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Noiselsess Case: Joint Covariance

Recall: Assumptions

Observations t are samples from a Gaussian process with mean µ and covariance

matrix K.

Recall: Goal

After observing t := (t(x1), . . . , t(xm)) we would like to infer the distribution of t

at locations x′1, . . . , x
′
n, i.e., we would like to infer about t′ := (t(x′1), . . . , t(x′n)).

Lazy Trick

The solution is to study p(t′|t). For normal distributions we only need to compute

mean and covariance to determine the density completely (including normaliza-

tion factors). We have

p(t, t′) ∝ exp

−1

2

([
t

t′

]
−

[
µ

µ′

])> [
Ktt Ktt′

Kt′t Kt′t′

]−1([
t

t′

]
−

[
µ

µ′

])
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Recall: Inverting the Covariance Matrix

Inverting the Covariance Matrix[
Ktt Ktt′

K>tt′ Kt′t′

]−1

=

[
Ktt

−1 −
(
Ktt

−1K>tt′
) >χ−1

(
Ktt

−1K>tt′
)
−
(
Ktt

−1K>tt′
)
χ−1

−χ−1
(
Ktt

−1K>tt′
) > χ−1

]
where χ = Kt′t′ −K>tt′Ktt

−1Ktt′ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part

in t′ is given by χ. Thus the variance in t′ is y reduced from Kt′t′ to Kt′t′ −
K>tt′Ktt

−1Ktt′ by observing t.

Predictive Mean

Instead of µ′ the mean is shifted to µ′ + K>tt′K
−1
tt (t− µ).

Alex Smola: Bayesian Kernel Methods, Lecture 3, http://mlg.anu.edu.au/∼smola/summer2002/unit3.pdf Page 4



Adding two Normal Distributions

Goal

Regression with Gaussian Processes with additive normal noise: here we need to

compute the distribution obtained from the sum of two normal distributions.

Theorem (for simplicity only in R)

Denote by ξ, ξ′ random variables with ξ ∼ N(µ, σ2) and ξ′ ∼ N(µ′, σ′2). Then

ξ + ξ′ ∼ N(µ + µ′, σ2 + σ′2).

Proof

The density arising from the sum of two random variables is given by the convolution

of the densities, i.e. p(ξ + ξ′) = (p ◦ p′)(ξ + ξ′). The means are clearly given by

µ + µ′. For the rest assume zero mean:

p ◦ p′ = F−1[F[p] · F[p′]] ∝ F−1

[
e−

σ2

2 ω
2
e−

σ′2
2 ω2

]
= F−1

[
e−

σ2+σ′2
2 ω2

]
Here we see that the covariances add up, hence we obtain N(µ+ µ′, σ2 + σ′2). The

general case can be reduced to R by simultaneous diagonalization.
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Regression with Normal Noise

Idea

If we have yi = ti + ξi where t ∼ N(0, K) and ξi ∼ N(0, σ2), we know that y, being

the sum of two normal random variables, satisfies y ∼ N(0, K + σ21).

Posterior Density

p(y|X) = (2π)−
n
2 (det(K + σ21))−

1
2 exp

(
−1

2
y>(K + σ2)−1y

)
Note that the problem of non-invertibility of the covariance matrix disappeared

(similar to regularization to improve the condition of a matrix).

Inference

We can simply re-use the results from inference without noise and obtain (for infer-

ring y′ after observing y, X,X ′): y′ ∼ N(µy,Σy)where

µy = K>tt′(Ktt + σ21)−1y and Σy = Kt′t′ + σ21−K>tt′(Ktt + σ21)−1Ktt′
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Hyperparameters

Problem

We do not know the exact values of σ, the correlation width ω of the kernel (for

Gaussian RBF), etc., so we have to avoid making too specific guesses.

Solution

Treat σ, ω as hyperparameters and put a prior on the distribution of them. For

simplicity, we only study σ:

p(f |X, Y ) =

∫
p(f |X, Y, σ)p(σ)dσ

MAP2 approximation leads to argmaxf,σ p(Y |f,X, σ)p(f )p(σ).

Regression with Normal Noise

We can take advantage of the fact that y is taken from a normal distribution. So

the problem of finding an appropriate value of σ reduces to

argmax
σ

1

2
log det(K + σ21) + f>(K + σ21)−1f
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Matrix Magic

Derivatives of the Inverse

We need to compute ∂σ2f>(K + σ21)−1f .

0 = ∂t(A
−1A) = ∂tA

−1A + A−1∂tA hence ∂tA
−1 = A−1(∂tA)A−1

This leads to

∂σ2f>(K + σ21)−1f = ‖(K + σ−21)−1‖2

Derivatives of the Log-Determinant

To compute ∂σ2 log det(K + σ21) note that d
dA log detA = A∗. The latter can be

seen as follows:

∂Aij log detA =
1

detA
∂AijdetA =

1

detA
∂AijdetĀij

where Ā is the matrix of cofactors of A. This yields

∂σ2 log det(K + σ21) = tr
(
(K + σ21)−1∂σ2(K + σ21)

)
= tr (K + σ21)−1.

This allows us to compute the gradient wrt. σ2 and optimize.
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Example: Adjusting σ (m = 5, 10, 20, 50)
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Automatic Relevance Determination

Problem

Which is the proper scale of the data (some inputs more important than others)?

Which inputs are relevant?

Scaling of Data

Rescale inputs x by scaling matrix Ω, i.e. x → Ωx (typically we use a diagonal

matrix, as it has fewer parameters). Assume hyperprior on Ω and repeat MAP2

procedure. This leads to

p(f |X, Y ) ∝
∫
p(Y |ΩX, f)p(f )p(Ω)dΩ

Improper Prior

Often it is convenient to use a function p(ω) (not only for ARD, though), that

does not correspond to a finite measure, often called an improper prior (since there∫
p(f |σ)p(σ)dσ is not defined). Note: the MAP2 procedure works regard-

less.
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Example: Adjusting ω (m = 5, 10, 20, 50)
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Additive Noise Models

Additive Noise: Often, we have an underlying effect, say f (x), which is corrupted

by additive noise ξ such that we observe y = f (x) + ξ.

Simplifying Assumptions

Typically we assume that the random variables ξ are uncorrelated and have

zero mean, i.e. Eξ = 0 and Eξξ′ = 0 for all ξ, ξ′.

Furthermore we typically assume that ξ is independent of x (no heteroscedas-

ticity). This means that there exists one density p(ξ) governing the whole noise

process. Under the iid assumption the posterior can now be written as

p(f |X, Y ) ∝ p(f )

m∏
i=1

p(yi − f (xi))

Note

There are many cases where the noise depends on the size of f itself, such as measure-

ments which provide only relative precision. We are treating only a very special

case (which works very well in practice, though).
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Laplacian Noise

Noise Model

p(ξ) =
σ

2
exp(−σ|ξ|)

This is a very long-tailed distribution. It occurs, e.g., in the decay of atoms: at any

time, the probability that a given fraction of atoms will decay is constant. Result:

even after 1000s of years there’s still some C14 left.

Density and Log-Likelihood
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Huber’s Robust Density

Problem: Sometimes we may not know what the additive density model of the likeli-

hood is, in particular, how long-tailed the distribution may be.

Idea: Use the “worst” distribution as a reference. For distributions composed of a

known (in our case Gaussian) part plus up to ε of an unknown part, we have the

robust noise model
− log p(ξ) =

{
1

2σξ
2 if |ξ| ≤ σ

|ξ| − σ
2 otherwise

Density and Log-Likelihood
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Coordinate Transformation

Problem

Minimization in terms of t, the latent variables, is expensive, since it involves dealing

with log p(t) ∝ t>K−1t, for which every calculation costs a matrix inversion.

Idea

Variable substitution from t to t = Kα, which leads to α>Kα.

Posterior for α

For the likelihood term we need yi = ξi + [Kα]i, hence

p(α|X, Y ) ∝

[
m∏
i=1

p (yi − [Kα]i)

]
|K|

1
2 exp

(
−1

2
α>Kα

)
Now the posterior looks similar to one for a generalized linear model, where the

functions k(xi, ·) are the terms into which we expand the estimate.
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MAP Approximation

Well Known Problem

Integrals are expensive, so we need an approximation.

Well Known Solution

Compute the maximum of the posterior and assume a known parametric distribution

around the maximum (typically we choose a normal distribution).

Result

minimize − log p(α|X, Y ) =

m∑
i=1

− log p(yi − [Kα]i) +
1

2
α>Kα + const..

Optimality Condition

K(c′(y1 − [Kα]1), . . . , c′(ym − [Kα]m)) +Kα = 0

where c(ξ) := − log p(ξ). This looks very much like a loss function (see Bernhard’s

talk).
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Connection to Support Vectors

Regularized Risk Functional

Here we minimize the loss on the training set, i.e.,

Remp[f,X, Y ] :=

m∑
i=1

c(xi, yi, f(xi))

plus a regularization term λΩ[f ], which typically is chosen to be Ω[f ] = 1
2‖f‖

2
H. In

summary, we minimize

Rreg[f,X, Y ] = Remp[f,X, Y ] + λΩ[f ] =

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖f‖2

H

Empirical Risk — Log-Likelihood

Match up − log p(yi|xi, ti) and c(xi, yi, f(xi)), e.g., squared loss 1
2(yi − ti)2.

Regularization — Prior

Match up − log p(α) = 1
2α
>Kα + cont. and Ω[f ] = 1

2‖f‖H = 1
2α
>Kα.
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Scaling Problems

Storage

We have to store the covariance matrix K ∈ Rm×m. On workstations this becomes

a problem for m > 104.

Prediction

We have to sum up up to m kernel functions k(xi, x) to predict at x (covariances

between training data and new test point). This becomes a problem for m > 105.

Training

Typically training involves at least one factorization of a matrix of size K. This is

usually of order O(m3). On workstations we get problems if m > 104.

Solution

Approximate K by an object of lower rank. More on this later.
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