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Bayesian Kernel Methods

Unit 1: Bayes Rule, Approximate Inference, Hyperparameters

Unit 2: Gaussian Processes, Covariance Function, Kernel

Unit 3: GP: Regression

Unit 4: GP: Classification

Unit 5: Implementation: Laplace Approximation, Low Rank Methods
Unit 6: Implementation: Low Rank Methods, Bayes Committee Machine
Unit 7: Relevance Vector Machine: Priors on Coefficients

Unit 8: Relevance Vector Machine: Efficient Optimization and Extensions

http://mlg.anu.edu.au/~smola/summer2002/
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Overview of Unit 6: Bayes Committee Machine

01: Splitting the Data
02: Bayes Committee Machine

03: Joining the Posterior

04: Proof
05: Sherman-Morrison-Woodbury

06: Predicting for Small Test Set
07: Generalized BCM
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Splitting the Data

Idea
[f we have too much data to minimize the log-posterior directly, we could simply use
the following strategy:
e split into chunks
e optimize over each of the chunks independently

e average over the results
Problems

e how to average
e how to improve confidence ratings
e what is the form of the optimization problem on the chunks

e connection to the exact solution
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Bayes Committee Machine (Tresp)

Basic Idea
Split data D into N chunks Dy, ..., Dy. By Bayes’ rule we have

p(f|Ds, Dia) o< p(Dyl f, Dia)p(f|Dia)

Approximation To be able to expand p(f|D1,..., Dy) into terms of p(f|D;) we

approximate
p(Dilf, Di-1) =~ p(D|f)

This would be true for function generating the data (given the underlying hypothesis,
the individual data blocks are independent), in our case it is just an approximation.

Result

I pDilhels) L p(1D)
PP & (Hp > D= P

Now we may approximate each of the p(f|D;) and combine the results.
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Joining the Posterior

Laplace Approximation

We approximate each p(f|D;)p(f) by a normal distribution.

Combining Normal Distributions
Taking products of normal distributions with means pu; and covariances X; leads to

an overall normal distribution with

N N
»l= ZZ;l and @ = ZZZ;l,uZ-
i=1 =1

For quotients (of densities) the signs are reversed.

Combined Posterior

Given the GP prior p(f) with covariance matrix ¥ we obtain

N N
STl =(1-N)SE 4+ ) Stand p=%) Sy,
1=1 1=1
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GP Regression

Estimate on Subset

For regression with normal additive noise we have
[; = Kmn<Knn 4+ 0_21>—1y and ¥ = Kmm Kmn<Knn + 021>—1 (Kmn>T
where we labelled all the predictive part with m and the given part with n.

Combining Individual Predictions

N
Covar 71 = (1 - N)K™ + Z (Kmm — K"(K™ + 0%1)! (szn)T)

N 1=1
po= %) Sl
1=1
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Online-BCM

Idea

If we observe a new instance (&, 11, Ym+1), We can make the approximation

p(f)
and simply update mean and covariance according to the combination strategy.
D N COPRID ey
Y7 = ST+ (57 = 25w

PUFIX.Y, (Zni1, i) = P(FIX,Y)E

Advantage
We only need to store mean and covariance for updates. No need to remember
the training data (for GP regression exact, since mean and variance are sufficient
statistics of a Normal distribution).
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Idea

For the posterior on the individual chunks X;, Y; we have

m;

—log p(f|Y;, Xi) = Y —logp(yilas, f(x:)) — logp(f) + ¢
1=1

lro
= D —logp(yilzi, flx:) + £ S5 +c
1=1

The Laplace approximation at the mode of p(f|Y;, X;) yields

/

where ¢ := 0, — log(y;|xi, i)
» = Bt + diag(c”) where ¢ .= 8, — log(yi|z;, p;)

M:ZGC

So, the curvature of the likelihood at the mean determines the confidence of the

estimates.
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Why Does It Work?

Idea
In general we want to minimize the negative log-posterior. This can be written as
- _
—logp(fIX,Y) = |) — 1ogp(ilX¢, Yi)| - 1o§p(f)+ c
=1 =0i(/) 1 =00/

=1 90(f)+9i(f)

Reformulation

Given go, g1,.-.,9ny : R" — R we want to minimize g(«) ) + Zgz

Instead, we minimize each ¢g; := gy + g; separately, compute a quadratlc
N

approximation ¢; of ¢; at its minimum, and minimize ¢ := Z g — (N — 1)go.
i=1
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Why Does It Work (part II)?

General Observation
If all g; are quadratic functions, the procedure is exact. Otherwise, it is a good first

approximation.

GP Regression with Normal Noise
For GP regression with Normal noise the posterior is a quadratic function. For
each of the partial negative log-posteriors the approximation is exact, hence the

overall estimate is exact.

Prediction
For prediction on a small test test, we can use the predictive means and variances
on the subsets. Again, for GP regression and normal additive noise the estimate is

exact.

Note: This also holds if we would have to invert a large covariance matrix for

full prediction instead, since we only predict on a low dimensional subspace.
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Iterative Extension

A Simple Idea
Use the quadratic approximations ¢; to improve the estimates at the next iteration:

e Find initial approximations ¢; by minimizing g; + go.
e Repeat
minimize g; + Z?f:u# q;
compute new quadratic approximation ¢; at minimum
e Until converged
When to use
o [f we have a simple minimization algorithm which cannot deal with g = ). f;
simultaneously (too much data).
e [f we have a ready-made optimizer for the subproblems.

e Otherwise, Newton method should be better (after all, we need an algorithm to

minimize each of the auxiliary functions).
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Beyond Bayes: Combining Predictors

Problem
Assume, we are given N predictors f; (with 1 < ¢ < N) which we would like to

combine such that

1. the combined predictor is unbiased

2. the variance of the prediction is minimized.
More specifically, the following conditions hold:

1. The predictors f; are unbiased.

2. We have the liberty of finding different linear combinations for each test point.

3. We know the covariance matrices €2;; = Cov(f;, f;) between all predictors.

Ansatz
e Prediction via f = A[f1, ..., fv]
e To ensure unbiasedness we require that AI = 1, where I = [1,...,1].
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Combining Predictors, Part 11

Recall

o f=Alf1,..., fn]
e Al =1, where I =[1,...,1].

Variance
E[f7f] =B |(Alfi, . X)) (Alfis oo )] =t A0AT
Constrained Optimization Problem
minimize %tr AQAT
subject to Al =1

Lagrange Function
1
L(A,A) = Str AQA" 4 tr A(AT — 1)

We obtain that A = —A'T"Q7! is the saddlepoint value.
After some more algebra, this leads to A = (I'Q ')~ 11" Q1
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Combining Predictors, Part 111

Special Case
Predictors are independent (e.g., they were obtained on independent blocks of the

data). In this case

(1 0 ... 0

0 Q9 ... 0
Q: . .22 .

0 0 ... Qx|

and hence

N
A=3[0,.. Qy] where &7 =) Qi t,
1=1

Prediction and Variance
This leads to f =X 51", Q' fi and Cov [f] = (ITQ7 )= X
In other words, the averaging method is identical, except that we ignored the prior
(to be expected for a ML fit).
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