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A Simple Implementation

Idea

Minimize the negative log-likelihood with the Newton method.

Basic Algorithm

To minimize a function L(f ) which is twice differentiable in f approximate

L(f + ∆f ) ≈ L(f ) + ∆fL′(f ) +
1

2
∆f>L′′(f )∆f

Hence we may approximately compute the minimum via

f ← f − (L′′(f ))−1L′(f )

Practical Consequence

From L(f ) =
∑m

i=1− log p(yi|[Kα]i, xi)+ 1
2α
>Kα (with the usual parameterization

f = Kα) we obtain

α← α− (K + K>C ′′K)−1Kc′

where c′i = ∂1
[Kα]i
− log p(yi|[Kα]i, xi) and C ′′ii = ∂2

[Kα]i
− log p(yi|[Kα]i, xi).
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Spectrum of Covariance Matrix
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Practical Consequences

Ill conditioned matrix

Inverting K or products thereof is numerically unstable procedure.

Observation

Removing the smallest eigenvalues/eigenvectors, we obtain almost the same solution.

Computational Speed

Smaller matrices mean that we can solve each Newton step more efficiently (in a

nutshell, from O(m3) cost we go to O(mn2))

Prediction

If we could compute the functions corresponding to the eigensystem of K directly,

this would speed prediction up from O(m) to O(n).

Plan (for today)

Replace the PCA with something more efficient, where we only need to compute n

covariance functions k(xi, ·).
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Recall: Gaussian Process Regression

Goal

Find distribution of y at location x (i.e. mean and variance of the normal distri-

bution) by integrating out the normal distribution in the rest.

Solution: Denote by k = (k(x1, x), . . . , k(xm, x)). Then we have

E[y] = k>(K + σ21)−1y and Var[y] = k(x, x) + σ2 − k>(K + σ21)−1k

Modified Solution

If we have to predict at several points it pays to compute α∗ := (K + σ21)−1y and

predict the mean of y by k>α.

Idea: Find α and k>(K + σ21)−1k by minimizing quadratic forms:

α∗ = argmin
α

[
−y>Kα +

1

2
α>(K>K + σ2K)α

]
k>(K + σ21)−1k = 2 ·min

α

[
−k>α +

1

2
α>(K + σ21)α

]
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Approximating Quadratic Forms

Theorem

Denote by K ∈ Rm×m a positive semidefinite matrix, y, α ∈ Rm and define the two

quadratic forms

Q(α) := −y>Kα +
1

2
α>(σ2K + K>K)α,

Q∗(α) := −y>α +
1

2
α>(σ21 + K)α.

Suppose Q and Q∗ have minima Qmin and Q∗min. Then for all α, α∗ ∈ Rm

Q(α) ≥ Qmin ≥ −
1

2
‖y‖2 − σ2Q∗(α∗),

Q∗(α∗) ≥ Q∗min ≥ σ−2

(
−1

2
‖y‖2 −Q(α)

)
,

with equalities throughout when Q(α) = Qmin and Q∗(α∗) = Q∗min.
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Proof

Minimum of Q(α)

The minimum of Q(α) is obtained for αopt = (K + σ21)−1y (which also minimizes

Q∗), hence

Qmin = −1

2
y>K(K + σ21)−1y and Q∗min = −1

2
y>(K + σ21)−1y.

Combining Q and Q∗

This allows us to combine the minima to

Qmin + σ2Q∗min = −1

2
‖y‖2.

Minimum Property of Q,Q∗

Since by definition Q(α) ≥ Qmin for all α (and likewise Q∗(α∗) ≥ Q∗min for all α∗),

we may solve Qmin + σ2Q∗min for either Q or Q∗ to obtain lower bounds for each of

the two quantities.
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Decomposition and Update

Recall: Objective Functions

Q(α) := −y>Kα +
1

2
α>(σ2K + K>K)α,

Q∗(α) := −y>α +
1

2
α>(σ21 + K)α.

Ansatz

Use P ∈ Rm×n (as an extension matrix) to approximate α by Pβ. In particular,

P contains only one nonzero entry per column.

Optimal solution in β

βopt =
(
P>
(
σ2K + K>K

)
P
)−1

P>K>y

β∗opt =
(
P>
(
σ21 + K

)
P
)−1

P>k
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Decomposition and Update

Idea

We can obtain the inverse matrices by a rank 1 update at O(mn) cost if we know

the inverse for Pold where P = [Pold, ej]).

P>K>y = [Pold, ei]
>K>y = (P>oldK

>y,k>i y)

P>
(
K>K + σ2K

)
P =

[
P>old

(
K>K + σ2K

)
Pold P>old

(
K> + σ21

)
ki

k>i (K + σ21)Pold k>i ki + σ2Kii

]
Strategy

Try out several new randomly chosen basis functions at each iteration and pick the

one which minimizes the objective function most.

Performance Guarantee

With high probability we will find one of the best basis functions (e.g., with a subset

of 59 we’ll get a 95% guarantee).
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Why do random subsets work?

Theorem

Given a random variable ξ with cumulative distribution function F (ξ), then for n

instances ξ1, . . . ξm of ξ and ξi ∼ ∂ξF (ξ)

ζ := max{ξ1, . . . , ξn} we have F (ζ) = F n(ξ).

Corollary

The cumulative distribution of percentiles χ (i.e. fraction of samples larger than χ)

for ζ is bounded from below by F (χ) = χn.

Practical Consequence

We only need at most
⌈

log δ
log(1−η)

⌉
samples in order to obtain a sample among the best

δ with 1− η confidence.

In particular 59 samples suffice to obtain with 95% probability a sample that is

better than 95% of the rest.
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Comparison with Other Methods

Exact Conjugate Sparse Sparse Greedy

Solution Gradient Decomposition Approximation

Memory O(m2) O(m2) O(nm) O(nm)

Initialization O(m3) O(nm2) O(n2m) O(κn2m)

Prediction:

Mean O(m) O(m) O(n) O(n)

Error Bars O(m2) O(nm2) O(n2m) or O(n2) O(κn2m) or O(n2)

Optimal Rate

The sparse decomposition rates would be optimal but can only be obtained after an

NP hard search for the best basis.

Note that n � m and that the n used in CG, SD, and SGA methods will differ,

with nCG ≤ nSD ≤ nSGA since the search spaces are more restricted.
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Speed of Convergence

Size of the gap between

upper and lower bound

of the log posterior, i.e.

Q(α) for the first 4000

samples from the

Abalone dataset. From

top to bottom: subsets

of size 1, 2, 5, 10, 20,

50, 100, 200.
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Basis Functions and Performance

Generalization Performance of Greedy Gaussian Processes

Generalization Error Log Posterior

Optimal Solution 1.782± 0.33 −1.571 · 105(1± 0.005)

Sparse Greedy Approximation 1.785± 0.32 −1.572 · 105(1± 0.005)

Kernels needed to minimize the log posterior, depending on the width of the Gaussian

kernel ω. Also, number of basis functions required to approximate k>(K + σ21)−1k

which is needed to compute the error bars.

Kernel width 2ω2 1 2 5 10 20 50

Kernels for log-posterior 373 287 255 257 251 270

Kernels for error bars 79±61 49±43 26±27 17±16 12±9 8±5
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Projections on Subspace

Basic Idea

Even for arbitrary posteriors, using only a subset of coefficients, i.e., Pβ instead of

α, will allow us to find rather good approximations. We then minimize

− log L(Pβ,X, Y ) =

m∑
i=1

− log p(yi|xi, [KPβ]i) +
1

2
β>P>KPβ

Now we can minimize a smaller optimization problem which costs O(mn2) (details

on this later).

Parameter Transformation

We now switch to a parameter space in which the GP prior will become diagonal.

Without loss of generality assume that P picks the first n coefficients: P =

[
1

0

]
.

Note: in numerical mathematics this process arises from Gauss elimination of the

the rows of the covariance matrix .
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Projections on Subspace, Part II

Gauss Elimination

Transform K =

[
Knn Kmn

(Kmn)> Kmm

]
into K̃ =

[
1 0

0 Kmm − (Kmn)>(Knn)−1Kmn

]

by

[
(Knn)−

1
2 −(Knn)−1Kmn

0 1

]
.

The term K̃ := Kmm − (Kmn)>(Knn)−1Kmn is often referred to as the Schur

complement.

Terms of the Optimization Problem

Reparameterizing by α =

[
(Knn)−

1
2 −(Knn)−1Kmn

1

][
βn
βm

]
yields

α>Kα→ ‖βn‖2 + β>mK̃βm and Kα→

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
βn +

[
0

K̃

]
βm
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Projections on Subspace, Part III

Gradients of Log-Posterior

∂βn − log L =

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
c′ + βn

∂βm − log L =

[
0

K̃

]
c′ + K̃βm

Hessian

∂2
βn
− log L =

[
(Knn)

1
2

Kmn(Knn)−
1
2

]>
c′′

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
+ 1

∂2
βm
− log L =

[
0

K̃

]>
c′′

[
0

K̃

]
+ K̃

where ci = − log p(yi|xi, f(xi) and the derivatives are taken wrt. f (xi).
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Newton Method

Recall

We have updates f ← f − (L′′(f ))−1L′(f ).

Updates in βn
To optimize over the subspace spanned by the first n covariance functions, we only

need to compute

βn ← βn − (Zc′′Z>)−1(Zc′ + βn) where Z :=

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
.

Computational Cost

Storage requirement is O(mn) for Z and O(n2) for Knn. CPU cost per inversion is

O(mn2) to compute (Zc′′Z>), plus O(n3) for the inversion. That is, if the space is

spanned by a small number of basis functions, the estimation process is linear in

the number of observations.
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A Gradient Lemma

Problem

We need to know when to stop the optimization. For this purpose we use a bound

in terms of the gradient of the log likelihood.

Lemma

Denote by P(β) a differentiable convex functions with P(β) = L(β) + 1
2β
>Mβ.

Then we have

minβP(β) ≥ P(β̃)− 1

2

[
∂βP(β̃)

]>
M−1

[
∂βP(β̃)

]
.

Proof Idea

A linear approximation of L(β) at L(β̃) is a lower bound on L(β). This allows us

to compute lower bound the minimum of P(β).
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Selection Rule

Application of the Bound

If the gradients and the Hessian in β factorize as in the previous case, we obtain

∆ [− log p(β|X, Y )] ≤ 1

2
‖Zc′ + βn‖2 +

1

2
(c′m + βm)>K̃(c′m + βm).

Here c′m is the part of c′ corresponding to βm.

Problem

Which basis function to add to βn (after the gradient on βn vanishes)?

Approximate Solution

Since βm = 0 we can rewrite the βm term as 1
2(c′m)>K̃c′m. Computing this is ex-

pensive, the diagonal terms, however, are cheap. We bound√
(c′m)>K̃c′m ≤

m∑
i=n+1

√
K̃ii|c′i|

Hence, pivoting for i with large K̃ii(c
′
i)

2 is a good idea.
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