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A Simple Implementation

Idea
Minimize the negative log-likelihood with the Newton method.

Basic Algorithm
To minimize a function L(f) which is twice differentiable in f approximate

L(F +AF) % L(f) + AFL(F) + AFTR(F)AS

Hence we may approximately compute the minimum via
fe=f—= (L") L)

Practical Consequence
From L(f) = > 1t — log p(y;|[Kal;, z;)+2a” Ka (with the usual parameterization
f = Ka) we obtain
a—a— (K+K' OC"K)'K(¢
where ¢, = 81 ral, — 108 p(yi|[Kali, ;) and Cf = (9[2[(a]i — log p(y;|| K al;i, ;).
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Spectrum of Covariance Matrix
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Practical Consequences

11l conditioned matrix

Inverting K or products thereof is numerically unstable procedure.

Observation

Removing the smallest eigenvalues/eigenvectors, we obtain almost the same solution.

Computational Speed
Smaller matrices mean that we can solve each Newton step more efficiently (in a
nutshell, from O(m?) cost we go to O(mn?))

Prediction
[f we could compute the functions corresponding to the eigensystem of K directly;,

this would speed prediction up from O(m) to O(n).

Plan (for today)
Replace the PCA with something more efficient, where we only need to compute n

covariance functions k(z;, -).
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Recall: (GGaussian Process Regression

Goal

Find distribution of y at location x (i.e. mean and variance of the normal distri-

bution) by integrating out the normal distribution in the rest.
Solution: Denote by k = (k(z1,x), ..., k(zmy,x)). Then we have
Ely] =k'(K +0°1)"'y| and |Varly] = k(z,z) + 0> — k' (K + 0%1) 'k

Modified Solution
If we have to predict at several points it pays to compute a* := (K + 0*1)"ly and
predict the mean of y by k'a.

Idea: Find o and k' (K + 0°1)"'k by minimizing quadratic forms:

1
a* = argmin [—yTKoz + éaT(KTK + UQK)oz]

«

1
k' (K +0°1)'k = 2-min [—kTOz + éozT(K + 021)()4]

87
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Approximating Quadratic Forms

Theorem
Denote by K € R"™*™ a positive semidefinite matrix, y, a € R and define the two
quadratic forms

1
Qo) = —y' Ka+ §ozT(02K + K'K)a
1
Q*a) = —y'a+ éaT(JQI + K)a

Suppose () and Q* have minima (), and QF . . Then for all o, ™ € R™

min*

Q)2 Quin = ]Iyl - Q' (a").
Q) = Q> (—%Hyl\Q—Q@),

with equalities throughout when Q(a) = Qi and Q*(a*) =

min"
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Proof

Minimum of Q(«a)
The minimum of Q(«) is obtained for agp = (K + 0*1) "'y (which also minimizes
Q"), hence
1 1
Qrmin = —§yTK(K +0°1) 'y and QF ;= —in(K +0°1) 7 ly.
Combining () and Q"

This allows us to combine the minima to

1
len + 0 Qmm — _§HY||2

Minimum Property of (), Q*
Since by definition Q(a) > Qmin for all a (and likewise Q*(a*) > Q7. for all a*),

we may solve Quin + 0 for either () or (* to obtain lower bounds for each of

min

the two quantities.
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Decomposition and Update

Recall: Objective Functions

1
Qo) = —y' Ko+ 50;(02[( + K'K)a,
1
Qa) = —y'a+ éozT(azl + K)a.

Ansatz
Use P € R™" (as an extension matrix) to approximate o by P(. In particular,

P contains only one nonzero entry per column.

Optimal solution in (3
Bopt — (PT <02K+KTK) P)_l PTKTy
g, = (PT(c*1+K)P) Pk

opt
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Decomposition and Update

Idea
We can obtain the inverse matrices by a rank 1 update at O(mn) cost if we know

the inverse for Pyq where P = P4, €j]).

PTKTy = [Poldaei]TKTy = (PTdKT%szW

Pl (K"K +0°K) Poa Py (K" +0%1) k;

P'(K'K+0°K) P =
kj(K + (721>P01d kZTké + (TQKZ'Z'

Strategy
Try out several new randomly chosen basis functions at each iteration and pick the

one which minimizes the objective function most.

Performance Guarantee
With high probability we will find one of the best basis functions (e.g., with a subset
of 59 we'll get a 95% guarantee).
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Why do random subsets work?

Theorem

Given a random variable & with cumulative distribution function F(§), then for n
instances &1, ...&y, of € and & ~ O¢F ()

¢ :=max{&,..., &} we have F(¢) = F"(§).

Corollary

The cumulative distribution of percentiles y (i.e. fraction of samples larger than y)
for ¢ is bounded from below by F(x) = x".

Practical Consequence
We only need at most [%W samples in order to obtain a sample among the best
0 with 1 — n confidence.

In particular 59 samples suffice to obtain with 95% probability a sample that is
better than 95% of the rest.
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Exact | Conjugate | Sparse Sparse Greedy
Solution | Gradient | Decomposition Approximation
Memory O(m?) |O(m?) O(nm) O(nm)
Initialization | O(m?) | O(nm?*) | O(n*m) O(kn*m)
Prediction:
Mean O(m) |O(m) O(n) O(n)
Error Bars | O(m?) | O(nm?) |O(n*m) or O(n?) | O(kn*m) or O(n?)

Optimal Rate

The sparse decomposition rates would be optimal but can only be obtained after an
NP hard search for the best basis.

Note that n < m and that the n used in CG, SD, and SGA methods will differ,

with nce < ngp < ngea since the search spaces are more restricted.
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Speed of Convergence
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Size of the gap between
upper and lower bound
of the log posterior, i.e.
Q(«a) for the first 4000
samples from the
Abalone dataset. From
top to bottom: subsets
of size 1, 2, 5, 10, 20,
50, 100, 200.
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Basis Functions and Performance

Generalization Performance of Greedy Gaussian Processes

Generalization Error | Log Posterior
Optimal Solution 1.782 4+ 0.33 —1.571 - 10°(1 £ 0.005)
Sparse Greedy Approximation | 1.785 £ 0.32 —1.572 - 10°(1 £ 0.005)

Kernels needed to minimize the log posterior, depending on the width of the Gaussian
kernel w. Also, number of basis functions required to approximate k' (K + 0*1) 'k

which is needed to compute the error bars.

Kernel width 2w? 1 2 5 10 20 50
Kernels for log-posterior | 373 287 255 257 251 270
Kernels for error bars 79+61 149443 | 264+27 | 1716 | 12+9 | 8+5
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Projections on Subspace

Basic Idea
Even for arbitrary posteriors, using only a subset of coefficients, i.e., P/ instead of
o, will allow us to find rather good approximations. We then minimize

m

log&(P3, X, Y) = 3" ~loapluiles, K PB)) + 557 PTK P
1=1

Now we can minimize a smaller optimization problem which costs O(mn?) (details

on this later).

Parameter Transformation

We now switch to a parameter space in which the GP prior will become diagonal.

g

Note: in numerical mathematics this process arises from Gauss elimination of the

Without loss of generality assume that P picks the first n coeflicients: P =

the rows of the covariance matrix .
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Projections on Subspace, Part 11

Gauss Elimination

K Jmn N 0
Transform K = - into K = T L
nn\—3 . nn\—1 frmn
by | ()78 (KK |
0 1

The term K = K™ — (K™)T(K"™)~ LK™ is often referred to as the Schur

complement.

Terms of the Optimization Problem

nn\—s nn\—1 rrmn
Reparameterizing by a = [(K )2 (K i K ] [g ] yields
1
N K™)2 0
a' Ko — ”571”2 + ﬁ;Kﬁm and Ko — [KmN([((nn)>z Ou K b
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Projections on Subspace, Part 111

Gradients of Log-Posterior

1
(K™)2 1
Og, — log L = c + 0,
05 —logl = 0 '+ K@
Bm g T [N( m
Hessian
] (!
05 —logL = | Sl +1
n Kmn(}(nn)—g Kmn(Knn) )
_ 0 T O:
05 —logl = | | | |+K
3, — 108 K] C [K +
where ¢; = —log p(y;|x;, f(x;) and the derivatives are taken wrt. f(x;).
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Newton Method

Recall
We have updates f «— f — (L"(f))'L'(f).

Updates in 3,

To optimize over the subspace spanned by the first n covariance functions, we only

] |

Storage requirement is O(mn) for Z and O(n?) for K™. CPU cost per inversion is

need to compute

(K™)
Kmn(Knn)—

NI— DN—

By — By — (2" 2" Y2 + 3,) where Z =

Computational Cost

O(mn?) to compute (Zc"Z"), plus O(n?) for the inversion. That is, if the space is
spanned by a small number of basis functions, the estimation process is linear in
the number of observations.
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A Gradient Lemma

Problem
We need to know when to stop the optimization. For this purpose we use a bound
in terms of the gradient of the log likelihood.

Lemma
Denote by P(3) a differentiable convex functions with P(8) = L(8) + 38" Mp.
Then we have

mingP(3) > P(5) — - [0:2(3)] M~ [0,2(5)]

Proof Idea
A linear approximation of £(3) at £(f) is a lower bound on £(/3). This allows us
to compute lower bound the minimum of P(3).
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Selection Rule

Application of the Bound
[f the gradients and the Hessian in (3 factorize as in the previous case, we obtain

1 ~
(C%L%_Kin)T}((C%L%_Kin»

A[-logp(BIX,Y)] < 17+ Gl + 5

Here ¢/ is the part of ¢’ corresponding to (3,,,.

Problem
Which basis function to add to 3, (after the gradient on (3, vanishes)?

Approximate Solution
Since (3,, = 0 we can rewrite the §,, term as 2(c! ' V' Kc! . Computing this is ex-

pensive, the diagonal terms, however, are cheap. We bound

\/(%)TK% < )/ Kild)

1=n+1

Hence, pivoting for i with large /;;(c/)? is a good idea.
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