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Noiselsess Case: Joint Covariance

Recall: Assumptions
Observations t are samples from a Gaussian process with mean g and covariance

matrix K.

Recall: Goal
After observing t = (¢(x1),...,t(x,)) we would like to infer the distribution of ¢
at locations x7, ..., 2  i.e., we would like to infer about t' := (¢(x}), ..., t(x])).
Lazy Trick
The solution is to study p(t'|t). For normal distributions we only need to compute

mean and covariance to determine the density completely (including normaliza-

tion factors). We have

/ 1 t % ! Ktt Ktt’ - t v
e (1B esed (- 1)
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Recall: Inverting the Covariance Matrix

Inverting the Covariance Matrix
~1

Ky Ky _ Kyt — (Ktt_tht/) ! (Ktt_tht’) - (Ktt_tht’)
Ktt’ Ky _X_l (Kt _1Ktt’) ! X_l

where y = Ky — K

tt/Ktt_tht’ (Schur complement).
Reduced Covariance
From the inverse of the covariance matrix we obtain that the only quadratic part

in t’ is given by y. Thus the variance in t’ is y reduced from Ky to Ky —
K

tt/Ktt_tht’ by observing t.

Predictive Mean
Instead of 4/ the mean is shifted to p' + K.}, K (t — p).
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Adding two Normal Distributions

Goal

Regression with Gaussian Processes with additive normal noise: here we need to

compute the distribution obtained from the sum of two normal distributions.
Theorem (for simplicity only in R)
Denote by &, & random variables with & ~ N(u,0?) and & ~ N(u' ,0’2). Then
E+ & ~ N+, 0 +0"7).
Proof

The density arising from the sum of two random variables is given by the convolution
of the densities, i.e. p(§ +¢&') = (pop)(€+¢'). The means are clearly given by
u~+ /. For the rest assume zero mean:

o'? 2 o245/ 9
poy = F I - T o T [— % ] g [ o ]

Here we see that the covariances add up, hence we obtain N(u + 1/, 02 4+ ¢’*). The

general case can be reduced to R by simultaneous diagonalization.
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Regression with Normal Noise

Idea
If we have y; = t; + & where t ~ N(0, K) and & ~ N(0, 0%), we know that y, being
the sum of two normal random variables, satisfies y ~ N(0, K + 01).

Posterior Density

p(y|X) = (27)" ¥ 4oy )

Note that the problem of non-invertibility of the covariance matrix disappeared

l\')|3

(det(K + 0°1))~ 2 exp (

(similar to regularization to improve the condition of a matrix).

Inference
We can simply re-use the results from inference without noise and obtain (for infer-
ring y’ after observing y, X, X'): y' ~ N(n,, 2, )where

Ktt/<Ktt + 0'2].>_1y and Zy = Kt’t’ + 0'2]_ Ktt’<Ktt + 0-21)_1Ktt’
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Hyperparameters

Problem
We do not know the exact values of o, the correlation width w of the kernel (for
Gaussian RBF), etc., so we have to avoid making too specific guesses.

Solution
Treat o,w as hyperparameters and put a prior on the distribution of them. For

simplicity, we only study o

p(f1X,Y) = / p(f1X, Y, 0)p(0)do

MAP2 approximation leads to argmax, , p(Y'|f, X, o)p(f)p(o).

Regression with Normal Noise
We can take advantage of the fact that y is taken from a normal distribution. So

the problem of finding an appropriate value of o reduces to

1
argmaxilogdet(KJrg?l) +fT(K+021)_1f
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Matrix Magic

Derivatives of the Inverse
We need to compute 0,2 f ' (K + 1)1 f.

0= 5’t(A_1A) = &gA_lA + A_l(?tA hence @A_l = A_l(&gA)A_l
This leads to
O f (K + 0" 1) f = (K +o7°1)7 7

Derivatives of the Log-Determinant
To compute 9, 2logdet(K + o*1) note that -~ log detA = A*. The latter can be

seen as follows:

8142.]. log detA = 0A detA =

de A de A
where A is the matrix of cofactors of A. This yields

0,2 logdet(K +0°1) =tr (K +0°1) '0,2(K +0°1)) = tr (K +0°1)"".

(‘9A detA

This allows us to compute the gradient wrt. o? and optimize.
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Automatic Relevance Determination

Problem
Which is the proper scale of the data (some inputs more important than others)?
Which inputs are relevant?

Scaling of Data
Rescale inputs x by scaling matrix €, i.e.  — Qu (typically we use a diagonal
matrix, as it has fewer parameters). Assume hyperprior on 0 and repeat MAP2
procedure. This leads to

P(f1X,Y) ox / p(YIOX, f)plf)p(Q)d0

Improper Prior
Often it is convenient to use a function p(w) (not only for ARD, though), that
does not correspond to a finite measure, often called an improper prior (since there

[ p(f|o)p(o)do is not defined). Note: the MAP2 procedure works regard-
less.
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Additive Noise Models

Additive Noise: Often, we have an underlying effect, say f(x), which is corrupted

by additive noise £ such that we observe y = f(x) + &.

)

Simplifying Assumptions
Typically we assume that the random variables ¢ are uncorrelated and have
zero mean, i.c. E€ =0 and E£S =0 for all £, &',

Furthermore we typically assume that £ is independent of x (no heteroscedas-
ticity). This means that there exists one density p(§) governing the whole noise
process. Under the iid assumption the posterior can now be written as

p(fIX,Y) o p(f Hp
Note

There are many cases where the noise depends on the size of f itself, such as measure-
ments which provide only relative precision. We are treating only a very special
case (which works very well in practice, though).
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Laplacian Noise

Noise Model
o

p(&) = Z expl—ol€])

This is a very long-tailed distribution. It occurs, e.g., in the decay of atoms: at any
time, the probability that a given fraction of atoms will decay is constant. Result:

even after 1000s of years there’s still some C* left.

Density and Log-Likelihood
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Huber’s Robust Density

Problem: Sometimes we may not know what the additive density model of the likeli-

hood is, in particular, how long-tailed the distribution may be.

Idea: Use the “worst” distribution as a reference. For distributions composed of a

known (in our case Gaussian) part plus up to € of an unknown part, we have the

robust noise model o8 p(€) % 2 if €] <o
J— O p—
&P | — §  otherwise

Density and Log-Likelihood

1-

T //m\\ T
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Coordinate Transformation

Problem
Minimization in terms of t, the latent variables, is expensive, since it involves dealing

with log p(t) oc t' K¢, for which every calculation costs a matrix inversion.

Idea
Variable substitution from t to t = Ka, which leads to a' Ka.

Posterior for o
For the likelihood term we need y; = & + [Ka],, hence

H p(y )] Kb exp (-%OJK@)

Now the posterior looks Slmllar to one for a generalized linear model, where the

(| X,Y) x

functions k(x;, -) are the terms into which we expand the estimate.
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MAP Approximation

Well Known Problem

Integrals are expensive, so we need an approximation.

Well Known Solution
Compute the maximum of the posterior and assume a known parametric distribution

around the maximum (typically we choose a normal distribution).

Result

. 1
minimize — log p(a|X,Y) = Z —logp(y; — |[Kal,) + §OzTKoz + const..
i=1

Optimality Condition
K(d(y1 — [Kaly),...,c(ym — [Kaly)) + Ka =0

where ¢(§) := —logp(&). This looks very much like a loss function (see Bernhard’s
talk).
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Connection to Support Vectors

Regularized Risk Functional

Here we minimize the loss on the training set, i.e.,

Rewp[f, X, Y] : Zcxz,yz, )
1=1

plus a regularization term AQ[f], which typically is chosen to be Q[f] = 2| f|l3;. In

summary, we minimize

A
el i, F(20) + S

]

Rreg[fy X; Y] — Remp[fy Xv Y] + AQ[f] —
1=1

Empirical Risk — Log-Likelihood
Mateh up — log p(yi|z:, ;) and ez, i, £(z:)), e.g., squared loss 3(y; — £;)”.

Regularization — Prior
Match up —log p(a) = 50" Ka + cont. and Q[f] = 3| f|ls = 30 Ko
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Scaling Problems

Storage
We have to store the covariance matrix K € R™*™. On workstations this becomes

a problem for m > 10%.

Prediction
We have to sum up up to m kernel functions k(x;, z) to predict at z (covariances
between training data and new test point). This becomes a problem for m > 10°.
Training
Typically training involves at least one factorization of a matrix of size K. This is

usually of order O(m?). On workstations we get problems if m > 10%.

Solution
Approximate K by an object of lower rank. More on this later.
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