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Gaussian Process

Definition

Denote by t(x) a stochastic process parametrized by x ∈ X (X is an arbitrary index

set). Then t(x) is a Gaussian process if for any m ∈ N and {x1, . . . , xm} ⊂ X, the

random variables (t(x1), . . . , t(xm)) are normally distributed.

Covariance Function

We denote by k(x, x′) the function generating the covariance matrix

K := cov{t(x1), . . . , t(xm)} where Kij =: k(xi, xj).

and by µ the mean of the distribution.

Common Assumption: Set µ = 0.

Density at Observations

We observe t at m locations x1, . . . , xm. Then p(t) is given by

p(t) = (2π)−
m
2 |K|−

1
2 exp

(
−1

2
(t− µ)>K−1(t− µ)

)
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Inference with Gaussian Processes

Goal

After observing t := (t(x1), . . . , t(xm)) we would like to infer the distribution of t

at locations x′1, . . . , x
′
n, i.e., we would like to infer about t′ := (t(x′1), . . . , t(x′n)).

Conditional Density

We study p(t′|t). Recall that p(t, t′) = p(t|t′)p(t′) and therefore p(t|t′) can be

obtained from p(t, t′) by fixing t′ and normalizing by p(t′) =
∫
p(t, t′)dt.

Lazy Trick

For normal distributions we only need to compute mean and covariance to de-

termine the density completely (including normalization factors).

Recipe: collect all terms from p(t, t′) dependent on t′ and ignore the rest.

p(t, t′) ∝ exp

−1

2

([
t

t′

]
−

[
µ

µ′

])> [
Ktt Ktt′

Kt′t Kt′t′

]−1([
t

t′

]
−

[
µ

µ′

])
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Example: Regression without Noise
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Example: Regression without Noise

Inverting the Covariance Matrix[
Ktt Ktt′

K>tt′ Kt′t′

]−1

=

[
Ktt

−1 −
(
Ktt

−1K>tt′
) >χ−1

(
Ktt

−1K>tt′
)
−
(
Ktt

−1K>tt′
)
χ−1

−χ−1
(
Ktt

−1K>tt′
) > χ−1

]
where χ = Kt′t′ −K>tt′Ktt

−1Ktt′ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part

in t′ is given by χ. Thus the variance in t′ is y reduced from Kt′t′ to Kt′t′ −
K>tt′Ktt

−1Ktt′ by observing t.

Predictive Mean

Instead of µ′ the mean is shifted to µ′ + K>tt′K
−1
tt (t− µ).
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Linear Model

Covariance Function

Assume that Cov(t(x), t(x′)) = 〈x, x′〉 with x ∈ R
n, i.e., that we have an n-

dimensional Normal distribution, where the covariance between observations is a

bilinear function of x and x′.

Density

p(t) = (2π)−
n
2
(
detX>X

)−1
2 exp

(
−1

2
(t− µ)(XX>)∗(t− µ)

)
where X = (x1, . . . ,xm) and (XX>)∗ is the pseudoinverse of XX>.

Parameter Transformation

By letting t = Xα + µ (this is admissible since p(t) only defined a density on an

n-dimensional subspace) we see that this is equivalent to

p(α) = (2π)−
n
2 exp

(
−1

2
‖α‖2

)
where t = Xα + µ.

see e.g., Box and Tiao, 1973.
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Linear Model, Part II

Prediction

Since t = Xα + µ, already after observing m = n instances {x1, . . . , xn} ⊂ Rn we

can determine α completely.

Reason: X spans only an n-dimensional subspace.

Advantage

We only need n observations.

Problem 1

The model breaks if t 6= Xα + µ for all α ∈ Rn. We need to modify our statistical

model.

Problem 2

We may have an overly simple model, so we cannot learn beyond a certain point.
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Parametric Family

Extension

Instead of k(x, x′) =
∑m

i=1 xix
′
i we assume the covariance function

k(x, x′) =

N∑
i=1

φi(x)φi(x
′).

where φi(x) are the features.

Reparametrization

As in the linear case reparametrize t = Φα, where Φij = φi(xj). Therefore we have

two equivalent parametrizations of the prior on t (assuming m ≥ N):

p(α) = (2π)−
N
2 exp

(
−1

2
‖α‖2

)
and t = Φα + µ.

p(t) = (2π)−
N
2
(
detΦ>Φ

)−1
2 exp

(
−1

2
(t− µ)>(ΦΦ>)∗(t− µ)

)
.

See e.g., Fahrmeir and Tutz, 1994.
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General Covariance Function

Idea

In general, we may not know how many dimensions the function space, or, in other

words, the space of observations really has, hence use generic kernel k without further

assumptions on the dimensionality of the set of functions k(xi, ·).
Examples

k(x, x′) = exp

(
− 1

2σ‖x− x′‖

)
Laplacian Kernel

k(x, x′) = exp

(
− 1

2σ2‖x− x′‖2

)
Gaussian RBF Kernel

k(x, x′) = (〈x, x′〉 + c〉)d with c ≥ 0, d ∈ N Polynomial Kernel

k(x, x′) = B2n+1(x− x′) Spline kernel

k(x, x′) = Ec[p(x|c)p(x′|c)] Conditional Expectation Kernel

All these kernels correspond to a Gaussian process . . . (see Williams 1998, Schölkopf

and Smola 2002, Wahba 1990,
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Diffusion Process

Basic Idea

We have an initial density p(x, 0) of particles, heat, etc., which becomes more spread

out over time due a diffusion process. Goal: estimate p(x, t), based on p(x, 0).

Diffusion in R

The change in density is proportional to the second derivative of p(x, t)

∂tp(x, t) = σ∂2
xp(x, t)

We want to find solutions of the homogeneous PDE.

Extension

More generally we assume a differential equation ∂tp(x, t) = Dp(x, t) where D is a

differential operator whose characteristic polynomial of D satisfies D(ξ) = D(−ξ).

Example

Standard diffusion process: Dp(x, t) = σ∆p(x, t) and correspondingly D(ξ) = ξ2

Likewise D = 1 + ∂2
x + c∂4

x and D(ξ) = 1 + ξ2 + cξ4.
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Diffusion Process, part II

Symbolic Solution

We may write p(x, t) = exp(Dt)p(x, 0), which leads to

∂tp(x, t) = ∂t exp(Dt)p(x, 0) = D exp(Dt)p(x, 0) = Dp(x, t)

Explicit Solution We use the Fourier representation of D and p to obtain

∂tF[p](ω, t) = D(iω)F[p](ω, t)

The homogeneous solution p(x, t) is therefore given by

p(x, t) =
(
F−1[exp(tD(iω))]

)
◦ p(x, 0)

Example: Diffusion in R

We have D = ∂2
x and consequently D(iω) = −ω2. This leads to(

F−1[exp(tD(iω))]
)

=
(
F−1[exp(−tω2)]

)
=

1√
4πt

exp

(
−x

2

4t

)
See e.g. Kondor 2002, Haken, 1976
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Diffusion Process, part III

Joint Covariance Function

The function Gt(x) :=
(
F−1[exp(tD(iω))]

)
(x) gives the density of observing a

particle at location x, if we started with all the probability mass located at x = 0

at time t = 0. Hence, the joint probability of observing particles at x, x′ is given by

p(x, x′|t, xstart = 0) = Gt(x)Gt(x
′)

Uniform Initialization: assuming that at time t = 0 the density is uniform, we

have

p(x, x′) =

∫
Gt(x− τ )Gt(x

′ − τ )dτ

= (Gt ◦Gt) (x− x′)( Symmetry in Gt)

=
(
F−1[exp(2tD(iω))]

)
(x− x′) = G2t(x− x′)(Fourier-Plancherel).

Simplifying Conclusion

The logarithm of the Fourier transform of a translation invariant kernel corresponds

to the differential operator of the generating diffusion process.
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Example: Diffusion on a Graph

Connectivity Matrix

Assume an undirected graph with m nodes, then we can represent it by a matrix

C ∈ Rm×m where Cij = 1 if i, j are connected and Cij = 0 otherwise.

Next denote by L := G− diag(l) where li :=
∑

jGij the Laplacian of the graph G.

Random Walk on a Graph

Assume that we have a probability distribution on a graph, given by p ∈ Rm, where

‖p‖1 = 1. During time ∆t a fraction of σ ·∆t will move from node i to each of the

adjacent connected nodes j. This implies that

pi ← pi − σ∆tpi
∑
j

Cji + σ∆t
∑
j

Cijpj = pi + σ∆t[Lp]i

Limiting Case (Kondor, 2002)

After n steps the density p becomes (1 + σ∆tL)np. If we now set ∆t = t
n and let

n→∞, we obtain
p = lim

n→∞

(
1 +

σt

n
L

)n
= exp(tσL).
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Inference: Posterior Distribution

Recall: Bayes Rule

Given X we want to infer p(f |X, Y ). With the usual assumptions (iid data, prior

independent of X) this leads to

p(f |X, Y ) ∝ p(Y |f,X)p(f ) =

m∏
i=1

p(yi|f (xi), xi)p(f )

GP Assumption

The function values f (xi) are distributed according to a Gaussian process. The

connection to the observations yi is take care by the noise model p(yi|f (xi), xi).

This leads to the following log-posterior

− log p(f |X, Y ) =

m∑
i=1

− log p(yi|xi, f(xi)) +
1

2
log detK +

1

2
f>K−1f + c

Inference

Inference by computing e.g., y = Ep(f |X,Y )[f (x)] or σ2 = Ep(f |X,Y )[(f (x)− y)2].
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MAP Approximation

Problem

Computing integrals is expensive, in particular in high-dimensional spaces.

MAP Solution

Approximate Ep(f |X,Y )[f ] ≈ argmaxfp(f |X, Y ). In the present case this means that

we solve

argmin
f

m∑
i=1

− log p(yi|xi, f(xi)) +
1

2
f>K−1b + c

Reparametrization

Set y = Kα. This leads to the optimization problem

argmin
α

m∑
i=1

− log p([Kα]i|xi, f(xi)) +
1

2
α>Kα + c

Prediction

Once we obtained α for X, Y , we may predict f (x′) as
∑m

i=1 k(xi, x
′)αi.

This assumes that α′ = 0 is a good estimate.
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Latent Variables

Problem

α′ = 0 is often not such a good estimate.

This is especially the case if − log p(y|x, f (x)) does not have a minimum (e.g., loss

for classification).

Better Solution

Find f such that the expected log-posterior (with the expectations taken over

y′1, . . . y
′
m′, and adjusted by themselves to minimize the log-posterior) is minimized.

argmin
f ,p(y′)

m∑
i=1

− log p(yi|xi, f(xi))− Ey′1,...,y
′
m′

m′∑
i=1

log p(y′i|x′i, f(x′i)) +
1

2
f>K−1f + c

where K is the covariance matrix over X,X ′ and likewise f ∈ Rm+m′.

Algorithm (EM, compare to SVM Transduction)

1) For fixed p(y′) find optimal f (Maximization).

2) For fixed f , find optimal p(y′) (Expectation).
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Confidence Intervals

Normal Distribution

If the predictive distribution is a normal distribution, we only need to compute

the variance of y′1, . . . y
′
m′ to obtain error bars on the prediction (see the reasoning

before). Moreover, the MAP approximation is exact.

y′i have Finite Cardinality

For instance, if we want to predict class labels, we can simply evaluate p(y = 1|f, x)

and p(y = −1|f, x) to obtain information about the confidence of the estimate.

General Case: Approximations

Often p(y|f, x) will be none of the above, and, in particular, we will not be able to

compute the integrals explicitly, so we have to approximate:

• Quadratic approximation: compute Taylor expansion of p(f |X, Y ) at fMAP and

use the latter to approximate p(f |X, Y ) by a normal distribution.

•Monte Carlo method: sample from p(f |X, Y ) (not topic of the lectures here).
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Coefficient-based Priors

Factorizing Priors

Analogously to a factorizing assumption on the observations we may also assume

p(f ) =

m∏
i=1

p(αi) where f =

m∑
i=1

αifi

Motivation

The basis functions fi correspond to independent “factors” causing the observations,

e.g., neurons firing independently but rarely, image elements occurring, etc.

Example: Laplace Prior

Sparse codes are often represented by p(αi) = 1
2 exp(−|αi|). Often one uses a

distribution which is even more peaked at 0 to obtain a posterior with higher sparsity

(e.g., the adjoint Bessel function from before).

Example: Normal Prior

Priors such as p(αi) = (2π)−
1
2 exp(−1

2α
2
i ) lead to Gaussian processes.

Alex Smola: Bayesian Kernel Methods, Lecture 2, http://mlg.anu.edu.au/∼smola/summer2002/unit2.pdf Page 19


