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Overview of Unit 6: Bayes Committee Machine
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03: Joining the Posterior
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06: Predicting for Small Test Set
07: Generalized BCM
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Splitting the Data

Idea

If we have too much data to minimize the log-posterior directly, we could simply use

the following strategy:

• split into chunks

• optimize over each of the chunks independently

• average over the results

Problems

• how to average

• how to improve confidence ratings

• what is the form of the optimization problem on the chunks

• connection to the exact solution
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Bayes Committee Machine (Tresp)

Basic Idea

Split data D into N chunks D1, . . . , DN . By Bayes’ rule we have

p(f |Di, Di−1) ∝ p(Di|f,Di−1)p(f |Di−1)

Approximation To be able to expand p(f |D1, . . . , DN) into terms of p(f |Di) we

approximate

p(Di|f,Di−1) ≈ p(D|f )

This would be true for function generating the data (given the underlying hypothesis,

the individual data blocks are independent), in our case it is just an approximation.

Result

p(f |Di) ∝

(
N∏
i=1

p(Di|f )

)
p(f ) =

∏N
i=1 p(Di|f )p(f )

pN−1(f )
∝
∏N

i=1 p(f |Di)

pN−1(f )

Now we may approximate each of the p(f |Di) and combine the results.
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Joining the Posterior

Laplace Approximation

We approximate each p(f |Di)p(f ) by a normal distribution.

Combining Normal Distributions

Taking products of normal distributions with means µi and covariances Σi leads to

an overall normal distribution with

Σ−1 =

N∑
i=1

Σ−1
i and µ = Σ

N∑
i=1

Σ−1
i µi

For quotients (of densities) the signs are reversed.

Combined Posterior

Given the GP prior p(f ) with covariance matrix ΣG we obtain

Σ−1 = (1−N)Σ−1
G +

N∑
i=1

Σ−1
i and µ = Σ

N∑
i=1

Σ−1
i µi
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GP Regression

Estimate on Subset

For regression with normal additive noise we have

µi = Kmn(Knn + σ21)−1y and Σi = Kmm −Kmn(Knn + σ21)−1 (Kmn)>

where we labelled all the predictive part with m and the given part with n.

Combining Individual Predictions

Covar Σ−1 = (1−N)Kmm +

N∑
i=1

(
Kmm −Kmn

i (Knn
i + σ21)−1 (Kmn

i )>
)

µ = Σ

N∑
i=1

Σ−1
i µi
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Online-BCM

Idea

If we observe a new instance (xm+1, ym+1), we can make the approximation

p(f |X, Y, (xm+1, ym+1)) ≈ p(f |X, Y )
p(f |yi, xi)
p(f )

and simply update mean and covariance according to the combination strategy.

Σ−1 ← Σ−1 + (Σ−1
i − Σ−1

G )

Σ−1µ ← Σ−1µ + (Σ−1
i − Σ−1

G )µi

Advantage

We only need to store mean and covariance for updates. No need to remember

the training data (for GP regression exact, since mean and variance are sufficient

statistics of a Normal distribution).
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General Case

Idea

For the posterior on the individual chunks Xi, Yi we have

− log p(f |Yi, Xi) =

mi∑
i=1

− log p(yi|xi, f(xi))− log p(f ) + c

=

mi∑
i=1

− log p(yi|xi, f(xi)) +
1

2
f>Σ−1

G f + c

The Laplace approximation at the mode of p(f |Yi, Xi) yields

µ = ΣGc′ where c′i := ∂µi − log(yi|xi, µi)
Σ−1 = Σ−1

G + diag(c′′) where c′′i := ∂2
µi
− log(yi|xi, µi)

So, the curvature of the likelihood at the mean determines the confidence of the

estimates.
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Why Does It Work?

Idea

In general we want to minimize the negative log-posterior. This can be written as

− log p(f |X, Y ) =

 N∑
i=1

− log p(f |Xi, Yi)︸ ︷︷ ︸
:=gi(f)

− log p(f )︸ ︷︷ ︸
:=g0(f)

+ c

=

N∑
i=1

− log p(f |Xi, Yi)− log p(f )︸ ︷︷ ︸
g0(f)+gi(f)

 + (N − 1) log p(f )︸ ︷︷ ︸
−(N−1)g0(f)

+ c

Reformulation

Given g0, g1, . . . , gN : Rn → R we want to minimize g(α) := g0(α) +

N∑
i=1

gi(α).

Instead, we minimize each g̃i := g0 + gi separately, compute a quadratic

approximation qi of g̃i at its minimum, and minimize q :=

N∑
i=1

qi − (N − 1)g0.
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Why Does It Work (part II)?

General Observation

If all gi are quadratic functions, the procedure is exact. Otherwise, it is a good first

approximation.

GP Regression with Normal Noise

For GP regression with Normal noise the posterior is a quadratic function. For

each of the partial negative log-posteriors the approximation is exact, hence the

overall estimate is exact.

Prediction

For prediction on a small test test, we can use the predictive means and variances

on the subsets. Again, for GP regression and normal additive noise the estimate is

exact.

Note: This also holds if we would have to invert a large covariance matrix for

full prediction instead, since we only predict on a low dimensional subspace.
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Iterative Extension

A Simple Idea

Use the quadratic approximations qi to improve the estimates at the next iteration:

• Find initial approximations qi by minimizing gi + g0.

• Repeat

minimize gi +
∑N

j=1,j 6=i qj

compute new quadratic approximation qi at minimum

• Until converged

When to use

• If we have a simple minimization algorithm which cannot deal with g =
∑

i fi
simultaneously (too much data).

• If we have a ready-made optimizer for the subproblems.

• Otherwise, Newton method should be better (after all, we need an algorithm to

minimize each of the auxiliary functions).
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Beyond Bayes: Combining Predictors

Problem

Assume, we are given N predictors fi (with 1 ≤ i ≤ N) which we would like to

combine such that

1. the combined predictor is unbiased

2. the variance of the prediction is minimized.

More specifically, the following conditions hold:

1. The predictors fi are unbiased.

2. We have the liberty of finding different linear combinations for each test point.

3. We know the covariance matrices Ωij = Cov(fi, fj) between all predictors.

Ansatz

• Prediction via f = A[f1, . . . , fN ]

• To ensure unbiasedness we require that AI = 1, where I = [1, . . . ,1].
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Combining Predictors, Part II

Recall

• f = A[f1, . . . , fN ]

• AI = 1, where I = [1, . . . ,1].

Variance

E
[
f>f

]
= E

[
(A[f1, . . . , fN ])> (A[f1, . . . , fN ])

]
= tr AΩA>

Constrained Optimization Problem

minimize 1
2tr AΩA>

subject to AI = 1

Lagrange Function

L(A,Λ) =
1

2
tr AΩA> + tr Λ(AI − 1)

We obtain that A = −Λ>I>Ω−1 is the saddlepoint value.

After some more algebra, this leads to A = (I>Ω−1I)−1I>Ω−1.
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Combining Predictors, Part III

Special Case

Predictors are independent (e.g., they were obtained on independent blocks of the

data). In this case

Ω =


Ω11 0 . . . 0

0 Ω22 . . . 0
... ... . . . ...

0 0 . . . ΩNN


and hence

A = Σ
[
Ω−1

11 , . . . ,Ω
−1
NN

]
where Σ−1 =

N∑
i=1

Ω−1
ii .

Prediction and Variance

This leads to f = Σ
∑m

i=1 Ω−1
ii fi and Cov [f ] = (I>Ω−1I)−1 = Σ.

In other words, the averaging method is identical, except that we ignored the prior

(to be expected for a ML fit).
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