Bayesian Kernel Methods

Unit 1: Bayes Rule, Approximate Inference, Hyperparameters
Unit 2: Gaussian Processes, Covariance Function, Kernel
Unit 3: GP: Regression
Unit 4: GP: Classification
Unit 5: Implementation: Laplace Approximation, Low Rank Methods
Unit 6: Implementation: Low Rank Methods, Bayes Committee Machine
Unit 7: Relevance Vector Machine: Priors on Coefficients
Unit 8: Relevance Vector Machine: Efficient Optimization and Extensions
http://mlg.anu.edu.au/~smola/summer2002/

Overview of Unit 5: Low Rank Methods

01: Spectrum of Covariance Matrix
02: Equations for GP Regression
03: A Bounding Theorem
04: Proof
05: Approximation by PCA
06: Example
07: Projection on Subsets
08: Sparse Greedy Methods
09: A Subset Trick
10: Example
11: A Gradient Lemma
12: Coordinate Descent and Convergence
13: Proof
14: Selection Rule
15: Algorithm
16: Example

A Simple Implementation

Idea

Minimize the negative log-likelihood with the Newton method.

Basic Algorithm

To minimize a function $\mathcal{L}(f)$ which is twice differentiable in f approximate

$$
\mathcal{L}(f+\Delta f) \approx \mathcal{L}(f)+\Delta f \mathcal{L}^{\prime}(f)+\frac{1}{2} \Delta f^{\top} \mathcal{L}^{\prime \prime}(f) \Delta f
$$

Hence we may approximately compute the minimum via

$$
f \leftarrow f-\left(\mathcal{L}^{\prime \prime}(f)\right)^{-1} \mathcal{L}^{\prime}(f)
$$

Practical Consequence

From $\mathcal{L}(f)=\sum_{i=1}^{m}-\log p\left(y_{i} \mid[K \alpha]_{i}, x_{i}\right)+\frac{1}{2} \alpha^{\top} K \alpha$ (with the usual parameterization $f=K \alpha)$ we obtain

$$
\alpha \leftarrow \alpha-\left(K+K^{\top} C^{\prime \prime} K\right)^{-1} K c^{\prime}
$$

where $c_{i}^{\prime}=\partial_{[K \alpha]_{i}}^{1}-\log p\left(y_{i} \mid[K \alpha]_{i}, x_{i}\right)$ and $C_{i i}^{\prime \prime}=\partial_{[K \alpha]_{i}}^{2}-\log p\left(y_{i} \mid[K \alpha]_{i}, x_{i}\right)$.

Spectrum of Covariance Matrix

Practical Consequences

Ill conditioned matrix

Inverting K or products thereof is numerically unstable procedure.

Observation

Removing the smallest eigenvalues/eigenvectors, we obtain almost the same solution.

Computational Speed

Smaller matrices mean that we can solve each Newton step more efficiently (in a nutshell, from $O\left(m^{3}\right)$ cost we go to $O\left(m n^{2}\right)$)

Prediction

If we could compute the functions corresponding to the eigensystem of K directly, this would speed prediction up from $O(m)$ to $O(n)$.

Plan (for today)

Replace the PCA with something more efficient, where we only need to compute n covariance functions $k\left(x_{i}, \cdot\right)$.

Recall: Gaussian Process Regression

Goal

Find distribution of y at location x (i.e. mean and variance of the normal distribution) by integrating out the normal distribution in the rest.
Solution: Denote by $\mathbf{k}=\left(k\left(x_{1}, x\right), \ldots, k\left(x_{m}, x\right)\right)$. Then we have

$$
\mathbf{E}[y]=\mathbf{k}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{y} \text { and } \operatorname{Var}[y]=k(x, x)+\sigma^{2}-\mathbf{k}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{k}
$$

Modified Solution
If we have to predict at several points it pays to compute $\alpha^{*}:=\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{y}$ and predict the mean of y by $\mathbf{k}^{\top} \alpha$.

Idea: Find α and $\mathbf{k}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{k}$ by minimizing quadratic forms:

$$
\begin{aligned}
\alpha^{*} & =\underset{\alpha}{\operatorname{argmin}}\left[-\mathbf{y}^{\top} K \alpha+\frac{1}{2} \alpha^{\top}\left(K^{\top} K+\sigma^{2} K\right) \alpha\right] \\
\mathbf{k}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{k} & =2 \cdot \min _{\alpha}\left[-\mathbf{k}^{\top} \alpha+\frac{1}{2} \alpha^{\top}\left(K+\sigma^{2} \mathbf{1}\right) \alpha\right]
\end{aligned}
$$

Approximating Quadratic Forms

Theorem

Denote by $K \in \mathbb{R}^{m \times m}$ a positive semidefinite matrix, $\mathbf{y}, \alpha \in \mathbb{R}^{m}$ and define the two quadratic forms

$$
\begin{aligned}
Q(\alpha) & :=-\mathbf{y}^{\top} K \alpha+\frac{1}{2} \alpha^{\top}\left(\sigma^{2} K+K^{\top} K\right) \alpha, \\
Q^{*}(\alpha) & :=-\mathbf{y}^{\top} \alpha+\frac{1}{2} \alpha^{\top}\left(\sigma^{2} \mathbf{1}+K\right) \alpha .
\end{aligned}
$$

Suppose Q and Q^{*} have minima $Q_{\min }$ and $Q_{\min }^{*}$. Then for all $\alpha, \alpha^{*} \in \mathbb{R}^{m}$

$$
\begin{aligned}
Q(\alpha) & \geq Q_{\min }
\end{aligned} \geq-\frac{1}{2}\|\mathbf{y}\|^{2}-\sigma^{2} Q^{*}\left(\alpha^{*}\right), ~=\sigma^{-2}\left(-\frac{1}{2}\|\mathbf{y}\|^{2}-Q(\alpha)\right),
$$

with equalities throughout when $Q(\alpha)=Q_{\min }$ and $Q^{*}\left(\alpha^{*}\right)=Q_{\min }^{*}$.

Proof

Minimum of $Q(\alpha)$

The minimum of $Q(\alpha)$ is obtained for $\alpha_{\text {opt }}=\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{y}$ (which also minimizes
Q^{*}), hence

$$
Q_{\min }=-\frac{1}{2} \mathbf{y}^{\top} K\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{y} \text { and } Q_{\min }^{*}=-\frac{1}{2} \mathbf{y}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{y}
$$

Combining Q and Q^{*}
This allows us to combine the minima to

$$
Q_{\min }+\sigma^{2} Q_{\min }^{*}=-\frac{1}{2}\|\mathbf{y}\|^{2} .
$$

Minimum Property of Q, Q^{*}
Since by definition $Q(\alpha) \geq Q_{\min }$ for all α (and likewise $Q^{*}\left(\alpha^{*}\right) \geq Q_{\min }^{*}$ for all α^{*}), we may solve $Q_{\min }+\sigma^{2} Q_{\min }^{*}$ for either Q or Q^{*} to obtain lower bounds for each of the two quantities.

Decomposition and Update

Recall: Objective Functions

$$
\begin{aligned}
Q(\alpha) & :=-\mathbf{y}^{\top} K \alpha+\frac{1}{2} \alpha^{\top}\left(\sigma^{2} K+K^{\top} K\right) \alpha, \\
Q^{*}(\alpha) & :=-\mathbf{y}^{\top} \alpha+\frac{1}{2} \alpha^{\top}\left(\sigma^{2} \mathbf{1}+K\right) \alpha .
\end{aligned}
$$

Ansatz
Use $P \in \mathbb{R}^{m \times n}$ (as an extension matrix) to approximate α by $P \beta$. In particular, P contains only one nonzero entry per column.

Optimal solution in β

$$
\begin{aligned}
& \beta_{\mathrm{opt}}=\left(P^{\top}\left(\sigma^{2} K+K^{\top} K\right) P\right)^{-1} P^{\top} K^{\top} \mathbf{y} \\
& \beta_{\mathrm{opt}}^{*}=\left(P^{\top}\left(\sigma^{2} \mathbf{1}+K\right) P\right)^{-1} P^{\top} \mathbf{k}
\end{aligned}
$$

Decomposition and Update

Idea

We can obtain the inverse matrices by a rank 1 update at $O(m n)$ cost if we know the inverse for $P_{\text {old }}$ where $P=\left[P_{\text {old }}, \mathbf{e}_{j}\right]$).

$$
\begin{aligned}
P^{\top} K^{\top} \mathbf{y} & =\left[P_{\text {old }}, \mathbf{e}_{i}\right]^{\top} K^{\top} \mathbf{y}=\left(P_{\text {old }}^{\top} K^{\top} \mathbf{y}, \mathbf{k}_{i}^{\top} \mathbf{y}\right) \\
P^{\top}\left(K^{\top} K+\sigma^{2} K\right) P & =\left[\begin{array}{cc}
P_{\text {old }}^{\top}\left(K^{\top} K+\sigma^{2} K\right) P_{\text {old }} & P_{\text {old }}^{\top}\left(K^{\top}+\sigma^{2} \mathbf{1}\right) \mathbf{k}_{i} \\
\mathbf{k}_{i}^{\top}\left(K+\sigma^{2} \mathbf{1}\right) P_{\text {old }} & \mathbf{k}_{i}^{\top} \mathbf{k}_{i}+\sigma^{2} K_{i i}
\end{array}\right]
\end{aligned}
$$

Strategy

Try out several new randomly chosen basis functions at each iteration and pick the one which minimizes the objective function most.

Performance Guarantee

With high probability we will find one of the best basis functions (e.g., with a subset of 59 we'll get a 95% guarantee).

Why do random subsets work?

Theorem

Given a random variable ξ with cumulative distribution function $F(\xi)$, then for n instances $\xi_{1}, \ldots \xi_{m}$ of ξ and $\xi_{i} \sim \partial_{\xi} F(\xi)$

$$
\zeta:=\max \left\{\xi_{1}, \ldots, \xi_{n}\right\} \text { we have } F(\zeta)=F^{n}(\xi) \text {. }
$$

Corollary

The cumulative distribution of percentiles χ (i.e. fraction of samples larger than χ) for ζ is bounded from below by $F(\chi)=\chi^{n}$.

Practical Consequence

We only need at most $\left[\frac{\log \delta}{\log (1-\eta)}\right\rceil$ samples in order to obtain a sample among the best δ with $1-\eta$ confidence.
In particular 59 samples suffice to obtain with 95% probability a sample that is better than 95% of the rest.

Comparison with Other Methods

	Exact Solution	Conjugate Gradient	Sparse Decomposition	Sparse Greedy Approximation
Memory	$O\left(m^{2}\right)$	$O\left(m^{2}\right)$	$O(n m)$	$O(n m)$
Initialization	$O\left(m^{3}\right)$	$O\left(n m^{2}\right)$	$O\left(n^{2} m\right)$	$O\left(\kappa n^{2} m\right)$
Prediction:				$O(n)$
Mean	$O(m)$	$O(m)$	$O(n)$	$O\left(n^{2} m\right)$ or $O\left(n^{2}\right)$
Error Bars	$O\left(m^{2}\right)$	$O\left(n m^{2}\right)$	$O\left(n^{2} m\right)$ or $O\left(n^{2}\right)$	

Optimal Rate

The sparse decomposition rates would be optimal but can only be obtained after an NP hard search for the best basis.

Note that $n \ll m$ and that the n used in CG, SD, and SGA methods will differ, with $n_{\mathrm{CG}} \leq n_{\mathrm{SD}} \leq n_{\mathrm{SGA}}$ since the search spaces are more restricted.

Speed of Convergence

Size of the gap between upper and lower bound of the \log posterior, i.e. $Q(\alpha)$ for the first 4000 samples from the
Abalone dataset. From top to bottom: subsets of size $1,2,5,10,20$, 50, 100, 200.

Basis Functions and Performance

Generalization Performance of Greedy Gaussian Processes

	Generalization Error	Log Posterior
Optimal Solution	1.782 ± 0.33	$-1.571 \cdot 10^{5}(1 \pm 0.005)$
Sparse Greedy Approximation	1.785 ± 0.32	$-1.572 \cdot 10^{5}(1 \pm 0.005)$

Kernels needed to minimize the log posterior, depending on the width of the Gaussian kernel ω. Also, number of basis functions required to approximate $\mathbf{k}^{\top}\left(K+\sigma^{2} \mathbf{1}\right)^{-1} \mathbf{k}$ which is needed to compute the error bars.

Kernel width $2 \omega^{2}$	1	2	5	10	20	50
Kernels for \log-posterior	373	287	255	257	251	270
Kernels for error bars	79 ± 61	49 ± 43	26 ± 27	17 ± 16	12 ± 9	8 ± 5

Projections on Subspace

Basic Idea

Even for arbitrary posteriors, using only a subset of coefficients, i.e., $P \beta$ instead of α, will allow us to find rather good approximations. We then minimize

$$
-\log \mathcal{L}(P \beta, X, Y)=\sum_{i=1}^{m}-\log p\left(y_{i} \mid x_{i},[K P \beta]_{i}\right)+\frac{1}{2} \beta^{\top} P^{\top} K P \beta
$$

Now we can minimize a smaller optimization problem which costs $O\left(m n^{2}\right)$ (details on this later).

Parameter Transformation

We now switch to a parameter space in which the GP prior will become diagonal. Without loss of generality assume that P picks the first n coefficients: $P=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. Note: in numerical mathematics this process arises from Gauss elimination of the the rows of the covariance matrix .

Projections on Subspace, Part II

Gauss Elimination

Transform $K=\left[\begin{array}{cc}K^{n n} & K^{m n} \\ \left(K^{m n}\right)^{\top} & K^{m m}\end{array}\right]$ into $\tilde{K}=\left[\begin{array}{lc}\mathbf{1} & \mathbf{0} \\ \mathbf{0} & K^{m m}-\left(K^{m n}\right)^{\top}\left(K^{n n}\right)^{-1} K^{m n}\end{array}\right]$
by $\left[\begin{array}{cc}\left(K^{n n}\right)^{-\frac{1}{2}} & -\left(K^{n n}\right)^{-1} K^{m n} \\ 0 & 1\end{array}\right]$.
The term $\tilde{K}:=K^{m m}-\left(K^{m n}\right)^{\top}\left(K^{n n}\right)^{-1} K^{m n}$ is often referred to as the Schur complement.

Terms of the Optimization Problem

$$
\begin{aligned}
& \text { Reparameterizing by } \alpha=\left[\begin{array}{c}
\left(K^{n n}\right)^{-\frac{1}{2}}-\left(K^{n n}\right)^{-1} K^{m n} \\
1
\end{array}\right]\left[\begin{array}{l}
\beta_{n} \\
\beta_{m}
\end{array}\right] \text { yields } \\
& \qquad \alpha^{\top} K \alpha \rightarrow\left\|\beta_{n}\right\|^{2}+\beta_{m}^{\top} \tilde{K} \beta_{m} \text { and } K \alpha \rightarrow\left[\begin{array}{c}
\left(K^{n n}\right)^{\frac{1}{2}} \\
K^{m n}\left(K^{n n}\right)^{-\frac{1}{2}}
\end{array}\right] \beta_{n}+\left[\begin{array}{c}
0 \\
\tilde{K}
\end{array}\right] \beta_{m}
\end{aligned}
$$

Projections on Subspace, Part III

Gradients of Log-Posterior

$$
\begin{aligned}
\partial_{\beta_{n}}-\log \mathcal{L} & =\left[\begin{array}{r}
\left(K^{n n}\right)^{\frac{1}{2}} \\
K^{m n}\left(K^{n n}\right)^{-\frac{1}{2}}
\end{array}\right] \mathbf{c}^{\prime}+\beta_{n} \\
\partial_{\beta_{m}}-\log \mathcal{L} & =\left[\begin{array}{c}
\mathbf{0} \\
\tilde{K}
\end{array}\right] \mathbf{c}^{\prime}+\tilde{K} \beta_{m}
\end{aligned}
$$

Hessian

$$
\begin{aligned}
& \partial_{\beta_{n}}^{2}-\log \mathcal{L}=\left[\begin{array}{r}
\left(K^{n n}\right)^{\frac{1}{2}} \\
K^{m n}\left(K^{n n}\right)^{-\frac{1}{2}}
\end{array}\right]^{\top} \mathbf{c}^{\prime \prime}\left[\begin{array}{r}
\left(K^{n n}\right)^{\frac{1}{2}} \\
K^{m n}\left(K^{n n}\right)^{-\frac{1}{2}}
\end{array}\right]+\mathbf{1} \\
& \partial_{\beta_{m}}^{2}-\log \mathcal{L}=\left[\begin{array}{c}
0 \\
\tilde{K}
\end{array}\right]^{\top} \mathbf{c}^{\prime \prime}\left[\begin{array}{c}
0 \\
\tilde{K}
\end{array}\right]+\tilde{K}
\end{aligned}
$$

where $c_{i}=-\log p\left(y_{i} \mid x_{i}, f\left(x_{i}\right)\right.$ and the derivatives are taken wrt. $f\left(x_{i}\right)$.

Newton Method

Recall

We have updates $f \leftarrow f-\left(\mathcal{L}^{\prime \prime}(f)\right)^{-1} \mathcal{L}^{\prime}(f)$.
Updates in β_{n}
To optimize over the subspace spanned by the first n covariance functions, we only need to compute

$$
\beta_{n} \leftarrow \beta_{n}-\left(Z \mathbf{c}^{\prime \prime} Z^{\top}\right)^{-1}\left(Z \mathbf{c}^{\prime}+\beta_{n}\right) \text { where } Z:=\left[\begin{array}{r}
\left(K^{n n}\right)^{\frac{1}{2}} \\
K^{m n}\left(K^{n n}\right)^{-\frac{1}{2}}
\end{array}\right] .
$$

Computational Cost

Storage requirement is $O(m n)$ for Z and $O\left(n^{2}\right)$ for $K^{n n}$. CPU cost per inversion is $O\left(m n^{2}\right)$ to compute ($Z \mathbf{c}^{\prime \prime} Z^{\top}$), plus $O\left(n^{3}\right)$ for the inversion. That is, if the space is spanned by a small number of basis functions, the estimation process is linear in the number of observations.

A Gradient Lemma

Problem

We need to know when to stop the optimization. For this purpose we use a bound in terms of the gradient of the log likelihood.

Lemma

Denote by $\mathcal{P}(\beta)$ a differentiable convex functions with $\mathcal{P}(\beta)=\mathcal{L}(\beta)+\frac{1}{2} \beta^{\top} M \beta$. Then we have

$$
\min _{\beta} \mathcal{P}(\beta) \geq \mathcal{P}(\tilde{\beta})-\frac{1}{2}\left[\partial_{\beta} \mathcal{P}(\tilde{\beta})\right]^{\top} M^{-1}\left[\partial_{\beta} \mathcal{P}(\tilde{\beta})\right] .
$$

Proof Idea

A linear approximation of $\mathcal{L}(\beta)$ at $\mathcal{L}(\tilde{\beta})$ is a lower bound on $\mathcal{L}(\beta)$. This allows us to compute lower bound the minimum of $\mathcal{P}(\beta)$.

Selection Rule

Application of the Bound

If the gradients and the Hessian in β factorize as in the previous case, we obtain

$$
\Delta[-\log p(\beta \mid X, Y)] \leq \frac{1}{2}\left\|Z \mathbf{c}^{\prime}+\beta_{n}\right\|^{2}+\frac{1}{2}\left(\mathbf{c}_{m}^{\prime}+\beta_{m}\right)^{\top} \tilde{K}\left(\mathbf{c}_{m}^{\prime}+\beta_{m}\right)
$$

Here \mathbf{c}_{m}^{\prime} is the part of \mathbf{c}^{\prime} corresponding to β_{m}.

Problem

Which basis function to add to β_{n} (after the gradient on β_{n} vanishes)?

Approximate Solution

Since $\beta_{m}=0$ we can rewrite the β_{m} term as $\frac{1}{2}\left(\mathbf{c}_{m}^{\prime}\right)^{\top} \tilde{K} \mathbf{c}_{m}^{\prime}$. Computing this is expensive, the diagonal terms, however, are cheap. We bound

$$
\sqrt{\left(\mathbf{c}_{m}^{\prime}\right)^{\top} \tilde{K} \mathbf{c}_{m}^{\prime}} \leq \sum_{i=n+1}^{m} \sqrt{\tilde{K}_{i i}}\left|c_{i}^{\prime}\right|
$$

Hence, pivoting for i with large $\tilde{K}_{i i}\left(c_{i}^{\prime}\right)^{2}$ is a good idea.

