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Estimating Probabilities

Classification Problem
Unlike in regression we have y; € Y with |Y| € N, in other words, we have only a

finite number of possible outcomes. Again, the goal is to estimate p(y|z;).

Special Case
Consider the binary classification problem where Y = {£1}.

Problem

It is easy to build estimators generating unconstrained functions f(x), yet we need
some tricks to make sure that p is normalized, i.e., > p(y|lr) = 1.

Solution

We use a link function I(y, f(z), ) connecting a real valued function f and p(y|x, f) =

Wy, f(z), ).
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Logistic Regression

Basic Idea
For classification purposes we are mainly interested in the ratio between p(y = 1|x)
and p(y = —1|x), since this tells us the Bayes optimal classifier (i.e., the classifier

with minimal error).

Making the Problem Symmetric
ply=1z)

Estimating £ =11 would help us find a classifier, but it isn’t symmetric with respect
to y. So we attempt to find f with

ply = 1|z) 1
He) =8y =1y 7 PV T = T o=@
Likewise p(y = —1|z) = l—i—expl(f( oL
Likelihood
For the likelihood we obtain
pYIX, ) =]] 1 = —logp(Y|X, f) =) log(1+exp(—yif(z))).

3 SR EIE) =
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Multiclass Logistic Regression

Observation
We may write p(y|x, f(x)) as follows

ply =1z, f(z)) = exp(3f(@))

exp(3f(2)) + exp(—3f(2))
exp(—3f (@)

exp(5f(x)) + exp(—5 f(x))

p<y — _1‘337 f([lf)) —

Idea
For more than two classes, estimate one function f;(z) per class and compute prob-
abilities p(y;|z, f) via |  explfila)
p<y] ‘377 f) T
Z =1 exp( fi(z))
Posterior

Alex Smola: Bayesian Kernel Methods, Lecture 4, http://mlg.anu.edu.au/~smola/summer2002/unit1.pdf Page 5



Probit Model

acZje THE AUSTRALIAN
G~y NATIONAL UNIVERSITY

Basic Idea

We may assume that y is given by the sign of f. but corrupted by Gaussian noise;

thus, y = sgn(f(z) + &) where & ~ N(0,0). In this case, we have
polse) = [EIED L 60

2

00 2 T
() (2)

Here ® is the distribution function of the normal distribution.

T T T T T T T T T
o= -
o=
oc.n
— < —= —= — 1 [} ul = = <
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Label Noise

Basic Idea
We want to perform classification in the presence of random label noise (in addition
to the noise model py(y|t) discussed previously).

Here, a label is randomly assigned to observations with probability 27 (note that
this is the same as randomly flipping with probability n). We then write

pylf(x)) =n+ (1 —2n)po(y|f(z)).

Consequence
The influence of py(y|f(x)) on the posterior is descreased, hence 1 has a “regulariz-

ing” effect on the estimate.
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Discriminant Analysis

Basic Idea
Assume that the classes to be separated (we assume N = 2 for simplicity) correspond
to Normal distributions in some space, and that f(z) are projections from

this space onto a line.

Result

Projections on a real line yield normal distributions. Hence we can model the prob-
ability p(y|z, f(x)) by
1

plole. ) x o (=30 = (o))

Algorithmic Result
This is essentially regression on the labels, which can be done very cheaply:.

Problem: often the assumption of a normal distribution is not so well satisfied.
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MAP Approximation

Log-Posterior
Instead of integrating over p(f|X,Y) we minimize the negative log-posterior. To

make matters simpler, we reparameterize f = Ka.

m

1
—logp(f|X,Y) = Z —log l(y;, x;, [ Kal;) + §OéTKC¥.

i=1
Practical Issues

e Convex loss functions lead to optimization problems with a global minimum.

Proof: assume two (local) minima at, say ti, to, then for all arguments Aty + (1 —
Aty the values will be less or equal to the linear interpolation. This, however, is

a contradiction.
e Choice of link function determines convexity of the optimization problem.

e Morale of the story: choose link function according to data and numerical con-

siderations.
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Examples

Penalized Logistic Regression
We use the logistic link function, which leads to the following minimization problem:

m m
. 1
minimize Z log | 1+exp | —v; Z k(zi, xj)o; + éaTKOz
1=1 7=1
where f = Ka
Prediction
For a new instance we obtain f(x) = > ", a;k(x;, x) and subsequently predict

y = 11if f(x) > 0 and y = —1 otherwise.
Confidence Ratings

For each observation we get p(y = 1|z,y) = ; +eXp1( O
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Soft Margin Loss

Support Vector Loss Function: In SVM one uses as a loss function

e, y, f()) = max(0,1 - yf())

Using the correspondence between loss functions and log-likelihood, we would get
py|z,y, f(x)) = exp(—max(0, 1 — y f(z))) = min(1, exp(y f(z) — 1))

Problem: Probabilities don’t sum up to 1.

6 - 15

4 1 _/\/\

2 057

95 0 5 95 0 5
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How to fix it

Idea 1

Introduce a “Don’t Know” class. This makes sense inside the margin, since we may
not be sure which label we have . ..

Problem
The “Don’t Know” class increases again for large | f(x)|. This does not make sense.

Idea 2

Ignore all don’t know elements and re-normalize to 1.
11 - 11

08¢ 1 087
06; 1 0B
04 1 04;
02; 1 027
95 El 5 95 0 5
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Platt’s Trick

Problem

After obtaining an estimator with a Support Vector Machine we would like to have
probabilities (of course, we could have trained a GP estimator straight away) . ..

Solution Fit a logistic model to the function values f(z), i.e., we

m

|
maximize p(Y'|f, X) = H

ab 1 + exp(—ay; f(x;) + b
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