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Parametric Density Models

Goal: We want to estimate the density of a random variable, say, x, given a set of

observations X := {x1, . . . ,xm}.
Problem: Without additional knowledge, this is very difficult (and we need lots of

data).

“Solution:” Assume a lot about p(x) and X .

Assumption 1: The set X has been obtained by drawing independent identi-

cally distributed samples from p(x).

This assumption will hold throughout the lectures.

It follows that p(X) = p(x1, . . . ,xm) =

m∏
i=1

p(xi)

Assumption 2: The density p(x) can be parameterized by θ, that is p(x) = p(x|θ).

Caution: We should write pθ(x) to indicate that p(x) is parameterized by θ, rather

than the density of x, given θ. But it will be useful later . . .
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Maximum Likelihood

Inference Principle: Find θ such that p(X|θ) is maximized. This means maximizing

p(X|θ) =

m∏
i=1

p(xi|θ) or equivalently log p(X|θ) =

m∑
i=1

log p(xi|θ).

Likelihood: p(X|θ) as a function of θ is commonly referred to as the likelihood

L(θ). Thereby we can find the parameter θ that is most plausible given X by

maximizing L(θ).

Numerical Trick: Typically we minimize− log L, that is, we minimize
∑m

i=1− log p(xi|θ).

Blue: Similarity to training error for regularized risk, here the error per observation

corresponds to − log(xi|θ).

Problem 1: The maximum value of L can be misleading, since p(x|θ) may not be the

right model (approximation error).

Problem 2: We may not have enough data to adjust θ properly, so the maximum

value of L may be misleadingly high.
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Example: Mean and Variance

Normal Distribution: Estimate parameters θ := (µ, σ2) for a normal distribution

p(x|µ, σ2) =
1√

2πσ2
exp

(
−(x− µ)2

σ2

)
Negative Log-Likelihood:

− log L(µ, θ) = −m
2

log 2π −m log σ +
1

2σ2

m∑
i=1

(xi − µ)2

Optimum for µ: (we assume σ2 6= 0)

∂µ − log L(µ, σ2) =
1

σ2

m∑
i=1

xi − µ = 0⇐⇒ µ =
1

m

m∑
i=1

xi.

Optimum for σ2: (we assume σ2 6= 0)

∂σ − log L(µ, σ2) = −m
σ

+
1

σ3

m∑
i=1

= 0⇐⇒ σ2 =
1

m

m∑
i=1

(xi − µi)2.
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Bayes’ Rule and Conditional Probabilities

Joint Probabilitiy: Pr(X, Y ) is the probability of the events X and Y occurring

simultaneously.

Conditional Probabilitiy: Pr(X|Y ) is the probability of the event X , given Y .

Bayes Rule: Joint and Conditional Probability are related by Pr(X, Y ) = Pr(X|Y ) Pr(Y ).

We may therefore expand Pr(X, Y ) in X and Y to obtain

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )

Joint Density: Pr(x,y) is the density of the events x and y occurring simultaneously.

Conditional Density: Pr(x|y) is the density of the event x, given y.

Bayes Rule: Joint and Conditional Density are related by

p(x,y) = p(x|y)p(y) and therefore p(x|y) =
p(y|x)p(x)

p(y)
.
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Examples

AIDS-Test:

We want to find out likely it is that a patient really has AIDS (denoted by X) if

the test is positive (denoted by Y ).

Roughly 0.1% of all Australians are infected (Pr(X) = 0.001). The probability that

an AIDS test tells us the wrong result is in the order of 1% (Pr(Y |X\X) = 0.01)

and moreover we assume that it detects all infections (Pr(Y |X) = 1). We have

Pr(X|Y ) =
Pr(Y |X) Pr(X)

Pr(Y )
=

Pr(Y |X) Pr(X)

Pr(Y |X) Pr(X) + Pr(Y |X\X) Pr(X\X)

Hence Pr(X|Y ) = 1·0.001
1·0.001+0.01·0.999 = 0.091, i.e. the probability of AIDS is 9.1%!

Reliability of Eye-Witness:

Assume that an eye-witness is 90% sure and that there were 20 people at the crime

scene, what is the probability that the guy identified committed the crime?

Pr(X|Y ) =
0.9 · 0.05

0.9 · 0.05 + 0.1 · 0.95
= 0.3213 = 32% that’s a worry . . .
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Priors

Idea 1

Quite often we have a rough idea of what function we can expect beforehand.

•We observe similar functions in practice.

•We think that e.g. smooth functions should be more likely.

•We would like a certain type of functions.

•We have prior knowledge about specific properties, e.g. vanishing second

derivative, etc.

Idea 2

We have to specify somehow, how likely it is to observe a specific function f from

an overall class of functions. This is done by assuming some density p(f ) describing

how likely we are to observe f .
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Example: Prior on Function Space

Speech Signal

We know that the signal is bandlimited, hence any signal containing frequency com-

ponents above 10kHz has density 0.

Parametric Prior

We may know that f is a linear combination of sin x, cos x, sin 2x, and cos 2x and

that the coefficients may be chosen from the interval [−1, 1].

p(f ) =

{
1
16 if f = α1 sinx + α2 cos x + α3 sin 2x + α4 cos 2x with αi ∈ [−1, 1]

0 otherwise

Prior on Function Values

We assume that there is a correlation between the function values fi at location

f (xi). There we have

p(f1, f2, f3) =
1√

(2π)3 detK
exp

(
−1

2
(f1, f2, f3)>K−1(f1, f2, f3)

)
.
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Bayesian Inference

Applying Bayes Rule:

We want to infer the probability of f , having observed X, Y . By Bayes’ rule we

obtain

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)
∝ p(Y |f,X)p(f |X).

This is also often called the posterior probability of observing f , after that the

data X, Y arrived.

Usual Assumption:

Typically we assume that X has no influence as to which f we may assume, i.e.

p(f |X) = p(f ) (X and f are independent random variables).

Prediction: Given p(f |X, Y ) we can predict f (x) via∫
f (x)p(f |X, Y )df =

1

Z

∫
f (x)p(Y |f,X)dp(f ) where Z =

∫
p(Y |f,X)dp(f )
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Confidence

Variance:

Likewise, to infer the predictive variance we compute

E
[
(f (x)− E[f (x)])2

]
=

∫
(f (x)− E[f (x)])2 p(f |X, Y )df

This means that we can estimate the variation of f (x), given the data and our prior

knowledge about f , as encoded by p(f ).
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Problems with Exact Inference

Problem

Nobody wants to compute integrals, because . . .

• Computing integrals is expensive

• No closed form possible

• Not very intuitive for inference

Idea

After all, we are only averaging, so replace the mean of the distribution by the

mode and hope that it will be ok. This leads to the maximum a posteriori estimate

(see next slide).

Problem

Error bars are really hard to obtain.

Idea

Approximate p(f |X, Y ) by a normal distribution (Laplace Approximation).
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Maximum a Posteriori Approximation

Maximizing the Posterior Probability

To find the hypothesis f with the highest posterior probability we have to maximize

p(f |X, Y ) =
p(Y |f,X)p(f |X)

p(Y |X)

Lazy Trick

Since we only want f (and p(Y |X) is independent of f ), all we have to do is maximize

p(Y |f,X)p(f ).

Taking Logs

For convenience we get f by minimizing

− log p(Y |f,X)p(f |X) = − log p(Y |f,X)− log p(f ) = − log L− log p(f )

So all we are doing is to reweight the likelihood by − log p(f ). This looks

suspiciously like the regularization term. We will match up the two terms later.
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Laplace Approximation for Confidence Intervals

Variance

Once we found the mode f0 of the distribution, we might as well approximate the

variance by approximating p(f |X, Y ) with a normal distribution around f0.

This is done by computing the second order information at f0, i.e. ∂2
f−log p(f |X, Y ).
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Relation to Regularized Risk Functional

Recycling of the Likelihood

Match up terms between likelihood and loss function c(x, y, f(x)). In particular, we

recycle these terms:

c(x, y, f(x)) ≡ − log p(y − f (x))

p(y|f (x) ≡ exp(−c(x, y, f(x))

Now all we have to do is take care of the regularizer mλΩ[f ] and − log p(f ).

Regularizer and Prior

The correspondence

mλΩ[f ] + c = − log p(f ) or equivalently p(f ) ∝ exp(−mλΩ[f ])

is the link between regularizer Ω[f ] and prior p(f ).

Caveat

The translation from regularizer into prior works only to some extent, since the

integral over f need not converge.
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Hyperparameters

Problem

Sometimes we are not quite sure about the type of prior p(f ) we might have, e.g.,

the variance of some parameters . . .

Solution

Put a prior on the parameters governing the prior. Instead of p(f ) we now have

p(f |ω) and a prior p(ω) on the hyperparameter ω.

Effective Prior: We can obtain the effective prior by integrating out the hyperpa-

rameter

p(f ) =

∫
p(f |ω)p(ω)dω

Inference

Using the effective prior for p(f |X, Y ) (and the assumption p(f |X) = p(f )) we

obtain p(f |X, Y ) ∝ p(Y |f,X)p(f ) = p(Y |f,X)

∫
p(f |X,ω)p(ω)dω.

Alex Smola: Bayesian Kernel Methods, Lecture 1, http://mlg.anu.edu.au/∼smola/summer2002/unit1.pdf Page 19



MAP2 Approximation

Problem: Nobody wants to compute integrals, because . . .

• Computing integrals is expensive

• No closed form possible

• Not very intuitive for inference

Idea

After all, we are only averaging, so replace the mean of the distribution by the

mode and hope that it will be ok. This leads to the maximum a posteriori

estimate on the hyperparameter.

Result

maximize
f,ω

p(f |X, Y ) ∝ p(Y |f,X)p(f |ω)p(ω)

Practical Trick

minimize
f,ω

− log p(Y |f,X)︸ ︷︷ ︸
Likelihood

− log p(f |ω)︸ ︷︷ ︸
Prior

− log p(ω)︸︷︷︸
Hyperprior
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To integrate or not to integrate

Integrate

• This is what you need to do for proper inference

• Fewer Parameters

• p(f ) may be of a simpler functional form than p(f |ω)p(ω), e.g.,

p(a|ω) = (2πω2)−
1
2e
− a2

2ω2 and p(ω) = (2π)−
1
2e−

ω2

2 hence p(a) =
1

2π
BesselK(0, |a|).



To integrate or not to integrate

Integrate

• This is what you need to do for proper inference

• Fewer Parameters

• p(f ) may be of a simpler functional form than p(f |ω)p(ω), e.g.,

p(a|ω) = (2πω2)−
1
2e
− a2

2ω2 and p(ω) = (2π)−
1
2e−

ω2

2 hence p(a) =
1

2π
BesselK(0, |a|).

Don’t Integrate

• Sometimes easier to optimize (convex optimization problem or simple one-dimensional

minimization which can be solved explicitly).

•MAP1 part may become exact (for fixed hyperparameter we have a Gaussian

posterior).

• p(f ) may be of a simpler functional form than p(f |ω)p(ω), e.g., if in the example

above p(ω) = 1
2 exp(−|ω|), then p(f ) is really complicated . . .
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To integrate or not to integrate
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05: Linear Model: Consequences
06: Parametric Family
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Gaussian Process

Definition

Denote by t(x) a stochastic process parametrized by x ∈ X (X is an arbitrary index

set). Then t(x) is a Gaussian process if for any m ∈ N and {x1, . . . , xm} ⊂ X, the

random variables (t(x1), . . . , t(xm)) are normally distributed.

Covariance Function

We denote by k(x, x′) the function generating the covariance matrix

K := cov{t(x1), . . . , t(xm)} where Kij =: k(xi, xj).

and by µ the mean of the distribution.

Common Assumption: Set µ = 0.

Density at Observations

We observe t at m locations x1, . . . , xm. Then p(t) is given by

p(t) = (2π)−
m
2 |K|−

1
2 exp

(
−1

2
(t− µ)>K−1(t− µ)

)
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Inference with Gaussian Processes

Goal

After observing t := (t(x1), . . . , t(xm)) we would like to infer the distribution of t

at locations x′1, . . . , x
′
n, i.e., we would like to infer about t′ := (t(x′1), . . . , t(x′n)).

Conditional Density

We study p(t′|t). Recall that p(t, t′) = p(t|t′)p(t′) and therefore p(t|t′) can be

obtained from p(t, t′) by fixing t′ and normalizing by p(t′) =
∫
p(t, t′)dt.

Lazy Trick

For normal distributions we only need to compute mean and covariance to de-

termine the density completely (including normalization factors).

Recipe: collect all terms from p(t, t′) dependent on t′ and ignore the rest.

p(t, t′) ∝ exp

−1

2

([
t

t′

]
−

[
µ

µ′

])> [
Ktt Ktt′

Kt′t Kt′t′

]−1([
t

t′

]
−

[
µ

µ′

])
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Example: Regression without Noise
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Example: Regression without Noise

Inverting the Covariance Matrix[
Ktt Ktt′

K>tt′ Kt′t′

]−1

=

[
Ktt

−1 −
(
Ktt

−1K>tt′
) >χ−1

(
Ktt

−1K>tt′
)
−
(
Ktt

−1K>tt′
)
χ−1

−χ−1
(
Ktt

−1K>tt′
) > χ−1

]
where χ = Kt′t′ −K>tt′Ktt

−1Ktt′ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part

in t′ is given by χ. Thus the variance in t′ is y reduced from Kt′t′ to Kt′t′ −
K>tt′Ktt

−1Ktt′ by observing t.

Predictive Mean

Instead of µ′ the mean is shifted to µ′ + K>tt′K
−1
tt (t− µ).
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Linear Model

Covariance Function

Assume that Cov(t(x), t(x′)) = 〈x, x′〉with x ∈ R
n, i.e., that we have an n-

dimensional Normal distribution, where the covariance between observations is a

bilinear function of x and x′.

Density

p(t) = (2π)−
n
2
(
detX>X

)−1
2 exp

(
−1

2
(t− µ)(XX>)∗(t− µ)

)
where X = (x1, . . . ,xm) and (XX>)∗ is the pseudoinverse of XX>.

Parameter Transformation

By letting t = Xα + µ (this is admissible since p(t) only defined a density on an

n-dimensional subspace) we see that this is equivalent to

p(α) = (2π)−
n
2 exp

(
−1

2
‖α‖2

)
where t = Xα + µ.

see e.g., Box and Tiao, 1973.
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Linear Model, Part II

Prediction

Since t = Xα + µ, already after observing m = n instances {x1, . . . , xn} ⊂ Rn we

can determine α completely.

Reason: Xα spans only an n-dimensional subspace.

Advantage

We only need n observations.

Problem 1

The model breaks if t 6= Xα + µ for no α ∈ Rn. We need to modify our statistical

model.

Problem 2

We may have an overly simple model, so we cannot learn beyond a certain point.
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Parametric Family

Extension

Instead of k(x, x′) =
∑m

i=1 xix
′
i we assume the covariance function

k(x, x′) =

N∑
i=1

φi(x)φi(x
′).

where φi(x) are the features.

Reparametrization

As in the linear case reparametrize t = Φα, where Φij = φi(xj). Therefore we have

two equivalent parametrizations of the prior on t (assuming m ≥ N):

p(α) = (2π)−
N
2 exp

(
−1

2
‖α‖2

)
and t = Φα + µ.

p(t) = (2π)−
N
2
(
detΦ>Φ

)−1
2 exp

(
−1

2
(t− µ)>(ΦΦ>)∗(t− µ)

)
.

See e.g., Fahrmeir and Tutz, 1994.
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General Covariance Function

Idea

In general, we may not know how many dimensions the function space, or, in other

words, the space of observations really has, hence use generic kernel k without further

assumptions on the dimensionality of the set of functions k(xi, ·).
Examples

k(x, x′) = exp

(
− 1

2σ‖x− x′‖

)
Laplacian Kernel

k(x, x′) = exp

(
− 1

2σ2‖x− x′‖2

)
Gaussian RBF Kernel

k(x, x′) = (〈x, x′〉 + c〉)d with c ≥ 0, d ∈ N Polynomial Kernel

k(x, x′) = B2n+1(x− x′) Spline kernel

k(x, x′) = Ec[p(x|c)p(x′|c)] Conditional Expectation Kernel

All these kernels correspond to a Gaussian process . . . (see Williams 1998, Schölkopf

and Smola 2002, Wahba 1990,
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Diffusion Process

Basic Idea

We have an initial density p(x, 0) of particles, heat, etc., which becomes more spread

out over time due a diffusion process. Goal: estimate p(x, t), based on p(x, 0).

Diffusion in R

The change in density is proportional to the second derivative of p(x, t)

∂tp(x, t) = σ∂2
xp(x, t)

We want to find solutions of the homogeneous PDE.

Extension

More generally we assume a differential equation ∂tp(x, t) = Dp(x, t) where D is a

differential operator whose characteristic polynomial of D satisfies D(ξ) = D(−ξ).

Example

Standard diffusion process: Dp(x, t) = σ∆p(x, t) and correspondingly D(ξ) = ξ2

Likewise D = 1 + ∂2
x + c∂4

x and D(ξ) = 1 + ξ2 + cξ4.
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Diffusion Process, part II

Symbolic Solution

We may write p(x, t) = exp(Dt)p(x, 0), which leads to

∂tp(x, t) = ∂t exp(Dt)p(x, 0) = D exp(Dt)p(x, 0) = Dp(x, t)

Explicit Solution We use the Fourier representation of D and p to obtain

∂tF[p](ω, t) = D(iω)F[p](ω, t)

The homogeneous solution p(x, t) is therefore given by

p(x, t) =
(
F−1[exp(tD(iω))]

)
◦ p(x, 0)

Example: Diffusion in R

We have D = ∂2
x and consequently D(iω) = −ω2. This leads to(

F−1[exp(tD(iω))]
)

=
(
F−1[exp(−tω2)]

)
=

1√
4πt

exp

(
−x

2

4t

)
See e.g. Kondor 2002, Haken, 1976
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Diffusion Process, part III

Joint Covariance Function

The function Gt(x) :=
(
F−1[exp(tD(iω))]

)
(x) gives the density of observing a

particle at location x, if we started with all the probability mass located at x = 0

at time t = 0. Hence, the joint probability of observing particles at x, x′ is given by

p(x, x′|t, xstart = 0) = Gt(x)Gt(x
′)

Uniform Initialization: assuming that at time t = 0 the density is uniform, we

have

p(x, x′) =

∫
Gt(x− τ )Gt(x

′ − τ )dτ

= (Gt ◦Gt) (x− x′)( Symmetry in Gt)

=
(
F−1[exp(2tD(iω))]

)
(x− x′) = G2t(x− x′)(Fourier-Plancherel).

Simplifying Conclusion

The logarithm of the Fourier transform of a translation invariant kernel corresponds

to the differential operator of the generating diffusion process.
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Example: Diffusion on a Graph

Connectivity Matrix

Assume an undirected graph with m nodes, then we can represent it by a matrix

C ∈ Rm×m where Cij = 1 if i, j are connected and Cij = 0 otherwise.

Next denote by L := G− diag(l) where li :=
∑

jGij the Laplacian of the graph G.

Random Walk on a Graph

Assume that we have a probability distribution on a graph, given by p ∈ Rm, where

‖p‖1 = 1. During time ∆t a fraction of σ ·∆t will move from node i to each of the

adjacent connected nodes j. This implies that

pi ← pi − σ∆tpi
∑
j

Cji + σ∆t
∑
j

Cijpj = pi + σ∆t[Lp]i

Limiting Case (Kondor, 2002)

After n steps the density p becomes (1 + σ∆tL)np. If we now set ∆t = t
n and let

n→∞, we obtain
p = lim

n→∞

(
1 +

σt

n
L

)n
= exp(tσL).
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Inference: Posterior Distribution

Recall: Bayes Rule

Given X we want to infer p(f |X, Y ). With the usual assumptions (iid data, prior

independent of X) this leads to

p(f |X, Y ) ∝ p(Y |f,X)p(f ) =

m∏
i=1

p(yi|f (xi), xi)p(f )

GP Assumption

The function values f (xi) are distributed according to a Gaussian process. The

connection to the observations yi is take care by the noise model p(yi|f (xi), xi).

This leads to the following log-posterior

− log p(f |X, Y ) =

m∑
i=1

− log p(yi|xi, f(xi)) +
1

2
log detK +

1

2
f>K−1f + c

Inference

We carry out inference by computing e.g., y = Ep(f |X,Y )[f (x)] or y = Ep(f |X,Y )[f
2(x)].
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MAP Approximation

Problem

Computing integrals is expensive, in particular in high-dimensional spaces.

MAP Solution

Approximate Ep(f |X,Y )[f ] ≈ argmaxfp(f |X, Y ). In the present case this means that

we solve

argmin
f

m∑
i=1

− log p(yi|xi, f(xi)) +
1

2
f>K−1b + c

Reparametrization

Set y = Kα. This leads to the optimization problem

argmin
α

m∑
i=1

− log p([Kα]i|xi, f(xi)) +
1

2
α>Kα + c

Prediction

Once we obtained α for X, Y , we may predict f (x′) as
∑m

i=1 k(xi, x
′)αi.

This assumes that α′ = 0 is a good estimate.
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Latent Variables

Problem

α′ = 0 is often not such a good estimate.

This is especially the case if − log p(y|x, f (x)) does not have a minimum (e.g., loss

for classification).

Better Solution

Find f such that the expected log-posterior (with the expectations taken over

y′1, . . . y
′
m′, and adjusted by themselves to minimize the log-posterior) is minimized.

argmin
f ,p(y′)

m∑
i=1

− log p(yi|xi, f(xi))− Ey′1,...,y
′
m′

m′∑
i=1

log p(y′i|x′i, f(x′i)) +
1

2
f>K−1f + c

where K is the covariance matrix over X,X ′ and likewise f ∈ Rm+m′.

Algorithm (EM, compare to SVM Transduction)

1) For fixed p(y′) find optimal f (Maximization).

2) For fixed f , find optimal p(y′) (Expectation).
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Confidence Intervals

Normal Distribution

If the predictive distribution is a normal distribution, we only need to compute

the variance of y′1, . . . y
′
m′ to obtain error bars on the prediction (see the reasoning

before). Moreover, the MAP approximation is exact.

y′i have Finite Cardinality

For instance, if we want to predict class labels, we can simply evaluate p(y = 1|f, x)

and p(y = −1|f, x) to obtain information about the confidence of the estimate.

General Case: Approximations

Often p(y|f, x) will be none of the above, and, in particular, we will not be able to

compute the integrals explicitly, so we have to approximate:

• Quadratic approximation: compute Taylor expansion of p(f |X, Y ) at fMAP and

use the latter to approximate p(f |X, Y ) by a normal distribution.

•Monte Carlo method: sample from p(f |X, Y ) (not topic of the lectures here).
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Coefficient-based Priors

Factorizing Priors

Analogously to a factorizing assumption on the observations we may also assume

p(f ) =

m∏
i=1

p(αi) where f =

m∑
i=1

αifi

Motivation

The basis functions fi correspond to independent “factors” causing the observations,

e.g., neurons firing independently but rarely, image elements occurring, etc.

Example: Laplace Prior

Sparse codes are often represented by p(αi) = 1
2 exp(−|αi|). Often one uses a

distribution which is even more peaked at 0 to obtain a posterior with higher sparsity

(e.g., the adjoint Bessel function from before).

Example: Normal Prior

Priors such as p(αi) = (2π)−
1
2 exp(−1

2α
2
i ) lead to Gaussian processes.
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Overview of Unit 3: GP Regression

01: Noiselsess Case: Joint Covariance
02: Conditioning on Observations
03: Adding two Normal Distributions
04: Regression with Normal Noise
05: Examples
06: Error Bars for GP Regression
07: Examples
08: Hyperparameters
09: Automatic Relevance Determination
10: Generic Noise Models
11: More Noise Models
12: Even More Noise Models
13: Transformation into Lagrange Multipliers
14: MAP Approximation
15: Connection to Support Vectors
16: Scaling Problems
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Noiselsess Case: Joint Covariance

Recall: Assumptions

Observations t are samples from a Gaussian process with mean µ and covariance

matrix K.

Recall: Goal

After observing t := (t(x1), . . . , t(xm)) we would like to infer the distribution of t

at locations x′1, . . . , x
′
n, i.e., we would like to infer about t′ := (t(x′1), . . . , t(x′n)).

Lazy Trick

The solution is to study p(t′|t). For normal distributions we only need to compute

mean and covariance to determine the density completely (including normaliza-

tion factors). We have

p(t, t′) ∝ exp

−1

2

([
t

t′

]
−

[
µ

µ′

])> [
Ktt Ktt′

Kt′t Kt′t′

]−1([
t

t′

]
−

[
µ

µ′

])
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Recall: Inverting the Covariance Matrix

Inverting the Covariance Matrix[
Ktt Ktt′

K>tt′ Kt′t′

]−1

=

[
Ktt

−1 −
(
Ktt

−1K>tt′
) >χ−1

(
Ktt

−1K>tt′
)
−
(
Ktt

−1K>tt′
)
χ−1

−χ−1
(
Ktt

−1K>tt′
) > χ−1

]
where χ = Kt′t′ −K>tt′Ktt

−1Ktt′ (Schur complement).

Reduced Covariance

From the inverse of the covariance matrix we obtain that the only quadratic part

in t′ is given by χ. Thus the variance in t′ is y reduced from Kt′t′ to Kt′t′ −
K>tt′Ktt

−1Ktt′ by observing t.

Predictive Mean

Instead of µ′ the mean is shifted to µ′ + K>tt′K
−1
tt (t− µ).
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Adding two Normal Distributions

Goal

Regression with Gaussian Processes with additive normal noise: here we need to

compute the distribution obtained from the sum of two normal distributions.

Theorem (for simplicity only in R)

Denote by ξ, ξ′ random variables with ξ ∼ N(µ, σ2) and ξ′ ∼ N(µ′, σ′2). Then

ξ + ξ′ ∼ N(µ + µ′, σ2 + σ′2).

Proof

The density arising from the sum of two random variables is given by the convolution

of the densities, i.e. p(ξ + ξ′) = (p ◦ p′)(ξ + ξ′). The means are clearly given by

µ + µ′. For the rest assume zero mean:

p ◦ p′ = F−1[F[p] · F[p′]] ∝ F−1

[
e−

σ2

2 ω
2
e−

σ′2
2 ω2

]
= F−1

[
e−

σ2+σ′2
2 ω2

]
Here we see that the covariances add up, hence we obtain N(µ+ µ′, σ2 + σ′2). The

general case can be reduced to R by simultaneous diagonalization.
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Regression with Normal Noise

Idea

If we have yi = ti + ξi where t ∼ N(0, K) and ξi ∼ N(0, σ2), we know that y, being

the sum of two normal random variables, satisfies y ∼ N(0, K + σ21).

Posterior Density

p(y|X) = (2π)−
n
2 (det(K + σ21))−

1
2 exp

(
−1

2
y>(K + σ2)−1y

)
Note that the problem of non-invertibility of the covariance matrix disappeared

(similar to regularization to improve the condition of a matrix).

Inference

We can simply re-use the results from inference without noise and obtain (for infer-

ring y′ after observing y, X,X ′): y′ ∼ N(µy,Σy)where

µy = K>tt′(Ktt + σ21)−1y and Σy = Kt′t′ + σ21−K>tt′(Ktt + σ21)−1Ktt′
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Hyperparameters

Problem

We do not know the exact values of σ, the correlation width ω of the kernel (for

Gaussian RBF), etc., so we have to avoid making too specific guesses.

Solution

Treat σ, ω as hyperparameters and put a prior on the distribution of them. For

simplicity, we only study σ:

p(f |X, Y ) =

∫
p(f |X, Y, σ)p(σ)dσ

MAP2 approximation leads to argmaxf,σ p(Y |f,X, σ)p(f )p(σ).

Regression with Normal Noise

We can take advantage of the fact that y is taken from a normal distribution. So

the problem of finding an appropriate value of σ reduces to

argmax
σ

1

2
log det(K + σ21) + f>(K + σ21)−1f

Alex Smola: Bayesian Kernel Methods, Lecture 1, http://mlg.anu.edu.au/∼smola/summer2002/unit1.pdf Page 51



Matrix Magic

Derivatives of the Inverse

We need to compute ∂σ2f>(K + σ21)−1f .

0 = ∂t(A
−1A) = ∂tA

−1A + A−1∂tA hence ∂tA
−1 = A−1(∂tA)A−1

This leads to

∂σ2f>(K + σ21)−1f = ‖(K + σ−21)−1‖2

Derivatives of the Log-Determinant

To compute ∂σ2 log det(K + σ21) note that d
dA log detA = A∗. The latter can be

seen as follows:

∂Aij log detA =
1

detA
∂AijdetA =

1

detA
∂AijdetĀij

where Ā is the matrix of cofactors of A. This yields

∂σ2 log det(K + σ21) = tr
(
(K + σ21)−1∂σ2(K + σ21)

)
= tr (K + σ21)−1.

This allows us to compute the gradient wrt. σ2 and optimize.
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Example: Adjusting σ (m = 5, 10, 20, 50)
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Automatic Relevance Determination

Problem

Which is the proper scale of the data (some inputs more important than others)?

Which inputs are relevant?

Scaling of Data

Rescale inputs x by scaling matrix Ω, i.e. x → Ωx (typically we use a diagonal

matrix, as it has fewer parameters). Assume hyperprior on Ω and repeat MAP2

procedure. This leads to

p(f |X, Y ) ∝
∫
p(Y |ΩX, f)p(f )p(Ω)dΩ

Improper Prior

Often it is convenient to use a function p(ω) (not only for ARD, though), that

does not correspond to a finite measure, often called an improper prior (since there∫
p(f |σ)p(σ)dσ is not defined). Note: the MAP2 procedure works regard-

less.
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Example: Adjusting ω (m = 5, 10, 20, 50)
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Additive Noise Models

Additive Noise: Often, we have an underlying effect, say f (x), which is corrupted

by additive noise ξ such that we observe y = f (x) + ξ.

Simplifying Assumptions

Typically we assume that the random variables ξ are uncorrelated and have

zero mean, i.e. Eξ = 0 and Eξξ′ = 0 for all ξ, ξ′.

Furthermore we typically assume that ξ is independent of x (no heteroscedas-

ticity). This means that there exists one density p(ξ) governing the whole noise

process. Under the iid assumption the posterior can now be written as

p(f |X, Y ) ∝ p(f )

m∏
i=1

p(yi − f (xi))
Note

There are many cases where the noise depends on the size of f itself, such as measure-

ments which provide only relative precision. We are treating only a very special

case (which works very well in practice, though).
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Laplacian Noise

Noise Model

p(ξ) =
σ

2
exp(−σ|ξ|)

This is a very long-tailed distribution. It occurs, e.g., in the decay of atoms: at any

time, the probability that a given fraction of atoms will decay is constant. Result:

even after 1000s of years there’s still some C14 left.

Density and Log-Likelihood
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Huber’s Robust Density

Problem: Sometimes we may not know what the additive density model of the likeli-

hood is, in particular, how long-tailed the distribution may be.

Idea: Use the “worst” distribution as a reference. For distributions composed of a

known (in our case Gaussian) part plus up to ε of an unknown part, we have the

robust noise model
p(ξ) =

{
1

2σξ
2 if |ξ| ≤ σ

|ξ| − σ
2 otherwise

Density and Log-Likelihood
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Coordinate Transformation

Problem

Minimization in terms of t, the latent variables, is expensive, since it involves dealing

with log p(t) ∝ y>K−1y, for which every calculation costs a matrix inversion.

Idea

Variable substitution from t to t = Kα, which leads to α>Kα.

Posterior for α

For the likelihood term we need yi = ξi + [Kα]i, hence

p(α|X, Y ) ∝

[
m∏
i=1

p (yi − [Kα]i)

]
|K|

1
2 exp

(
−1

2
α>Kα

)
Now the posterior looks similar to one for a generalized linear model, where the

functions k(xi, ·) are the terms into which we expand the estimate.

Alex Smola: Bayesian Kernel Methods, Lecture 1, http://mlg.anu.edu.au/∼smola/summer2002/unit1.pdf Page 59



MAP Approximation

Well Known Problem

Integrals are expensive, so we need an approximation.

Well Known Solution

Compute the maximum of the posterior and assume a known parametric distribution

around the maximum (typically we choose a normal distribution).

Result

minimize − log p(α|X, Y ) =

m∑
i=1

− log p(yi − [Kα]i) +
1

2
α>Kα + const..

Optimality Condition

K(c′(y1 − [Kα]1), . . . , c′(ym − [Kα]m)) +Kα = 0

where c(ξ) := − log p(ξ). This looks very much like a loss function (see Bernhard’s

talk).
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Connection to Support Vectors

Regularized Risk Functional

Here we minimize the loss on the training set, i.e.,

Remp[f,X, Y ] :=

m∑
i=1

c(xi, yi, f(xi))

plus a regularization term λΩ[f ], which typically is chosen to be Ω[f ] = 1
2‖f‖

2
H. In

summary, we minimize

Rreg[f,X, Y ] = Remp[f,X, Y ] + λΩ[f ] =

m∑
i=1

c(xi, yi, f(xi)) +
λ

2
‖f‖2

H

Empirical Risk — Log-Likelihood

Match up − log p(yi|xi, ti) and c(xi, yi, f(xi)), e.g., squared loss 1
2(yi − ti)2.

Regularization — Prior

Match up − log p(α) = 1
2α
>Kα + cont. and Ω[f ] = 1

2‖f‖H = 1
2α
>Kα.
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Scaling Problems

Storage

We have to store the covariance matrix K ∈ Rm×m. On workstations this becomes

a problem for m > 104.

Prediction

We have to sum up up to m kernel functions k(xi, x) to predict at x (covariances

between training data and new test point). This becomes a problem for m > 105.

Training

Typically training involves at least one factorization of a matrix of size K. This is

usually of order O(m3). On workstations we get problems if m > 104.

Solution

Approximate K by an object of lower rank. More on this later.
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Overview of Unit 4: GP Classification

01: Estimating Probabilities
02: Logistic Regression
03: Multiclass Logistic Regression
04: Probit Model
05: Label Noise
06: Discriminant Analysis
07: MAP Approximation

08: Optimization Problems (Why Logit is good for you)

09: Laplace Approximation and Error Bars
10: Examples
11: Hyperparameters
12: Soft Margin Loss
13: How to fix it
14: Platt’s Trick
15: Why all is well (Proof by Graph)

16: Scaling Problems
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Estimating Probabilities

Classification Problem

Unlike in regression we have yi ∈ Y with |Y| ∈ N, in other words, we have only a

finite number of possible outcomes. Again, the goal is to estimate p(y|xi).

Special Case

Consider the binary classification problem where Y = {±1}.

Problem

It is easy to build estimators generating unconstrained functions f (x), yet we need

some tricks to make sure that p is normalized, i.e.,
∑

u p(y|x) = 1.

Solution

We use a link function l(y, f (x), x) connecting a real valued function f and p(y|x, f ) =

l(y, f (x), x).
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Logistic Regression

Basic Idea

For classification purposes we are mainly interested in the ratio between p(y = 1|x)

and p(y = −1|x), since this tells us the Bayes optimal classifier (i.e., the classifier

with minimal error).

Making the Problem Symmetric

Estimating p(y=1|x)
p(y=−1|x) would help us find a classifier, but it isn’t symmetric with respect

to y. So we attempt to find f with

f (x) = log
p(y = 1|x)

p(y = −1|x)
⇒ p(y = 1|x) =

1

1 + exp(−f (x))
.

Likewise p(y = −1|x) = 1
1+exp(f(x)),

Likelihood

For the likelihood we obtain

p(Y |X, f) =

m∏
i=1

1

1 + exp(−yif (xi))
⇒ − log p(Y |X, f) =

m∑
i=1

log(1+exp(−yif (xi))).
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Multiclass Logistic Regression

Observation

We may write p(y|x, f (x)) as follows

p(y = 1|x, f (x)) =
exp(1

2f (x))

exp(1
2f (x)) + exp(−1

2f (x))

p(y = −1|x, f (x)) =
exp(−1

2f (x))

exp(1
2f (x)) + exp(−1

2f (x))

Idea

For more than two classes, estimate one function fj(x) per class and compute prob-

abilities p(yj|x, f ) via
p(yj|x, f ) =

exp(fj(x))∑N
i=1 exp(fi(x))

Posterior

p(f |X, Y ) ∝
m∏
i=1

exp(fyi(xi))∑N
i=1 exp(fi(xi))

N∏
j=1

p(fj)
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Probit Model

Basic Idea

We may assume that y is given by the sign of f , but corrupted by Gaussian noise;

thus, y = sgn(f (x) + ξ) where ξ ∼ N(0, σ). In this case, we have

p(y|f (x)) =

∫
sgn(yf (x) + ξ) + 1

2
p(ξ)dξ

=
1√

2πσ2

∫ ∞
−yf(x)

exp

(
− ξ2

2σ2

)
dξ = Φ

(
yf (x)

σ

)
.

Here Φ is the distribution function of the normal distribution.
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Label Noise

Basic Idea

We want to perform classification in the presence of random label noise (in addition

to the noise model p0(y|t) discussed previously).

Here, a label is randomly assigned to observations with probability 2η (note that

this is the same as randomly flipping with probability η). We then write

p(y|f (x)) = η + (1− 2η)p0(y|f (x)).

Consequence

The influence of p0(y|f (x)) on the posterior is descreased, hence η has a “regulariz-

ing” effect on the estimate.
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Discriminant Analysis

Basic Idea

Assume that the classes to be separated (we assumeN = 2 for simplicity) correspond

to Normal distributions in some space, and that f (x) are projections from

this space onto a line.

Result

Projections on a real line yield normal distributions. Hence we can model the prob-

ability p(y|x, f (x)) by

p(y|x, f (x)) ∝ exp

(
−1

2
(y − f (x))2

)
.

Algorithmic Result

This is essentially regression on the labels, which can be done very cheaply.

Problem: often the assumption of a normal distribution is not so well satisfied.
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MAP Approximation

Log-Posterior

Instead of integrating over p(f |X, Y ) we minimize the negative log-posterior. To

make matters simpler, we reparameterize f = Kα.

− log p(f |X, Y ) =

m∑
i=1

− log l(yi, xi, [Kα]i) +
1

2
α>Kα.

Practical Issues

• Convex loss functions lead to optimization problems with a global minimum.

Proof: assume two (local) minima at, say t1, t2, then for all arguments λt1 + (1−
λ)t2 the values will be less or equal to the linear interpolation. This, however, is

a contradiction.

• Choice of link function determines whether the optimization problem.

•Morale of the story: choose link function according to data and numerical con-

siderations.
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Examples

Penalized Logistic Regression

We use the logistic link function, which leads to the following minimization problem:

minimize

m∑
i=1

log

1 + exp

−yi m∑
j=1

k(xi, xj)αj

 +
1

2
α>Kα

where f = Kα

Prediction

For a new instance we obtain f (x) =
∑m

i=1 αik(xi, x) and subsequently predict

y = 1 if f (x) > 0 and y = −1 otherwise.

Confidence Ratings

For each observation we get p(y = 1|x, y) = 1
1+exp(f(x)).
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Link Functions
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Examples

Penalized Logistic Regression

We use the logistic link function, which leads to the following minimization problem:

minimize

m∑
i=1

log

1 + exp

−yi m∑
j=1

k(xi, xj)αj

 +
1

2
α>Kα

where f = Kα

Prediction

For a new instance we obtain f (x) =
∑m

i=1 αik(xi, x) and subsequently predict

y = 1 if f (x) > 0 and y = −1 otherwise.

Confidence Ratings

For each observation we get p(y = 1|x, y) = 1
1+exp(f(x)).
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Soft Margin Loss

Support Vector Loss Function: In SVM one uses as a loss function

c(x, y, f (x)) = max(0, 1− yf (x))

Using the correspondence between loss functions and log-likelihood, we would get

p(y|x, y, f (x)) = exp(−max(0, 1− yf (x))) = min(1, exp(yf (x)− 1))

Problem: Probabilities don’t sum up to 1.
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How to fix it

Idea 1

Introduce a “Don’t Know” class. This makes sense inside the margin, since we may

not be sure which label we have . . .

Problem

The “Don’t Know” class increases again for large |f (x)|. This does not make sense.

Idea 2

Ignore all don’t know elements and re-normalize to 1.
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Platt’s Trick

Problem

After obtaining an estimator with a Support Vector Machine we would like to have

probabilities (of course, we could have trained a GP estimator straight away) . . .

Solution Fit a logistic model to the function values f (x), i.e., we

maximize
a,b

p(Y |f,X) =

m∏
i=1

1

1 + exp(−ayif (xi) + b)
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Why all is well (Proof by Graph)
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Overview of Unit 5: Low Rank Methods

01: Spectrum of Covariance Matrix
02: Equations for GP Regression
03: A Bounding Theorem
04: Proof
05: Approximation by PCA
06: Example
07: Projection on Subsets
08: Sparse Greedy Methods
09: A Subset Trick
10: Example
11: A Gradient Lemma
12: Coordinate Descent and Convergence
13: Proof
14: Selection Rule
15: Algorithm
16: Example
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A Simple Implementation

Idea

Minimize the negative log-likelihood with the Newton method.

Basic Algorithm

To minimize a function L(f ) which is twice differentiable in f approximate

L(f + ∆f ) ≈ L(f ) + ∆fL′(f ) +
1

2
∆f>L′′(f )∆f

Hence we may approximately compute the minimum via

f ← f − (L′′(f ))−1L′(f )

Practical Consequence

From L(f ) =
∑m

i=1− log p(yi|[Kα]i, xi)+ 1
2α
>Kα (with the usual parameterization

f = Kα) we obtain

α← α− (K + K>C ′′K)−1Kc′

where c′i = ∂1
[Kα]i
− log p(yi|[Kα]i, xi) and C ′′ii = ∂2

[Kα]i
− log p(yi|[Kα]i, xi).
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Spectrum of Covariance Matrix
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Practical Consequences

Ill conditioned matrix

Inverting K or products thereof is numerically unstable procedure.

Observation

Removing the smallest eigenvalues/eigenvectors, we obtain almost the same solution.

Computational Speed

Smaller matrices mean that we can solve each Newton step more efficiently (in a

nutshell, from O(m3) cost we go to O(mn2))

Prediction

If we could compute the functions corresponding to the eigensystem of K directly,

this would speed prediction up from O(m) to O(n).

Plan (for today)

Replace the PCA with something more efficient, where we only need to compute n

covariance functions k(xi, ·).
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Recall: Gaussian Process Regression

Goal

Find distribution of y at location x (i.e. mean and variance of the normal distri-

bution) by integrating out the normal distribution in the rest.

Solution: Denote by k = (k(x1, x), . . . , k(xm, x)). Then we have

E[y] = k>(K + σ21)−1y and Var[y] = k(x, x) + σ2 − k>(K + σ21)−1k

Modified Solution

If we have to predict at several points it pays to compute α∗ := (K + σ21)−1y and

predict the mean of y by k>α.

Idea: Find α and k>(K + σ21)−1k by minimizing quadratic forms:

α∗ = argmin
α

[
−y>Kα +

1

2
α>(K>K + σ2K)α

]
k>(K + σ21)−1k = 2 ·min

α

[
−k>α +

1

2
α>(K + σ21)α

]
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Approximating Quadratic Forms

Theorem

Denote by K ∈ Rm×m a positive semidefinite matrix, y, α ∈ Rm and define the two

quadratic forms

Q(α) := −y>Kα +
1

2
α>(σ2K + K>K)α,

Q∗(α) := −y>α +
1

2
α>(σ21 + K)α.

Suppose Q and Q∗ have minima Qmin and Q∗min. Then for all α, α∗ ∈ Rm

Q(α) ≥ Qmin ≥ −
1

2
‖y‖2 − σ2Q∗(α∗),

Q∗(α∗) ≥ Q∗min ≥ σ−2

(
−1

2
‖y‖2 −Q(α)

)
,

with equalities throughout when Q(α) = Qmin and Q∗(α∗) = Q∗min.
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Proof

Minimum of Q(α)

The minimum of Q(α) is obtained for αopt = (K + σ21)−1y (which also minimizes

Q∗), hence

Qmin = −1

2
y>K(K + σ21)−1y and Q∗min = −1

2
y>(K + σ21)−1y.

Combining Q and Q∗

This allows us to combine the minima to

Qmin + σ2Q∗min = −1

2
‖y‖2.

Minimum Property of Q,Q∗

Since by definition Q(α) ≥ Qmin for all α (and likewise Q∗(α∗) ≥ Q∗min for all α∗),

we may solve Qmin + σ2Q∗min for either Q or Q∗ to obtain lower bounds for each of

the two quantities.
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Decomposition and Update

Recall: Objective Functions

Q(α) := −y>Kα +
1

2
α>(σ2K + K>K)α,

Q∗(α) := −y>α +
1

2
α>(σ21 + K)α.

Ansatz

Use P ∈ Rm×n (as an extension matrix) to approximate α by Pβ. In particular,

P contains only one nonzero entry per column.

Optimal solution in β

βopt =
(
P>
(
σ2K + K>K

)
P
)−1

P>K>y

β∗opt =
(
P>
(
σ21 + K

)
P
)−1

P>k
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Decomposition and Update

Idea

We can obtain the inverse matrices by a rank 1 update at O(mn) cost if we know

the inverse for Pold where P = [Pold, ej]).

P>K>y = [Pold, ei]
>K>y = (P>oldK

>y,k>i y)

P>
(
K>K + σ2K

)
P =

[
P>old

(
K>K + σ2K

)
Pold P>old

(
K> + σ21

)
ki

k>i (K + σ21)Pold k>i ki + σ2Kii

]
Strategy

Try out several new randomly chosen basis functions at each iteration and pick the

one which minimizes the objective function most.

Performance Guarantee

With high probability we will find one of the best basis functions (e.g., with a subset

of 59 we’ll get a 95% guarantee).
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Why do random subsets work?

Theorem

Given a random variable ξ with cumulative distribution function F (ξ), then for n

instances ξ1, . . . ξm of ξ and ξi ∼ ∂ξF (ξ)

ζ := max{ξ1, . . . , ξn} we have F (ζ) = F n(ξ).

Corollary

The cumulative distribution of percentiles χ (i.e. fraction of samples larger than χ)

for ζ is bounded from below by F (χ) = χn.

Practical Consequence

We only need at most
⌈

log δ
log(1−η)

⌉
samples in order to obtain a sample among the best

δ with 1− η confidence.

In particular 59 samples suffice to obtain with 95% probability a sample that is

better than 95% of the rest.
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Comparison with Other Methods

Exact Conjugate Sparse Sparse Greedy

Solution Gradient Decomposition Approximation

Memory O(m2) O(m2) O(nm) O(nm)

Initialization O(m3) O(nm2) O(n2m) O(κn2m)

Prediction:

Mean O(m) O(m) O(n) O(n)

Error Bars O(m2) O(nm2) O(n2m) or O(n2) O(κn2m) or O(n2)

Optimal Rate

The sparse decomposition rates would be optimal but can only be obtained after an

NP hard search for the best basis.

Note that n � m and that the n used in CG, SD, and SGA methods will differ,

with nCG ≤ nSD ≤ nSGA since the search spaces are more restricted.
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Speed of Convergence

Size of the gap between

upper and lower bound

of the log posterior, i.e.

Q(α) for the first 4000

samples from the

Abalone dataset. From

top to bottom: subsets

of size 1, 2, 5, 10, 20,

50, 100, 200.
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Basis Functions and Performance

Generalization Performance of Greedy Gaussian Processes

Generalization Error Log Posterior

Optimal Solution 1.782± 0.33 −1.571 · 105(1± 0.005)

Sparse Greedy Approximation 1.785± 0.32 −1.572 · 105(1± 0.005)

Kernels needed to minimize the log posterior, depending on the width of the Gaussian

kernel ω. Also, number of basis functions required to approximate k>(K + σ21)−1k

which is needed to compute the error bars.

Kernel width 2ω2 1 2 5 10 20 50

Kernels for log-posterior 373 287 255 257 251 270

Kernels for error bars 79±61 49±43 26±27 17±16 12±9 8±5
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Projections on Subspace

Basic Idea

Even for arbitrary posteriors, using only a subset of coefficients, i.e., Pβ instead of

α, will allow us to find rather good approximations. We then minimize

− log L(Pβ,X, Y ) =

m∑
i=1

− log p(yi|xi, [KPβ]i) +
1

2
β>P>KPβ

Now we can minimize a smaller optimization problem which costs O(mn2) (details

on this later).

Parameter Transformation

We now switch to a parameter space in which the GP prior will become diagonal.

Without loss of generality assume that P picks the first n coefficients: P =

[
1

0

]
.

Note: in numerical mathematics this process arises from Gauss elimination of the

the rows of the covariance matrix .
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Projections on Subspace, Part II

Gauss Elimination

Transform K =

[
Knn Kmn

(Kmn)> Kmm

]
into K̃ =

[
1 0

0 Kmm − (Kmn)>(Knn)−1Kmn

]

by

[
(Knn)−

1
2 −(Knn)−1Kmn

0 1

]
.

The term K̃ := Kmm − (Kmn)>(Knn)−1Kmn is often referred to as the Schur

complement.

Terms of the Optimization Problem

Reparameterizing by α =

[
(Knn)−

1
2 −(Knn)−1Kmn

1

][
βn
βm

]
yields

α>Kα→ ‖βn‖2 + β>mK̃βm and Kα→

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
βn +

[
0

K̃

]
βm
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Projections on Subspace, Part III

Gradients of Log-Posterior

∂βn − log L =

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
c′ + βn

∂βm − log L =

[
0

K̃

]
c′ + K̃βm

Hessian

∂2
βn
− log L =

[
(Knn)

1
2

Kmn(Knn)−
1
2

]>
c′′

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
+ 1

∂2
βm
− log L =

[
0

K̃

]>
c′′

[
0

K̃

]
+ K̃

where ci = − log p(yi|xi, f(xi) and the derivatives are taken wrt. f (xi).
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Newton Method

Recall

We have updates f ← f − (L′′(f ))−1L′(f ).

Updates in βn
To optimize over the subspace spanned by the first n covariance functions, we only

need to compute

βn ← βn − (Zc′′Z>)−1(Zc′ + βn) where Z :=

[
(Knn)

1
2

Kmn(Knn)−
1
2

]
.

Computational Cost

Storage requirement is O(mn) for Z and O(n2) for Knn. CPU cost per inversion is

O(mn2) to compute (Zc′′Z>), plus O(n3) for the inversion. That is, if the space is

spanned by a small number of basis functions, the estimation process is linear in

the number of observations.
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A Gradient Lemma

Problem

We need to know when to stop the optimization. For this purpose we use a bound

in terms of the gradient of the log likelihood.

Lemma

Denote by P(β) a differentiable convex functions with P(β) = L(β) + 1
2β
>Mβ.

Then we have

minβP(β) ≥ P(β̃)− 1

2

[
∂βP(β̃)

]>
M−1

[
∂βP(β̃)

]
.

Proof Idea

A linear approximation of L(β) at L(β̃) is a lower bound on L(β). This allows us

to compute lower bound the minimum of P(β).
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Selection Rule

Application of the Bound

If the gradients and the Hessian in β factorize as in the previous case, we obtain

∆ [− log p(β|X, Y )] ≤ 1

2
‖Zc′ + βn‖2 +

1

2
(c′m + βm)>K̃(c′m + βm).

Here c′m is the part of c′ corresponding to βm.

Problem

Which basis function to add to βn (after the gradient on βn vanishes)?

Approximate Solution

Since βm = 0 we can rewrite the βm term as 1
2(c′m)>K̃c′m. Computing this is ex-

pensive, the diagonal terms, however, are cheap. We bound√
(c′m)>K̃c′m ≤

m∑
i=n+1

√
K̃ii|c′i|

Hence, pivoting for i with large K̃ii(c
′
i)

2 is a good idea.
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Overview of Unit 6: Bayes Committee Machine

01: Splitting the Data
02: Bayes Committee Machine
03: Joining the Posterior
04: Proof
05: Sherman-Morrison-Woodbury
06: Predicting for Small Test Set
07: Generalized BCM
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Splitting the Data

Idea

If we have too much data to minimize the log-posterior directly, we could simply use

the following strategy:

• split into chunks

• optimize over each of the chunks independently

• average over the results

Problems

• how to average

• how to improve confidence ratings

• what is the form of the optimization problem on the chunks

• connection to the exact solution
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Bayes Committee Machine (Tresp)

Basic Idea

Split data D into N chunks D1, . . . , DN . By Bayes’ rule we have

p(f |Di, Di−1) ∝ p(Di|f,Di−1)p(f |Di−1)

Approximation To be able to expand p(f |D1, . . . , DN) into terms of p(f |Di) we

approximate

p(Di|f,Di−1) ≈ p(D|f )

This would be true for function generating the data (given the underlying hypothesis,

the individual data blocks are independent), in our case it is just an approximation.

Result

p(f |Di) ∝

(
N∏
i=1

p(Di|f )

)
p(f ) =

∏N
i=1 p(f |Di)p(f )

pN−1(f )

Now we may approximate each of the p(f |Di)p(f ) and combine the results.
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Joining the Posterior

Laplace Approximation

We approximate each p(f |Di)p(f ) by a normal distribution.

Combining Normal Distributions

Taking products of normal distributions with means µi and covariances Σi leads to

an overall normal distribution with

Σ−1 =

N∑
i=1

Σ−1
i and µ = Σ

N∑
i=1

Σ−1
i µi

For quotients the signs are reversed.

Combined Posterior

Given the GP prior p(f ) with covariance matrix ΣG we obtain

Σ−1 = (1−N)ΣG +

N∑
i=1

Σ−1
i and µ = Σ

N∑
i=1

Σ−1
i µi
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GP Regression

Estimate on Subset

For regression with normal additive noise we have

fi = Kmn(Knn + σ21)−1y and Σi = Kmm −Kmn(Knn + σ21)−1 (Kmn)>

where we labelled all the predictive part with m and the given part with n.

Combining Individual Predictions

Covar Σ−1 = (1−N)Kmm +

N∑
i=1

(
Kmm −Kmn

i (Knn
i + σ21)−1 (Kmn

i )>
)

= Σ

N∑
i=1

Σ−1
i fi
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Why Does It Work?

A Simple Idea

Given functions g0, g1, . . . , gN : Rn → R we want to minimize

g(α) := g0(α) +

N∑
i=1

gi(α).

Instead, we minimize each g̃i := g0 + gi separately, compute a quadratic

approximation qi of g̃i at its minimum, and subsequently minimize q :=
∑N

i=1 qi −
(N − 1)g0.

Clearly, if all gi are quadratic functions, this procedure is exact. Otherwise it is a

good first iteration.

Maximizing the Posterior

We want to minimize the negative log posterior. For GP regression with Normal

noise this is a quadratic function. For each of the partial negative log-posteriors

the approximation is exact, hence the overall estimate is exact.
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Iterative Extension

A Simple Idea

Use the quadratic approximations qi to improve the estimates at the next iteration:

• Find initial approximations qi by minimizing gi + g0.

• Repeat

• minimize gi +
∑N

j=1,j 6=i qj

• compute quadratic approximation at minimum

• Until converged

When to use

• If we have a simple minimization algorithm which cannot deal with g =
∑

i fi
simultaneously (too much data).

• If we have a ready-made optimizer for the subproblems.

• Otherwise, Newton method should be better (after all, we need an algorithm to

minimize each of the auxiliary functions).
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Online-BCM

Idea

If we observe a new instance (xm+1, ym+1), we can make the approximation

p(f |X, Y, (xm+1, ym+1)) ≈ p(X, Y |f )p(f |(xi, yi))

and simply update mean and covariance according to the combination strategy.

Advantage

We only need to store mean and covariance for updates. No need to remember

the training data (for GP regression exact, since mean and variance are sufficient

statistics of a Normal distribution).

Kalman Filter

Update equations are identical (again, propagating a Normal distribution in time).
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Overview of Unit 7: Relvance Vector Machine

01: Data-Dependent Priors
02: Applications
03: Recall: Coefficient Priors
04: Example: Neurons
05: Example: Independent Sources
06: Example: Kernel Expansions
07: Convergence to Gaussian Processes
08: Proof
09: Posterior
10: The RVM Idea
11: Example: Gamma-Hyperprior
12: Example: Normal-Hyperprior
13: General Hyperpriors
14: More Examples
15: Practical Problem: Inference
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Data-Dependent Priors

Problem

We are wasting information if we ignore the training patterns in specifying our prior.

Solution: Revisiting Bayes’ Rule

P (f |X, Y ) =
P (Y |f,X)P (f |X)

P (Y |X)

This means that we already have a data dependent prior. The problem with

data-independence only arose from the standard approximation p(f |X) = p(f ).

Note: the same connection applies to densities.

Consequence

We need to find suitable data-dependent priors which correspond to useful priors

over function spaces. If we know p(X), we obviously have

p(f ) =

∫
p(f |X)p(X)dX.
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Examples

Density Dependent Capacity

We can allow for a higher complexity function where we have a large amount of data.

Different Regimes

Data might come from N different sources, which can be distinguished solely based

on x1, . . . , xm. So, depending on which source, we will switch between priors

p1(f ), . . . , pN(f ).
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Recall: Coefficient Priors

Function Expansion

Assume that f can be expanded into a linear model of type

f (x) =

M∑
i=1

αifi(x)

where {fi(x)} is a suitable set of functions. This could, e.g., be a kernel, i.e., m = M

and fi = k(xi, x). Note: k is arbitrary, e.g., we do not require positivity.

Factorizing Priors

Analogously to a factorizing assumption on the observations we may also assume

p(f ) =

m∏
i=1

p(αi) where f =

m∑
i=1

αifi

Motivation

The basis functions fi correspond to independent “factors” causing the observations,

e.g., neurons firing independently but rarely, image elements occurring, etc.
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Examples

Brain Signals (gross oversimplification)

Neurons fire independently, and very rarely, however, we only observe the signal from

several neurons at the same time, possibly several observations with different linear

combinations thereof.

Cocktail Party Problem

Assume many speakers, talking (not necessarily to each other) independently. We

have many microphones, what is the signal we receive on each microphone? What

were the underlying signals?
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Example: Kernel Expansions

Expansion

f (x) =

m∑
i=1

αik(xi, x) and p(f ) =

m∏
i=1

p(αi)

Rationale

• Convenient way of specifying data-dependent prior

• Increases capacity automatically where much data occurs

• Easy to optimize

• Easy to explain (linear model)

• Nice theoretical properties

Examples

p(α) ∝ exp(−|α|p), p(α) = BesselK(0, |α|), p(α) = 1
si

, . . .
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Convergence to Gaussian Processes

Theorem

• Denote by αi independent random variables (we do not require identical distribu-

tions on αi) with unit variance and zero mean.

• Assume that there exists a distribution p(x) on X according to which a sample

{x1, . . . , xm} is drawn.

• Assume that k(x, x′) is bounded on X× X.

Then the random variable y(x) given by

y(x) =
1

m

m∑
i=1

αik(xi, x)

converges for m→∞ to a Gaussian process with zero mean and covariance function

k̃(x, x′) =

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄.
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Proof

Normal Distribution of Linear Combinations

We need only check is that y(x) and any linear combination
∑

j y(xj) (for arbitrary

x′j ∈ X) converge to a normal distribution. By application of a theorem of Cramér,

this is sufficient to prove that y(x) is distributed according to a Gaussian Process.

Computing y(x)

The random variable y(x) is a sum ofm independent random variables with bounded

variance (since k(x, x′) is bounded on X × X). Therefore in the limit m → ∞, by

virtue of the Central Limit Theorem, we have

y(x) ∼ N(0, σ2(x)) for some σ2(x) ∈ R

Linear Combinations For arbitrary x′j ∈ X, linear combinations of y(x′j) also have

Gaussian distributions since
n∑
j=1

βiy(x′j) =
1√
m

m∑
i=1

αi

n∑
j=1

βik(xi, x
′
j).
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Proof, Part II

Central Limit Theorem on Linear Combination

We may apply the Central Limit Theorem to the sum since the inner sum
∑n

j=1 βik(xi, x
′
j)

is bounded for any xi. This also implies that
∑n

j=1 βjy(x′j) ∼ N(0, σ2) for m→∞
and some σ2 ∈ R, which proves that y(x) is distributed according to a Gaussian

Process.

Computing an equivalent Gaussian Process

Note that y(x) has zero mean. Thus the covariance function for finite m can be

found as expectation with respect to the random variables αi,

E[y(x)y(x′)] = E

 1

m

m∑
i,j=1

αiαjk(xi, x)k(xj, x
′)

 =
1

m

m∑
i=1

k(xi, x)k(xj, x
′),

since the αi are independent and have zero mean. This converges to the Riemann
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integral over X with the density p(x) as m→∞. Thus

E[y(x)y(x′)] −→
m→∞

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄.
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Effective Kernels

Example: Linear Kernel

k(x, x′) = 〈x, x′〉 and coefficient-based prior. Here we have

k̃(x, x′) =

∫
X

k(x, x̄)k(x′, x̄)p(x̄)dx̄ = x>
(∫

x̄x̄>p(x̄)dx̄

)
x′ = x> (Cov[x]) x′.

Example: Gaussian Kernel

For a kernel k(x, x′) = exp(−1
2‖x − x

′‖2) and p(x) = (2π)−
1
2 exp(−1

2x
2) we obtain

for k̃

k̃(x, x′) =
1√
5

exp

(
−3

5
(x− x′)2

)
exp

(
−2

5
〈x, x′〉

)
Note

The specific form of p(αi) is irrelevant for k̃, as long as the variance is bounded (of

course, this holds only in the limit).

Consequence

We can look for priors which allow for many zero coefficients αi.
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The RVM Idea

Posterior

For a kernel expansion, the posterior can be found as

p(α|X, Y ) =

m∏
i=1

p(yi|f (xi))p(αi) where f (x) =

m∑
i=1

αik(xi, x).

Problem

For rather arbitrary priors, this is a difficult optimization problem. We would rather

like to have a Gaussian prior . . .

Idea

Rewrite p(α) as

∫
p(α|s)p(s)ds, i.e., by means of a Hyperparameter

(and optimize via MAP2).

Result
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p(α|X, Y ) =

∫
R
m

m∏
i=1

p(yi|f (xi))p(αi|si)ds1 . . . dsm
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Example: Gamma-Hyperprior

Gamma Distribution
p(s) = Γ(s|a, b) :=

sa−1ba exp(−sb)
Γ(a)

for si > 0.

For non-informative (flat in logspace) priors, one typically chooses a = b = 10−4.

Effective Prior

For the normal prior p(α|s) = 1√
2πs2

exp
(
− 1

2s2α
2
)

we have

p(α) =

∫
1√

2πs2
exp

(
− 1

2s2
α2

)
sa−1
i ba exp(−sib)

Γ(a)
ds = exp

(
− (a + 1/2) ln

(
b +

α2

2

))
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Example: Normal-Hyperprior

Gamma Distribution
p(s) =

1√
2πω2

exp

(
− 1

2ω2
s2

)

Effective Prior

For the normal prior p(α|s) = 1√
2πs2

exp
(
− 1

2s2α
2
)

we have

p(α) =

∫
1√

2πs2
exp

(
− 1

2s2
α2

)
1√

2πω2
exp

(
− 1

2ω2
s2

)
ds ∝ BesselK(0, |ω|).
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General Hyperpriors

Problem

How can we find a suitable hyperprior p(s) for a given p(α) such that

p(α) =

∫
p(α|s)p(s)ds =

∫
1√

2πs2
exp

(
1

2s2
α2

)
p(s)ds

Solution (after Girosi, 1991)

Parameter transformation β = 1
2ω2 leads to

p(α) =

∫
exp (−βα)

[
1√
8πβ

p

(
1√
2β

)]
dβ

That is, p(α) is the Laplace Transform of
[

1√
8πβ
p
(

1√
2β

)]
.

Strategy

Given p(α) we only need to find its inverse Laplace Transform L−1p to obtain p(s).
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More Examples

Polynomial Priors

For p(α) = exp(−|α|−a) for a > 1 we have[
L−1p

]
(s) =

sa−1

Γ(a)
hence p(s) =

√
2π

21−a

Γ(a)
ω−2a

Consequence

•We can deal quite conveniently with priors which do not lead to a lower-bounded

optimization problem.

• Large a leads to priors highly peaked at 0 (hence a very sparse code).

• For a > 1.5 the variance of s is bounded, hence we get a limiting Gaussian

Process.

• For more examples see Bronstein & Semendjajev, Abramovitz & Stegun, etc.
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Practical Problem: Inference

MAP2 Approximation

Instead of computing the integral over m hyperparameters, we approximate by max-

imizing

p(α, s|X, Y ) ∝
m∏
i=1

p(yi|f (xi))︸ ︷︷ ︸
Likelihood

p(αi|si)︸ ︷︷ ︸
Prior

p(si)︸︷︷︸
Hyperprior

Simple Coordinate Descent Algorithm

Step 1 For fixed s minimize p(α, s|X, Y ) with respect to α.

Step 2 For fixed α minimize p(α, s|X, Y ) with respect to s.

Repeat until a (local) minimum has been obtained.

Confidence

For fixed s we study p(s|X, Y ), which gives the error bars for regressions (for clas-

sification we already have conditional probabilities).

Alex Smola: Bayesian Kernel Methods, Lecture 1, http://mlg.anu.edu.au/∼smola/summer2002/unit1.pdf Page 123



Regression with Gaussian Noise

Likelihood

For fixed s, we have additive normal noise in the observations, i.e., We assume that

p(yi|f (xi)) = 1√
2πσ2

exp
(
− 1

2σ2(yi − [Kα]i)
2
)
.

Prior

Furthermore we have α ∼ N(0, S), where S = diag(s2
1, . . . , s

2
m).

Posterior

Since both prior and likelihood are normal, we may find p(α|X, Y, s) as

α ∼ N(µ,Σ) where Σ = (σ−2K>K + A)−1 and µ = σ−2ΣK>y

Prediction

By assumption we have f (x) =
∑m

i=1 αik(xi, x) + ξ = k>α + ξ. This leads to

y(x) ∼ N(µ∗, σ∗2) where µ∗ = k>α and σ∗2 = σ∗ + k>Σk.
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Optimization

Effective Likelihood

By integrating out α we can contract the posterior into p(Y |X, s)p(s), where

p(Y |X, s) =

∫
p(Y |X,α)p(α|s).

Since we have only normal distributions, this leads to

y ∼ N(0, (σ21 + KS−1K>))

MAP Approximation

Maximize p(Y |X, s)p(s) with respect to s, σ2:

maximize
s,σ2

(2π)
m
2 |σ21 + KS−1K|−

1
2 exp

(
−1

2
y>(σ21 + KS−1K)−1y

)
p(s).

To find the optimal solution, we take derivatives with respect to s, σ2 and minimize

(details are tedious and omitted, see Tipping 2001).
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General Case

Non-Gaussian Likelihood

Minimization of the negative log-posterior cannot be carried out explicitly any more.

Laplace Approximation

A quadratic approximation at the minimum can be used to obtain approximate

confidence intervals (we approximate three times: MAP, MAP2, Laplace Approxi-

mation).

Practical Solution

Newton method or Fisher Scoring (compute the expectation of the Hessian) leads

to rapid convergence.

Classification

Completely analogous to GP Classification.

Alex Smola: Bayesian Kernel Methods, Lecture 1, http://mlg.anu.edu.au/∼smola/summer2002/unit1.pdf Page 126


