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Estimating Probabilities

Classification Problem

Unlike in regression we have yi ∈ Y with |Y| ∈ N, in other words, we have only a

finite number of possible outcomes. Again, the goal is to estimate p(y|xi).

Special Case

Consider the binary classification problem where Y = {±1}.

Problem

It is easy to build estimators generating unconstrained functions f (x), yet we need

some tricks to make sure that p is normalized, i.e.,
∑

u p(y|x) = 1.

Solution

We use a link function l(y, f (x), x) connecting a real valued function f and p(y|x, f ) =

l(y, f (x), x).
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Logistic Regression

Basic Idea

For classification purposes we are mainly interested in the ratio between p(y = 1|x)

and p(y = −1|x), since this tells us the Bayes optimal classifier (i.e., the classifier

with minimal error).

Making the Problem Symmetric

Estimating p(y=1|x)
p(y=−1|x) would help us find a classifier, but it isn’t symmetric with respect

to y. So we attempt to find f with

f (x) = log
p(y = 1|x)

p(y = −1|x)
⇒ p(y = 1|x) =

1

1 + exp(−f (x))
.

Likewise p(y = −1|x) = 1
1+exp(f(x)),

Likelihood

For the likelihood we obtain

p(Y |X, f) =

m∏
i=1

1

1 + exp(−yif (xi))
⇒ − log p(Y |X, f) =

m∑
i=1

log(1+exp(−yif (xi))).
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Multiclass Logistic Regression

Observation

We may write p(y|x, f (x)) as follows

p(y = 1|x, f (x)) =
exp(1

2f (x))

exp(1
2f (x)) + exp(−1

2f (x))

p(y = −1|x, f (x)) =
exp(−1

2f (x))

exp(1
2f (x)) + exp(−1

2f (x))

Idea

For more than two classes, estimate one function fj(x) per class and compute prob-

abilities p(yj|x, f ) via
p(yj|x, f ) =

exp(fj(x))∑N
i=1 exp(fi(x))

Posterior

p(f |X, Y ) ∝
m∏
i=1

exp(fyi(xi))∑N
i=1 exp(fi(xi))

N∏
j=1

p(fj)
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Probit Model

Basic Idea

We may assume that y is given by the sign of f , but corrupted by Gaussian noise;

thus, y = sgn(f (x) + ξ) where ξ ∼ N(0, σ). In this case, we have

p(y|f (x)) =

∫
sgn(yf (x) + ξ) + 1

2
p(ξ)dξ

=
1√

2πσ2

∫ ∞
−yf(x)

exp

(
− ξ2

2σ2

)
dξ = Φ

(
yf (x)

σ

)
.

Here Φ is the distribution function of the normal distribution.
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Label Noise

Basic Idea

We want to perform classification in the presence of random label noise (in addition

to the noise model p0(y|t) discussed previously).

Here, a label is randomly assigned to observations with probability 2η (note that

this is the same as randomly flipping with probability η). We then write

p(y|f (x)) = η + (1− 2η)p0(y|f (x)).

Consequence

The influence of p0(y|f (x)) on the posterior is descreased, hence η has a “regulariz-

ing” effect on the estimate.
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Discriminant Analysis

Basic Idea

Assume that the classes to be separated (we assumeN = 2 for simplicity) correspond

to Normal distributions in some space, and that f (x) are projections from

this space onto a line.

Result

Projections on a real line yield normal distributions. Hence we can model the prob-

ability p(y|x, f (x)) by

p(y|x, f (x)) ∝ exp

(
−1

2
(y − f (x))2

)
.

Algorithmic Result

This is essentially regression on the labels, which can be done very cheaply.

Problem: often the assumption of a normal distribution is not so well satisfied.
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MAP Approximation

Log-Posterior

Instead of integrating over p(f |X, Y ) we minimize the negative log-posterior. To

make matters simpler, we reparameterize f = Kα.

− log p(f |X, Y ) =

m∑
i=1

− log l(yi, xi, [Kα]i) +
1

2
α>Kα.

Practical Issues

• Convex loss functions lead to optimization problems with a global minimum.

Proof: assume two (local) minima at, say t1, t2, then for all arguments λt1 + (1−
λ)t2 the values will be less or equal to the linear interpolation. This, however, is

a contradiction.

• Choice of link function determines convexity of the optimization problem.

•Morale of the story: choose link function according to data and numerical con-

siderations.
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Examples

Penalized Logistic Regression

We use the logistic link function, which leads to the following minimization problem:

minimize

m∑
i=1

log

1 + exp

−yi m∑
j=1

k(xi, xj)αj

 +
1

2
α>Kα

where f = Kα

Prediction

For a new instance we obtain f (x) =
∑m

i=1 αik(xi, x) and subsequently predict

y = 1 if f (x) > 0 and y = −1 otherwise.

Confidence Ratings

For each observation we get p(y = 1|x, y) = 1
1+exp(f(x)).
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Link Functions
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Soft Margin Loss

Support Vector Loss Function: In SVM one uses as a loss function

c(x, y, f (x)) = max(0, 1− yf (x))

Using the correspondence between loss functions and log-likelihood, we would get

p(y|x, y, f (x)) = exp(−max(0, 1− yf (x))) = min(1, exp(yf (x)− 1))

Problem: Probabilities don’t sum up to 1.
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How to fix it

Idea 1

Introduce a “Don’t Know” class. This makes sense inside the margin, since we may

not be sure which label we have . . .

Problem

The “Don’t Know” class increases again for large |f (x)|. This does not make sense.

Idea 2

Ignore all don’t know elements and re-normalize to 1.
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Platt’s Trick

Problem

After obtaining an estimator with a Support Vector Machine we would like to have

probabilities (of course, we could have trained a GP estimator straight away) . . .

Solution Fit a logistic model to the function values f (x), i.e., we

maximize
a,b

p(Y |f,X) =

m∏
i=1

1

1 + exp(−ayif (xi) + b)
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Why all is well (Proof by Graph)
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