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Proof

Normal Distribution of Linear Combinations

We need only check is that y(x) and any linear combination
∑

j y(xj) (for arbitrary

x′j ∈ X) converge to a normal distribution. By application of a theorem of Cramér,

this is sufficient to prove that y(x) is distributed according to a Gaussian Process.

Computing y(x)

The random variable y(x) is a sum ofm independent random variables with bounded

variance (since k(x, x′) is bounded on X × X). Therefore in the limit m → ∞, by

virtue of the Central Limit Theorem, we have

y(x) ∼ N(0, σ2(x)) for some σ2(x) ∈ R

Linear Combinations For arbitrary x′j ∈ X, linear combinations of y(x′j) also have

Gaussian distributions since
n∑
j=1

βiy(x′j) =
1√
m

m∑
i=1

αi

n∑
j=1

βik(xi, x
′
j).
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Proof, Part II

Central Limit Theorem on Linear Combination

We may apply the Central Limit Theorem to the sum since the inner sum
∑n

j=1 βik(xi, x
′
j)

is bounded for any xi. This also implies that
∑n

j=1 βjy(x′j) ∼ N(0, σ2) for m→∞
and some σ2 ∈ R, which proves that y(x) is distributed according to a GP.

Computing an equivalent Gaussian Process

Note that y(x) has zero mean. Thus the covariance function for finite m can be

found as expectation with respect to the random variables αi,

E[y(x)y(x′)] = E

 1

m

m∑
i,j=1

αiαjk(xi, x)k(xj, x
′)

 =
1

m

m∑
i=1

k(xi, x)k(xj, x
′),

since the αi are independent and have zero mean. This converges to the Riemann

integral over X with the density p(x) as m→∞. Thus

E[y(x)y(x′)] −→
m→∞

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄.
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Effective Kernels

Example: Linear Kernel

k(x, x′) = 〈x, x′〉 and coefficient-based prior. Here we have

k̃(x, x′) =

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄ = x>
(∫

x̄x̄>p(x̄)dx̄

)
x′ = x> (Cov[x])x′.

Example: Gaussian Kernel

For a kernel k(x, x′) = exp(−1
2‖x − x

′‖2) and p(x) = (2π)−
1
2 exp(−1

2x
2) we obtain

for k̃

k̃(x, x′) =
1√
5

exp

(
−3

5
(x− x′)2

)
exp

(
−2

5
〈x, x′〉

)
Note

The specific form of p(αi) is irrelevant for k̃, as long as the variance is bounded (of

course, this holds only in the limit).

Consequence

We can look for priors which allow for many zero coefficients αi.
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The RVM Idea

Posterior

For a kernel expansion, the posterior can be found as

p(α|X, Y ) ∝
m∏
i=1

p(yi|f (xi))p(αi) where f (x) =

m∑
i=1

αik(xi, x).

Problem

For rather arbitrary priors, this is a difficult optimization problem. We would rather

like to have a Gaussian prior . . .

Idea

Rewrite p(α) as

∫
p(α|s)p(s)ds, i.e., by means of a Hyperparame-

terwhere p(α|s) is Gaussian (and optimize via MAP2).

Result

p(α|X, Y ) =

∫
R
m

m∏
i=1

p(yi|f (xi))p(αi|si)ds1 . . . dsm
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Example: Gamma-Hyperprior

Gamma Distribution
p(s) = Γ(s|a, b) :=

sa−1ba exp(−sb)
Γ(a)

for si > 0.

For non-informative (flat in logspace) priors, one typically chooses a = b = 10−4.

Effective Prior

For the normal prior p(α|s) = 1√
2πs2

exp
(
− 1

2s2α
2
)

we have

p(α) =

∫
1√

2πs2
exp

(
− 1

2s2
α2

)
sa−1
i ba exp(−sib)

Γ(a)
ds = exp

(
− (a + 1/2) ln

(
b +

α2

2

))
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Example: Normal-Hyperprior

Normal Distribution
p(s) =

1√
2πω2

exp

(
− 1

2ω2
s2

)

Effective Prior

For the normal prior p(α|s) = 1√
2πs2

exp
(
− 1

2s2α
2
)

we have

p(α) =

∫
1√

2πs2
exp

(
− 1

2s2
α2

)
1√

2πω2
exp

(
− 1

2ω2
s2

)
ds ∝ BesselK(0, |ω|).

Alex Smola: Bayesian Kernel Methods, Lecture 7, http://mlg.anu.edu.au/∼smola/summer2002/unit7.pdf Page 14



General Hyperpriors

Problem

How can we find a suitable hyperprior p(s) for a given p(α) such that

p(α) =

∫
p(α|s)p(s)ds =

∫
1√

2πs2
exp

(
1

2s2
α2

)
p(s)ds

Solution (after Girosi, 1991)

Parameter transformation β = 1
2ω2 leads to

p(α) =

∫
exp (−βα)

[
1√
8πβ

p

(
1√
2β

)]
dβ

That is, p(α) is the Laplace Transform of
[

1√
8πβ
p
(

1√
2β

)]
.

Strategy

Given p(α) we only need to find its inverse Laplace Transform L−1p to obtain p(s).
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More Examples

Polynomial Priors

For p(α) = exp(−|α|−a) for a > 1 we have[
L−1p

]
(s) =

sa−1

Γ(a)
hence p(s) =

√
2π

21−a

Γ(a)
ω−2a

Consequence

•We can deal quite conveniently with priors which do not lead to a lower-bounded

optimization problem.

• Large a leads to priors highly peaked at 0 (hence a very sparse code).

• For a > 1.5 the variance of s is bounded, hence we get a limiting Gaussian

Process.

• For more examples see Bronstein & Semendjajev, Abramovitz & Stegun, etc.
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Practical Problem: Inference

MAP2 Approximation

Instead of computing the integral over m hyperparameters, we approximate by max-

imizing

p(Y |X, Y, s) ∝

∫
α

m∏
i=1

p(yi|f (xi))︸ ︷︷ ︸
Likelihood

p(αi|si)︸ ︷︷ ︸
Prior

dα

 p(si)︸︷︷︸
Hyperprior

Fixed Point Iteration

For given s, find new s′ that approximately minimizes the first derivative of p(s|X, Y ).

Repeat until a (local) minimum has been obtained.

Confidence

For fixed s we use the normal distribution in Y as a measure for the confidence.
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